JPH04210240A - Hydrogenation catalyst and its production - Google Patents

Hydrogenation catalyst and its production

Info

Publication number
JPH04210240A
JPH04210240A JP34105390A JP34105390A JPH04210240A JP H04210240 A JPH04210240 A JP H04210240A JP 34105390 A JP34105390 A JP 34105390A JP 34105390 A JP34105390 A JP 34105390A JP H04210240 A JPH04210240 A JP H04210240A
Authority
JP
Japan
Prior art keywords
catalyst
activity
carrier
catalysts
molybdenum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34105390A
Other languages
Japanese (ja)
Inventor
Toshio Sato
利夫 佐藤
Yuji Yoshimura
雄二 葭村
Nobuyuki Matsubayashi
信行 松林
Hiromichi Shimada
島田 広道
Akio Nishijima
西嶋 昭生
Takashi Kameoka
隆 亀岡
Kanji Yanase
梁瀬 寛司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP34105390A priority Critical patent/JPH04210240A/en
Publication of JPH04210240A publication Critical patent/JPH04210240A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PURPOSE:To obtain a highly active hydrogenation catalyst by depositing a catalytic metal on a carrier and dry-sulfurating the metal without calcining it. CONSTITUTION:Catalytic metals such as molybdenum, cobalt and nickel are singly or plurally deposited on a carrier of gamma-alumina, etc. The metals are heated, dehydrated and sulfurated in a reducing atmosphere without being calcined and without the metal salts depositing on the catalyst surface being converted to their oxides to obtain different surface structures. Heavy hydrocarbons are hydrogenated and efficiently reformed or cracked by the catalyst thus obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は1重質炭化水素を原料として水素化処理を行い
、より軽質留分を得る場合に用いられる水素化処理用触
媒に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a hydrotreating catalyst used when hydrogenating a heavy hydrocarbon as a raw material to obtain a lighter fraction. .

[従来の技術] 近年、エネルギー問題、化石燃料の枯渇化にともなって
重中質油など炭化水素を原料とする水素化精製反応に関
する研究が精力的に行われている。
[Prior Art] In recent years, with energy problems and the depletion of fossil fuels, research on hydrorefining reactions using hydrocarbons such as heavy and medium oils as raw materials has been actively conducted.

特に減圧残油、オイルシェール、オイルサンド。Especially vacuum residual oil, oil shale, and oil sands.

石炭などから得られる芳香族環を多く含有する重質油を
効率よく軽質化することについては、新燃料油の用途拡
大という見地からも新しい技術開発が強く望まれている
Regarding the efficient lightening of heavy oil containing many aromatic rings obtained from coal, etc., there is a strong desire for the development of new technology from the perspective of expanding the uses of new fuel oil.

また、より良い環境を目指して排ガス処理技術と並行し
て燃料のより一層のクリーン化が求められており新しい
高性能触媒の開発が必要となっている。
In addition, in order to create a better environment, there is a need for even cleaner fuels as well as exhaust gas treatment technology, necessitating the development of new high-performance catalysts.

このような重質炭化水素の水素化処理反応に用いられる
触媒としては、無機塩から調製したモリブデン、タング
ステン、コバルト、ニッケル、鉄などの単独あるいは組
み合わせたものをアルミナ。
Catalysts used in the hydrogenation reaction of heavy hydrocarbons include molybdenum, tungsten, cobalt, nickel, iron, etc., prepared from inorganic salts, singly or in combination with alumina.

チタニア、シリカなどの担体に担持し触媒として用いら
れてきた。これら触媒は、活性金属を担体に担持し乾燥
した後、空気中400〜600℃の温度で焼成すること
により調製されている。調製された酸化物触媒は反応に
先だって硫化処理し硫化物触媒として水素化処理反応に
もちいている。
It has been used as a catalyst by being supported on a carrier such as titania or silica. These catalysts are prepared by supporting an active metal on a carrier, drying it, and then calcining it in air at a temperature of 400 to 600°C. The prepared oxide catalyst is sulfurized prior to the reaction and used as a sulfide catalyst in the hydrogenation reaction.

[発明が解決しようとする課題] しかしながら、400〜600℃の温度で焼成した触媒
は、乾燥、焼成および硫化過程で、活性金属であるコバ
ルト、ニッケル、モリブデン、タングステン、鉄などの
分散状態が大きく変化する。
[Problems to be Solved by the Invention] However, in the catalyst calcined at a temperature of 400 to 600°C, active metals such as cobalt, nickel, molybdenum, tungsten, and iron are largely dispersed during the drying, calcining, and sulfurizing processes. Change.

また、活性金属が担体成分と複合酸化物を形成する問題
もある。このため、必要な反応選択性。
There is also the problem that the active metal forms a composite oxide with the carrier component. For this reason, the required reaction selectivity.

活性などが得られず、高活性を有し、水素化活性。It has high activity and hydrogenation activity.

水素化分解活性など触媒の基本機能の制御が可能な新し
い触媒系の開発が期待されている。
The development of new catalyst systems that can control the basic functions of catalysts, such as hydrocracking activity, is expected.

そこで本発明では2重質炭化水素類を水素化処理するこ
とにより、効率よく改質あるいは軽質化する場合に用い
る触媒の調製方法を提供することをその課題とする。す
なわち、触媒調製において従来法の空気雰囲気下で乾燥
、焼成し、酸化物触媒を経由し硫化処理により硫化物触
媒とする工程を経ずに、乾燥後、直接に硫化物触媒とす
ることを特徴とする。
Therefore, an object of the present invention is to provide a method for preparing a catalyst that can be used to efficiently reform or lighten heavy hydrocarbons by hydrotreating them. That is, the catalyst is prepared by drying and calcining the catalyst in an air atmosphere, passing through an oxide catalyst, and then converting it into a sulfide catalyst by sulfurization, without going through the process of preparing the catalyst, and directly converting it into a sulfide catalyst after drying. shall be.

具体的には、活性金属種を含浸担持後、焼成することな
しに乾式で硫化し硫化物触媒とする方法である。
Specifically, after impregnating and supporting the active metal species, dry sulfurization is performed without calcination to form a sulfide catalyst.

本方法によれば、触媒表面上における活性金属の分散状
態を制御できること、担体と活性金属種が複合酸化物を
形成せず活性金属種が触媒表面上に有効に分散されるこ
と、容易に活性金属種が硫化されること、など触媒の高
性能化に向けて多くの利点が考えられる。このため、従
来の触媒機能と異なった新しい触媒の開発が期待できる
According to this method, the dispersion state of the active metal on the catalyst surface can be controlled, the carrier and the active metal species do not form a composite oxide and the active metal species are effectively dispersed on the catalyst surface, and the active metal species can be easily activated. There are many advantages that can be considered for improving the performance of catalysts, such as sulfurization of metal species. Therefore, we can expect the development of new catalysts that differ from conventional catalyst functions.

すなわち、触媒表面に担持されている金属塩を酸化物に
することなく還元雰囲気中で加熱脱水および硫化処理を
することにより、従来の触媒と異なった表面構造を有し
、新機能を示す触媒の開発が期待できる。
In other words, by heating and dehydrating and sulfurizing the metal salts supported on the catalyst surface in a reducing atmosphere without converting them into oxides, we can create catalysts with a surface structure different from conventional catalysts and exhibiting new functions. We can expect development.

[W題を解決するための手段] 本発明者らは、前記課題を解決するために種々研究を重
ねた結果、従来法の触媒調製において乾燥、焼成過程に
おいてニッケル、コバルト、モリブデン、タングステン
、鉄などの金属の分散状態あるいは酸化還元状態が変化
し、その結果、目的とする触媒活性が得られず反応選択
性も低くなるなどの事実がわかった。そこでこれらの課
題を解決するための研究を行いその過程において本発明
による乾式調製法が優れていることを見いだし本発明に
至った。
[Means for Solving Problem W] As a result of various studies to solve the above problem, the present inventors have found that nickel, cobalt, molybdenum, tungsten, and iron are It was found that the dispersion state or oxidation-reduction state of metals such as metals changes, and as a result, the desired catalytic activity cannot be obtained and the reaction selectivity decreases. Therefore, we conducted research to solve these problems, and in the process discovered that the dry preparation method of the present invention is superior, leading to the present invention.

すなわち9本発明の触媒は従来の触媒と比べではるかに
高い水素化分解活性が得られる。水素化分解活性の向上
にはモリブデン、タングステン等の原子ががある程度集
合している状態をとることが必要であり2本発明の触媒
は従来の触媒との比べてモリブデンの集合形態は明らか
に異なり低温による乾式調製法を用いればモリブデンが
水素化分解活性の向上に寄与していることがEXAFS
(X線吸収端微細構造)の測定結果よりわかった。
In other words, the catalyst of the present invention has much higher hydrocracking activity than conventional catalysts. In order to improve the hydrogenolysis activity, it is necessary that the atoms of molybdenum, tungsten, etc. are aggregated to some extent.2 The catalyst of the present invention has a clearly different aggregated form of molybdenum compared to conventional catalysts. EXAFS shows that molybdenum contributes to improving hydrogenolysis activity when dry preparation method at low temperature is used.
(X-ray absorption edge fine structure) measurement results.

[実施例] 以下、実施例に基づき、本発明を更に詳細に説明する。[Example] Hereinafter, the present invention will be explained in more detail based on Examples.

実施例1 触媒の調製 触媒担体はγ−アルミナ(直径: 1/32インチ。Example 1 Preparation of catalyst The catalyst carrier was γ-alumina (diameter: 1/32 inch).

柱状、細孔径 80人2表面積 240m+” / g
 )を選定し用いた。活性金属としてモリブデン、コバ
ルト、ニッケル、タングステンあるいはこれらを組み合
わせた触媒を調製条件を変え調製した。各種触媒の組成
の一例は21.7警t%MoO,/A Q 203.3
.5tit%Ni0−15.0すt%Mob、 / A
 Q 20. 、3.5wt%Coo/A Q 203
、および1 、75wt%Ni0−1.75wt%Co
o−15wt%Mob。
Columnar shape, pore size 80 people 2 surface area 240m+”/g
) was selected and used. Catalysts using molybdenum, cobalt, nickel, tungsten, or a combination of these as active metals were prepared under different preparation conditions. An example of the composition of various catalysts is 21.7% MoO, /A Q 203.3
.. 5tit%Ni0-15.0st%Mob, /A
Q20. , 3.5wt%Coo/A Q 203
, and 1, 75wt%Ni0-1.75wt%Co
o-15wt% Mob.

/AQ20.(各種触媒間で活性金属の原子数を揃えた
)である。
/AQ20. (The number of active metal atoms was the same among the various catalysts.)

具体的な触媒調製の手法は、まずモリブデン酸アンモニ
ウム、硝酸ニッケル、硝酸コバルトをアンモニア水(2
8%)に溶解し、上記組成になるように溶液濃度を調製
した。ついで当該溶液にγ−アルミナを浸しく含浸法)
上記組成の触媒とした。得られた含浸成型物は4通りの
方法で乾燥および焼成した。A法は大気中で12時間、
B法は110℃で2時間各々乾燥させた。CおよびD法
は110℃で2時間乾燥させた後、300℃(C法)お
よび550℃(D法)で1時間焼成した。
The specific catalyst preparation method is to first mix ammonium molybdate, nickel nitrate, and cobalt nitrate with aqueous ammonia (2
8%), and the solution concentration was adjusted to have the above composition. Then, γ-alumina is soaked in the solution (impregnation method)
A catalyst having the above composition was prepared. The obtained impregnated molded products were dried and fired in four ways. Method A is for 12 hours in the atmosphere.
In Method B, each sample was dried at 110°C for 2 hours. Methods C and D were dried at 110°C for 2 hours and then fired at 300°C (method C) and 550°C (method D) for 1 hour.

実施例2 触媒活性の評価 調製した触媒は5ν01%H2S/)I2の硫化水素含
有ガスにより400℃、1時間の硫化処理を行い各種水
素化処理反応に用いた。活性の評価はモデル化合物を用
い、水素化(HY)活性、水素化分解(HC)活性につ
いて行った。用いたモデル化合物は1−メチルナフタレ
ン(1−MN)であり。
Example 2 Evaluation of Catalytic Activity The prepared catalyst was subjected to a sulfiding treatment at 400°C for 1 hour using a hydrogen sulfide-containing gas of 5v01% H2S/)I2, and was used in various hydrogenation reactions. The activity was evaluated using model compounds in terms of hydrogenation (HY) activity and hydrogenolysis (HC) activity. The model compound used was 1-methylnaphthalene (1-MN).

1.5−メチルテトラリンの収率をもってHY活性とし
た。さらにジフェニルメタン(DPM)を用いて、ベン
ゼンとトルエンの収率をもってHC活性とした。反応は
、オートクレーブ(内容積50cm3)を用い、触媒0
.3g、モデル化合物10011 、水素初圧 70k
g/c、m2.反応温度 310℃(HY活性)、40
0℃(HC活性)2反応時間1時間である。
The yield of 1,5-methyltetralin was defined as HY activity. Further, using diphenylmethane (DPM), the yield of benzene and toluene was determined as HC activity. The reaction was carried out using an autoclave (inner volume 50 cm3) with 0 catalyst.
.. 3g, model compound 10011, hydrogen initial pressure 70k
g/c, m2. Reaction temperature: 310°C (HY activity), 40
0°C (HC activity) 2 reaction time 1 hour.

反応生成物の分析はキャピラリーガスクロを用いた。Capillary gas chromatography was used to analyze the reaction products.

A法(大気中 12h乾燥) B法(110℃ 2h乾燥) D法(110℃ 2h乾燥。Method A (drying in the atmosphere for 12 hours) Method B (drying at 110°C for 2 hours) Method D (drying at 110°C for 2 hours.

300℃ 1h焼成) D法(100℃ 2h乾燥。Baking at 300℃ for 1 hour) Method D (drying at 100°C for 2 hours.

550℃ 1h焼成) この結果、焼成過程を経ることなしに乾式で硫化処理し
た触媒が焼成後硫化した触媒と比べ、高い水素化分解活
性を示すことがわかった。また。
550°C for 1 hour) As a result, it was found that the catalyst that was dry sulfurized without undergoing a calcination process exhibited higher hydrocracking activity than the catalyst that was sulfurized after calcination. Also.

活性金属種の組合せ、担持量を変えた触媒でも同様の結
果が得られた。
Similar results were obtained using catalysts with different combinations of active metal species and different supported amounts.

実施例3 EXAFSによりMo−5すなわちMOの周りのSの配
位数を測定した。理論上はMOが完全に硫化された場合
Example 3 The coordination number of Mo-5, ie, S around MO, was measured by EXAFS. Theoretically, if MO is completely sulfurized.

Mo原子の周りにはSは6個配位する。従って、 A、
B法はC,D法に比へてこの数値が大きな値を示すこと
から触媒の硫化が進行しているという事がわかる。また
、 Mo−Moについては、 Mo原子の周りのM。
Six S atoms are coordinated around the Mo atom. Therefore, A,
It can be seen that the sulfurization of the catalyst is progressing in Method B because this value is larger than that in Methods C and D. Also, for Mo-Mo, M around Mo atoms.

について測定したもので理論値は6個である。この値の
違いにより、 MoS2の集合形態が異なることがわか
る。表の結果から、触媒はMoS2結晶が焼成過程を経
た触媒と比較し、適度に成長し、この結果水素化分解活
性が向上したことがわかる。
The theoretical value is 6. It can be seen that the aggregation form of MoS2 differs depending on the difference in this value. From the results in the table, it can be seen that the catalyst grew moderately in comparison to the catalyst in which MoS2 crystals underwent a calcination process, and as a result, the hydrogenolysis activity was improved.

以上の結果2本発明の低温による乾式、硫化処理による
触媒調製法は、 Noの硫化が容易に進行し。
As a result of the above, 2. In the catalyst preparation method using dry sulfurization treatment at low temperature according to the present invention, sulfurization of No proceeds easily.

一方では結晶化がおさえられるため、高い水素化分解活
性が得られた。
On the other hand, high hydrogenolysis activity was obtained because crystallization was suppressed.

Claims (2)

【特許請求の範囲】[Claims] (1)触媒活性金属としてモリブデン、タングステン、
コバルト、ニッケル、鉄などを、単独または複数種類組
み合わせて担体に担持し、焼成過程を経ずに乾式で硫化
処理をして水素化処理触媒として用いる方法。
(1) Molybdenum, tungsten as catalytically active metals,
A method in which cobalt, nickel, iron, etc., singly or in combination, are supported on a carrier, and then dry sulfurized without going through a calcination process and used as a hydrogenation catalyst.
(2)特許請求項第1項に記載の触媒の製造方法、水素
化処理触媒およびその製造方法。
(2) A method for producing a catalyst, a hydrotreating catalyst, and a method for producing the same, according to claim 1.
JP34105390A 1990-11-30 1990-11-30 Hydrogenation catalyst and its production Pending JPH04210240A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34105390A JPH04210240A (en) 1990-11-30 1990-11-30 Hydrogenation catalyst and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34105390A JPH04210240A (en) 1990-11-30 1990-11-30 Hydrogenation catalyst and its production

Publications (1)

Publication Number Publication Date
JPH04210240A true JPH04210240A (en) 1992-07-31

Family

ID=18342803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34105390A Pending JPH04210240A (en) 1990-11-30 1990-11-30 Hydrogenation catalyst and its production

Country Status (1)

Country Link
JP (1) JPH04210240A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5468709A (en) * 1992-11-18 1995-11-21 Sumitomo Metal Mining Co., Ltd. Catalysts for hydrotreating hydrocarbon oils and method of preparing the same
JP2002536166A (en) * 1999-02-15 2002-10-29 シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー Manufacture of hydrotreating catalyst
JP2004344725A (en) * 2003-05-20 2004-12-09 National Institute Of Advanced Industrial & Technology Impregnating solution for hydrogenation catalyst, and hydrogenation catalyst using the same
JP2005262063A (en) * 2004-03-17 2005-09-29 National Institute Of Advanced Industrial & Technology Hydrogenation catalyst
KR100636432B1 (en) * 2000-09-25 2006-10-18 차이나 페트로리움 앤드 케미컬 코포레이션 A guard catalyst and a process for its preparation
CN109569635A (en) * 2017-09-28 2019-04-05 中国石油化工股份有限公司 For Tar production fuel oil hydrogenation catalysts

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6214946A (en) * 1985-07-08 1987-01-23 ユニリ−バ− ナ−ムロ−ゼ ベンノ−トシヤ−プ Manufacture of catalyst
JPS6411645A (en) * 1987-07-02 1989-01-17 Sumitomo Metal Mining Co Manufacture of catalyst for hydrogenation of hydrocarbons

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6214946A (en) * 1985-07-08 1987-01-23 ユニリ−バ− ナ−ムロ−ゼ ベンノ−トシヤ−プ Manufacture of catalyst
JPS6411645A (en) * 1987-07-02 1989-01-17 Sumitomo Metal Mining Co Manufacture of catalyst for hydrogenation of hydrocarbons

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5468709A (en) * 1992-11-18 1995-11-21 Sumitomo Metal Mining Co., Ltd. Catalysts for hydrotreating hydrocarbon oils and method of preparing the same
JP2002536166A (en) * 1999-02-15 2002-10-29 シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー Manufacture of hydrotreating catalyst
KR100636432B1 (en) * 2000-09-25 2006-10-18 차이나 페트로리움 앤드 케미컬 코포레이션 A guard catalyst and a process for its preparation
JP2004344725A (en) * 2003-05-20 2004-12-09 National Institute Of Advanced Industrial & Technology Impregnating solution for hydrogenation catalyst, and hydrogenation catalyst using the same
JP4646500B2 (en) * 2003-05-20 2011-03-09 独立行政法人産業技術総合研究所 Hydrotreating catalyst using impregnation solution for hydrotreating catalyst
JP2005262063A (en) * 2004-03-17 2005-09-29 National Institute Of Advanced Industrial & Technology Hydrogenation catalyst
CN109569635A (en) * 2017-09-28 2019-04-05 中国石油化工股份有限公司 For Tar production fuel oil hydrogenation catalysts

Similar Documents

Publication Publication Date Title
JP5882205B2 (en) Hydroprocessing catalyst and method of making the same
AU754251B2 (en) Preparation of a hydrotreating catalyst
AU692473B2 (en) Catalysts, process in which they can be used and process for preparing them
JP2001017860A (en) Catalyst carrier based on group ivb metal oxide of periodic table of elements and its production and use
JPH10500891A (en) Highly active catalyst
JP3688476B2 (en) Hydrocracking catalyst for medium distillate oil production
RU2639159C2 (en) Catalyst, method of producing carrier, method of producing catalyst and method of hydrofining hydrocarbon feedstock
US4082652A (en) Process for improved carbon-supported hydrodesulfurization catalysts
JPS61287448A (en) Catalyst for hydroconverting heavy oil
US3265615A (en) Chromium-containing hydrofining catalysts
JPH05192573A (en) Boron containing catalyst
KR102327247B1 (en) Nano-sized zeolite-supported catalyst and method for preparing the same
US4394302A (en) Hydrodesulfurization catalyst on lithium-containing support and method for its preparation
JPH04210240A (en) Hydrogenation catalyst and its production
RU2633965C1 (en) Method of producing catalyst of hydrocarbon raw material hydrocraking
CN108262063A (en) Hydrogenation catalyst and preparation method thereof
RU2649384C1 (en) Method of hydro-treatment of hydrocracking raw materials
Qi et al. Catalytic performance and sulfidation behaviors of CoMo/Beta-MCM-48 catalysts prepared with citric acid for FCC gasoline hydroupgrading
RU2626396C1 (en) Hydrocarbons crude hydrocraking catalyst
RU2593376C1 (en) Catalyst for processing heavy oils and its preparation method
CN112604709B (en) Hydrogenation catalyst for sulfur-containing waste gas treatment and application thereof
JPS63123448A (en) Manufacture of hydrogenating treating catalyst from hydrogel
RU2662234C1 (en) Method of preparing catalyst for hydrocracking hydrocarbon material
RU2534999C1 (en) Method of hydrofining hydrocarbon material
US5500401A (en) Method for selective hydrodenitrogenation of raw oils