JP4646500B2 - Hydrotreating catalyst using impregnation solution for hydrotreating catalyst - Google Patents
Hydrotreating catalyst using impregnation solution for hydrotreating catalyst Download PDFInfo
- Publication number
- JP4646500B2 JP4646500B2 JP2003142685A JP2003142685A JP4646500B2 JP 4646500 B2 JP4646500 B2 JP 4646500B2 JP 2003142685 A JP2003142685 A JP 2003142685A JP 2003142685 A JP2003142685 A JP 2003142685A JP 4646500 B2 JP4646500 B2 JP 4646500B2
- Authority
- JP
- Japan
- Prior art keywords
- impregnation solution
- hydrotreating catalyst
- catalyst
- molybdenum
- prepared
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Catalysts (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、モリブデン(Mo)を含有する水素化処理触媒用含浸溶液およびそれを使用した触媒に関し、更に詳しくは、炭化水素、特に軽油中の硫黄分を低減させる水素化処理の調製に使用して高い脱硫活性を有する水素化処理触媒の調製に好適に使用される水素化処理触媒用含浸溶液および該含浸溶液を使用して得られた水素化処理触媒に関する。
【0002】
【従来の技術】
従来、ディーゼルエンジンは、良燃費、耐久性や信頼性、低CO2排出の理由から商用車に多く用いられてきた。しかし、ディーゼル排ガスの都市部や道路沿岸域の大気汚染に及ぼす影響は益々深刻になっている。排ガス中の粒子状物質〔パティキュレートマター(PM)〕等の汚染物質を低減する方策としてエンジンの改良や排ガスの後処理技術が鋭意検討されているが、ディーゼル排ガスのPM低減にはディーゼル排ガス微粒子除去装置〔ディーゼルパティキュレートフィルター(DPF)〕の装着が有効とされている。しかし、DPFに用いられている貴金属触媒の硫黄被毒を抑制するためには、軽油中の硫黄量の大幅な低減が必要とされている。このため、軽油中の硫黄分の低減を可能にする高性能触媒の開発は重要な課題となってきている。
【0003】
ところで、水素化処理を行う炭化水素が軽油である場合、硫黄分を500ppmレベルとする従来の深度脱硫であれば、現在の脱硫技術での達成は比較的容易であるが、500ppm以下の超深度脱硫レベルでは、4,6−ジメチルジベンゾチオフェンをはじめとする従来の水素化脱硫触媒では脱硫が困難な化合物(以下、「難脱硫化合物」ともいう)の効率的な脱硫が求められる。しかし、これらの難脱硫化合物の脱硫はアルキル置換基による立体障害が大きく、従来の脱硫触媒では対応が困難であることから、特にこれらの難脱硫化合物の脱硫に優れた性能を有する触媒が求められている。
【0004】
このような問題点を解消するための炭化水素の水素化処理触媒については、従来アルミナ、シリカ、ゼオライトなどの多孔性無機酸化物担体に、モリブデン、タングステンといった周期表第6A族金属の化合物、コバルト、ニッケルといった周期表第8族金属の化合物、及び/又はリン化合物からなる含浸溶液を調製し、これを酸化物形態で担持した後、予備硫化処理して活性化した硫化物触媒が多く用いられており、多数の文献が存在する。1例として特許文献1を示す。
しかし、前記金属化合物を溶解した含浸溶液またはアンモニア等でpHを調整した金属化合物を含有する含浸溶液では、溶解したモリブデンなどの金属は金属イオン集合体(クラスター)の大きさが大きいため、該含浸溶液から調製された水素化処理触媒では、モリブデンなどの金属の分散状態が悪くなり、高い脱硫活性が得られないと云う問題があった。
【0005】
【特許文献1】
特開2000−135441号公報
【0006】
【発明が解決しようとする課題】
本発明の目的は、前述の問題点を克服するためになされたものであって、水素化脱硫されにくい難脱硫化合物の脱硫性能に優れた炭化水素の水素化処理触媒用含浸溶液を使用した水素化処理触媒を提供することにある。
【0007】
【課題を解決するための手段】
本発明者らは、上記の目的を達成するために鋭意研究した結果、含浸溶液における溶解したモリブデン(Mo)のクラスターの大きさにより脱硫活性が変わること、モリブデン(Mo)のクラスターの大きさが小さい含浸溶液を使用した水素化処理触媒は難脱硫化合物の脱硫性能に優れ、かつ不飽和炭化水素の水素化機能が抑制されることを見出し、本発明を完成するに至った。
【0008】
すなわち、本発明は、モリブデン(Mo)と、コバルト(Co)またはニッケル(Ni)を含有し、グルコン酸を錯化剤として調製される水素化処理触媒用含浸溶液であって、該含浸溶液を、広域X線吸収微細構造解析(EXAFS)法により測定したMo K−edgeスペクトルをフーリエ変換して得られたMo動径分布関数でのMo−Mo原子間距離が2.8〜3.2Åである水素化処理触媒用含浸溶液を使用して、マイクロ波加熱により乾燥・調製したことを特徴とする水素化処理触媒に関する。
【0009】
【発明の実施の形態】
以下、本発明の好適な実施の形態について詳細に説明する。
【0010】
本発明の水素化処理触媒用含浸溶液は、水素化処理触媒の活性金属成分であるモリブデン(Mo)を含有する水溶液である。一般に水素化処理触媒の活性金属成分は、周期律表第6A族金属および周期律表第8族金属が用いられているが、特にモリブデン化合物を使用した水素化処理触媒は脱硫活性が高いので多く用いられている。該水素化処理触媒用含浸溶液は、モリブデンの他にコバルト(Co)及びニッケル(Ni)を含有する。また、各金属成分量も通常の水素化処理触媒の活性金属成分組成範囲で含有することができる。
【0011】
本発明の水素化処理触媒用含浸溶液は、該含浸溶液を広域X線吸収微細構造解析(EXAFS)法で測定したMo K−edgeスペクトルをフーリエ変換して得られたMo動径分布関数でのMo−Mo原子間距離が3.3Å以下であることを特徴とする。Mo−Mo原子間距離はMo動径分布関数でのMoのスペクトル強度が極大となる原子間距離で表される。なお、本発明においては、Mo−Mo原子間距離は前記水素化処理触媒用含浸溶液の濃度によって変化しないものである。
EXAFS法は、ある特定の原子の周囲の構造を解析する方法として広く利用されており、ある特定の原子の周囲にどのような原子がいくつ配位しているかを解析することにより、ある特定原子のクラスターの大きさなどが分かる。
Mo動径分布関数でのMo−Mo原子間距離が短い含浸溶液では、溶解したMo原子は小さいクラスターを形成しており、該含浸溶液を使用して調製した触媒は、Mo原子が高分散しているので脱硫性能が優れている。該Mo−Mo原子間距離が3.3Åよりも長い場合には、含浸溶液中に溶解したMo原子は大きいクラスターを形成しているため、該含浸溶液を使用して調製した触媒はMo原子の分散状態が悪く、脱硫性能に優れた触媒が得られない。本発明での前記Mo動径分布関数でのMo−Mo原子間距離は、好ましくは2.8〜3.2Åの範囲にある。
【0012】
前述の水素化処理触媒用含浸溶液は、例えば三酸化モリブデン、パラモリブデン酸アンモンなど通常水素化処理触媒用含浸溶液の調製に使用されるモリブデン化合物を、グルコン酸を錯化剤(キレート剤)として用いて溶解して調製される。コバルトやニッケルを加えるには、硝酸コバルト、硫酸コバルトなどのコバルト化合物や、塩基性炭酸ニッケル、硝酸ニッケル、硫酸ニッケルなどのニッケル化合物を使用する。さらに好ましい具体例としては、水に所定量の三酸化モリブデン、塩基性炭酸ニッケルを加えて加温撹拌した後、グルコン酸水溶液を加えさらに加温撹拌して調製する手段を挙げることができる。なお、該含浸溶液の調製方法は前記方法に限定されるものではない。
【0013】
本発明の水素化処理触媒は、前述した本発明の水素化処理触媒用含浸溶液を多孔性無機酸化物担体に担持して調製する。担体の大きさ、形状、表面積、細孔
分布、および活性金属成分の担持量などは、いずれも通常の水素化処理触媒のそれと同様である。
多孔性無機酸化物担体としては通常の水素化処理触媒に使用される担体が使用可能で、具体的にはアルミナ、シリカ、チタニア、ジルコニア、アルミナ−シリカ、アルミナ−チタニア、アルミナ−ボリア、アルミナ−リン、シリカ−チタニア、アルミナ−シリカ−チタニア、アルミナ−シリカ−ボリア、アルミナ−リン−ボリア、アルミナ−チタニア−ボリア、アルミナ−シリカ−リン、アルミナ−チタニア−リン−ボリア、Y型ゼオライト、X型ゼオライト、L型ゼオライト、ベータ型ゼオライト、チャバサイト、エリオナイト、モルデナイト、ZSMゼオライト、MFI型ゼオライトなどが例示される。特に、アルミナ、アルミナ−シリカ、アルミナ−チタニア、アルミナ−ボリア、アルミナ−シリカ−ボリア、アルミナ−リン−ボリアなどのアルミナ含有担体は、担体の比表面積や細孔容積が大きいので好ましい。
また、該含浸溶液の多孔性無機酸化物担体への担持方法としては、通常の水素化処理触媒の製造方法が採用でき、例えば、前述の多孔性無機酸化物担体に該含浸溶液を公知の含浸方法で担持する方法や多孔性無機酸化物前駆物質と該含浸溶液を混練した後、成型、乾燥、焼成する方法などが挙げられる。
【0014】
本発明の水素化処理触媒はモリブデンを酸化物として5〜30重量%の範囲で含有することが好ましく、さらにそれに加えてコバルトまたはニッケルを酸化物として1〜10重量%の範囲で含有することが望ましい。
【0015】
本発明の水素化処理触媒の使用は、通常の水素化処理条件が採用され、また、水素化処理の対象油は、特に制限されるものではなく、原油、常圧残渣油、減圧残渣油などの重質油、直留軽油、減圧蒸留軽油などの留出油などの水素化処理に使用可能である。特に、該水素化処理触媒は、直留軽油、脱硫処理後軽油、水素化処理軽油、接触分解軽油、熱分解軽油・減圧蒸留軽油などの、沸点範囲が150〜450℃、含有硫黄分が2重量%以下の軽油留分の超深度脱硫に使用して好適である。
【0016】
【実施例】
以下に実施例および比較例を示して本発明を説明するが、本発明はこれにより限定されるものではない。
【0017】
実施例1(含浸溶液Aの調製)
300mlビーカーに水250ml、三酸化モリブデン16.8gを加え、95℃で10時間攪拌した。次いで塩基性炭酸ニッケル7.9gを加え、95℃で5時間攪拌した。この混合物を75℃まで冷却し、50%グルコン酸水溶液27.3g〔グルコン酸/ニッケル=1.2/1(mol/mol)〕を加えて同温で5時間攪拌した。得られた溶液を44mlまで濃縮して含浸溶液Aを調製した。
【0018】
実施例2(含浸溶液Bの調製)
300mlビーカーに水250ml、三酸化モリブデン16.8gを加え、95℃で10時間攪拌した。次いで塩基性炭酸コバルト7.1gを加え、95℃で5時間攪拌した。この混合物を75℃まで冷却し、50%グルコン酸水溶液27.3g〔グルコン酸/コバルト=1.2/1(mol/mol)〕を加えて同温で5時間攪拌した。得られた溶液を44mlまで濃縮して含浸溶液Bを調製した。
【0019】
比較例1(含浸溶液Cの調製)
300mlビーカーに水250ml、三酸化モリブデン16.8gを加え、95℃で10時間攪拌した。次いで塩基性炭酸ニッケル7.9gを加え、95℃で5時間攪拌した。この混合物を75℃まで冷却し、リンゴ酸7.8g〔リンゴ酸/ニッケル=1/1(mol/mol)〕を加えて同温で5時間攪拌した。得られた溶液を44mlまで濃縮して含浸溶液Cを調製した。
【0020】
比較例2(含浸溶液Dの調製)
300mlビーカーに水250ml、三酸化モリブデン16.8gを加え、95℃で10時間攪拌した。次いで塩基性炭酸コバルト7.1gを加え、95℃で5時間攪拌した。この混合物を75℃まで冷却し、リンゴ酸7.8g〔リンゴ酸/コバルト=1/1(mol/mol)〕を加えて同温で5時間攪拌した。得られた溶液を44mlまで濃縮して含浸溶液Dを調製した。
【0021】
比較例3(含浸溶液Eの調製)
300mlビーカーに水250ml、三酸化モリブデン16.8gを加え、95℃で10時間攪拌した。次いで塩基性炭酸ニッケル7.9gを加え、95℃で5時間攪拌した。この混合物を75℃まで冷却し、クエン酸8.1g〔クエン酸/ニッケル=2/3(mol/mol)〕を加えて同温で5時間攪拌した。得られた溶液を44mlまで濃縮して含浸溶液Eを調製した。
【0022】
比較例4(含浸溶液Fの調製)
300mlビーカーに水250ml、三酸化モリブデン16.8gを加え、95℃で10時間攪拌した。次いで塩基性炭酸コバルト7.1gを加え、95℃で5時間攪拌した。この混合物を75℃まで冷却し、クエン酸8.1g〔クエン酸/コバルト=2/3(mol/mol)〕を加えて同温で5時間攪拌した。得られた溶液を44mlまで濃縮して含浸溶液Fを調製した。
【0023】
実施例3(触媒の調製)
(1)担体の調製
触媒の調製にあたり担体として、多孔性無機酸化物であるγ−アルミナを用いた。該担体の表面積は195m2/g及び細孔容積は0.80cm3/gである。
(2)触媒の調製
前記(1)のγ−アルミナに、実施例1により調製した含浸溶液Aを含浸法により担持させた。すなわち、含浸溶液A44mlをγ−アルミナ50gに含浸させた。次いで、この含浸品を2.45GHzの周波数を持つマイクロ波を10分間照射し、水分の98%を蒸発させて乾燥した。乾燥後、粉砕して粒径を300〜710ミクロンに揃えて触媒A―1を調製した。
【0024】
比較例5(触媒の調製)
実施例3のγ−アルミナを用い、比較例1により調製した含浸溶液Cを用いたほかは、実施例3と同様の操作により触媒を調製した。すなわち、比較例1と同様にして調製した含浸溶液C44mlをγ−アルミナ50gに含浸させた。次いで、この含浸品を2.45GHzの周波数を持つマイクロ波を10分間照射し、水分の98%を蒸発させて乾燥した。乾燥後、粉砕して粒径を300〜710ミクロンに揃えて触媒C―1を調製した。
【0025】
比較例6(触媒の調製)
実施例3のγ−アルミナを用い、比較例3により調製した含浸溶液Eを用いたほかは、実施例3と同様の操作により触媒を調製した。すなわち、比較例3と同様にして調製した含浸溶液E44mlをγ−アルミナ50gに含浸させた。次いで、この含浸品を2.45GHzの周波数を持つマイクロ波を10分間照射し、水分の98%を蒸発させて乾燥した。乾燥後、粉砕して粒径を300〜710ミクロンに揃えて触媒E―1を調製した。
【0026】
応用例1(含浸溶液の評価)
実施例1、2及び比較例1、2、3、4で調製した含浸溶液A、B、C、D、E、Fを用いて含浸溶液中におけるモリブデンポリイオン(MoO6集合体からなる)のモリブデン原子の局所構造を広域X線吸収微細構造解析装置(Extended X−ray Absorption Fine Structure,EXAFS)を用い解析した。EXAFSによる測定には、高エネルギー加速器研究機構物質構造科学研究所放射光研究施設の硬X線ビームライン(BL10B)を用いた。
上記の各含浸溶液を水で2.65倍に希釈してモリブデン濃度を約1mol/Lに調製した。この含浸溶液をポリエチレン製のパックに封入後、中央に開口部を有する真鍮板2枚の間に液相の厚さ調節用のスペーサーとともにはさみつけ、透過光モードでMo K−edge吸収端の測定を行った。分光結晶はSi(311)を用いた。解析は、Mo K−edgeスペクトルをフーリエ変換して得られたMo動径分布関数でのMo−Mo原子間距離を求めた。Mo−Mo原子間距離はMoO6集合体イオンの大きさの指標となる。得られたフーリエ変換スペクトルを図1〜6に示す。また、各含浸溶液中に存在するMoO6集合体イオンにおけるモリブデン原子の周りの酸素原子(Mo−O)のピーク強度と距離を求めるとともに、モリブデン原子の周りのモリブデン原子(Mo−Mo)ピーク強度と距離を求め、Mo−Moのフーリエ変換強度、すなわちI(Mo−Mo)とMo−Oのフーリエ変換強度、すなわちI(Mo−O)との比、すなわち
I(Mo−Mo)/I(Mo−O)
の強度比も求めた。この強度比が大きいほどモリブデン原子周りのモリブデン原子の量が多く、モリブデン集合体が大きいことを示している。一方、この強度比が小さいほどモリブデン原子周りのモリブデン原子の量が少なくなり、モリブデン集合体が小さいことを示している。また、解析に必要となる標準試料としてはモリブデン酸ナトリウム(NaMoO4・2H2O)を用い、Mo−Oの結合距離を補正した。
それぞれの測定結果を表1に示す。表1及び図1〜6に示すように、本発明の実施例である含浸溶液AとBは、比較例である含浸溶液C、D、E、Fに比べてMo−Mo原子間距離が短く、しかもI(Mo−Mo)/I(Mo−O)も小さいことから、MoO6集合体イオンが小さいことがわかる。
【0027】
【表1】
【0028】
応用例2(触媒の評価)
実施例3及び比較例5、6で調製した触媒A―1、C−1、E−1を用いて硫黄及び窒素化合物を含む芳香族炭化水素油の水素化脱硫活性を評価した。触媒は反応管に充填した後、5%硫化水素/95%水素気流中、360℃で3時間予備硫化を行い反応に用いた。水素化脱硫活性評価のための反応は、4,6−ジメチルジベンゾチオフェン(硫黄として300ppm)/n−ブチルアミン(窒素として20ppm)/テトラリン(芳香族成分:30%)/n−ヘキサデカン(約70%)混合油を用い、反応温度:320℃、反応圧:3.9MPa、WHSV:16h−1、水素初圧:500Nl/lの条件で行った。4,6−ジメチルジベンゾチオフェンの脱硫活性は硫黄の元素分析による濃度測定により分析定量した。
反応50時間後の反応結果を表2に示す。表2に示すように、本発明の実施例である触媒A―1は、比較例5、6の触媒C−1、E−1に比べ高い脱硫性能を示している。
【0029】
【表2】
【0030】
【発明の効果】
本発明による含浸溶液は、Mo−Mo原子間距離が3.3Å以下と短いことから、MoO6集合体イオンが小さく形成されていることが分かる。そのため、該含浸溶液から調製される水素化処理触媒は、γ−アルミナ上にMoO6集合体が小さく高分散状態で担持されており、その結果、この水素化触媒は高い水素化脱硫性能を有する。
【図面の簡単な説明】
【図1】実施例1で調製した含浸溶液Aのモリブデンのフーリエ変換スペクトルを示す。
【図2】実施例2で調製した含浸溶液Bのモリブデンのフーリエ変換スペクトルを示す。
【図3】比較例1で調製した含浸溶液Cのモリブデンのフーリエ変換スペクトルを示す。
【図4】比較例2で調製した含浸溶液Dのモリブデンのフーリエ変換スペクトルを示す。
【図5】比較例3で調製した含浸溶液Eのモリブデンのフーリエ変換スペクトルを示す。
【図6】比較例4で調製した含浸溶液Fのモリブデンのフーリエ変換スペクトルを示す。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an impregnation solution for a hydrotreating catalyst containing molybdenum (Mo) and a catalyst using the same, and more particularly, it is used for the preparation of hydrotreating to reduce the sulfur content in hydrocarbons, particularly light oil. The present invention relates to an impregnation solution for a hydrotreating catalyst that is preferably used for the preparation of a hydrotreating catalyst having a high desulfurization activity, and a hydrotreating catalyst obtained using the impregnation solution.
[0002]
[Prior art]
Conventionally, diesel engines have been widely used in commercial vehicles for reasons of good fuel consumption, durability and reliability, and low CO 2 emissions. However, the effects of diesel exhaust on urban and road coastal air pollution are becoming increasingly serious. Engine improvement and exhaust gas after-treatment technology have been intensively studied as measures to reduce pollutants such as particulate matter (particulate matter (PM)) in exhaust gas. The removal device [diesel particulate filter (DPF)] is effective. However, in order to suppress sulfur poisoning of the noble metal catalyst used in the DPF, it is necessary to significantly reduce the amount of sulfur in the light oil. For this reason, the development of a high-performance catalyst that can reduce the sulfur content in light oil has become an important issue.
[0003]
By the way, when the hydrocarbon to be hydrotreated is light oil, if it is a conventional deep desulfurization with a sulfur content of 500 ppm, it is relatively easy to achieve with the current desulfurization technology, but an ultra-deep of 500 ppm or less At the desulfurization level, efficient desulfurization of compounds that are difficult to desulfurize with conventional hydrodesulfurization catalysts such as 4,6-dimethyldibenzothiophene (hereinafter also referred to as “hardly desulfurized compounds”) is required. However, desulfurization of these difficult desulfurization compounds has a large steric hindrance due to the alkyl substituent, and it is difficult to cope with conventional desulfurization catalysts. ing.
[0004]
Hydrocarbon hydrotreating catalyst for solving such problems is conventionally a porous inorganic oxide carrier such as alumina, silica and zeolite, a periodic table group 6A metal compound such as molybdenum and tungsten, cobalt, etc. In many cases, an impregnation solution comprising a group 8 metal compound of periodic table such as nickel and / or a phosphorus compound is prepared and supported in the form of an oxide, and then activated by presulfiding treatment and activated. There are many documents.
However, in the impregnation solution in which the metal compound is dissolved or the metal compound whose pH is adjusted with ammonia or the like, the dissolved metal such as molybdenum has a large size of the metal ion aggregate (cluster). The hydrotreating catalyst prepared from the solution has a problem that the dispersion state of a metal such as molybdenum is deteriorated and high desulfurization activity cannot be obtained.
[0005]
[Patent Document 1]
Japanese Patent Laid-Open No. 2000-135441
[Problems to be solved by the invention]
An object of the present invention is to overcome the above-mentioned problems, and hydrogen using a hydrocarbon hydrotreating catalyst impregnation solution excellent in desulfurization performance of a difficult desulfurization compound that is difficult to hydrodesulfurize. An object of the present invention is to provide a chemical treatment catalyst .
[0007]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above object, the present inventors have found that the desulfurization activity varies depending on the size of the dissolved molybdenum (Mo) cluster in the impregnation solution, and that the size of the molybdenum (Mo) cluster varies. It has been found that a hydrotreating catalyst using a small impregnation solution is excellent in desulfurization performance of a difficult-to-desulfurize compound and suppresses the hydrogenation function of unsaturated hydrocarbons, and has completed the present invention.
[0008]
That is, the present invention is an impregnation solution for a hydrotreating catalyst containing molybdenum (Mo) and cobalt (Co) or nickel (Ni) and prepared using gluconic acid as a complexing agent. The distance between Mo-Mo atoms in the Mo radial distribution function obtained by Fourier transform of the Mo K-edge spectrum measured by the wide-area X-ray absorption fine structure analysis (EXAFS) method is 2.8 to 3.2 mm. use certain hydrotreating catalysts for impregnation solution relates to hydrotreating catalysts, characterized in that dried and prepared by microwave heating.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described in detail.
[0010]
The impregnation solution for a hydroprocessing catalyst of the present invention is an aqueous solution containing molybdenum (Mo) which is an active metal component of the hydroprocessing catalyst. In general, the active metal component of the hydrotreating catalyst is a group 6A metal and a group 8 metal of the periodic table. Particularly, a hydrotreating catalyst using a molybdenum compound has a high desulfurization activity, and thus is often used. It is used. Hydrotreated catalyst impregnation solution, it contains in addition to cobalt (Co) and nickel molybdenum (Ni). Moreover, each metal component amount can also be contained in the active metal component composition range of a normal hydroprocessing catalyst.
[0011]
The impregnation solution for the hydrotreating catalyst of the present invention has a Mo radial distribution function obtained by Fourier-transforming the Mo K-edge spectrum obtained by measuring the impregnation solution by a broad X-ray absorption fine structure analysis (EXAFS) method. The distance between Mo-Mo atoms is 3.3 mm or less. The Mo-Mo interatomic distance is represented by the interatomic distance at which the Mo spectral intensity in the Mo radial distribution function is maximized. In the present invention, the Mo-Mo interatomic distance does not change depending on the concentration of the hydrotreating catalyst impregnation solution.
The EXAFS method is widely used as a method for analyzing the structure around a specific atom. By analyzing how many atoms are coordinated around a specific atom, a specific atom is analyzed. You can see the size of the cluster.
In the impregnating solution having a short Mo-Mo atom distance in the Mo radial distribution function, the dissolved Mo atoms form small clusters, and the catalyst prepared using the impregnating solution has high dispersion of Mo atoms. Therefore, desulfurization performance is excellent. When the distance between the Mo-Mo atoms is longer than 3.3 mm, the Mo atoms dissolved in the impregnation solution form large clusters. Therefore, the catalyst prepared using the impregnation solution is composed of Mo atoms. The dispersion state is poor, and a catalyst excellent in desulfurization performance cannot be obtained. In the present invention, the Mo—Mo interatomic distance in the Mo radial distribution function is preferably in the range of 2.8 to 3.2 mm.
[0012]
The above-mentioned impregnation solution for hydrotreating catalyst is, for example, a molybdenum compound usually used for preparing an impregnation solution for hydrotreating catalyst such as molybdenum trioxide and ammonium paramolybdate, and gluconic acid as a complexing agent (chelating agent). It is prepared by dissolving . Co To make the Baltic and nickel, cobalt nitrate, and cobalt compounds such as cobalt sulfate, basic nickel carbonate, nickel nitrate, to use nickel compounds such as nickel sulfate. As a more preferred specific example, there can be mentioned means for preparing water by adding a predetermined amount of molybdenum trioxide and basic nickel carbonate and heating and stirring, and then adding a gluconic acid aqueous solution and further heating and stirring. In addition, the preparation method of this impregnation solution is not limited to the said method.
[0013]
The hydrotreating catalyst of the present invention is prepared by supporting the above-described impregnation solution for hydrotreating catalyst of the present invention on a porous inorganic oxide support. The size, shape, surface area, pore distribution, and supported amount of active metal component of the support are all the same as those of a normal hydrotreating catalyst.
As the porous inorganic oxide carrier, a carrier used for a usual hydrotreatment catalyst can be used. Specifically, alumina, silica, titania, zirconia, alumina-silica, alumina-titania, alumina-boria, alumina- Phosphorus, silica-titania, alumina-silica-titania, alumina-silica-boria, alumina-phosphorus-boria, alumina-titania-boria, alumina-silica-phosphorus, alumina-titania-phosphorus-boria, Y-type zeolite, X-type Zeolite, L-type zeolite, beta-type zeolite, chabasite, erionite, mordenite, ZSM zeolite, MFI-type zeolite and the like are exemplified. In particular, alumina-containing carriers such as alumina, alumina-silica, alumina-titania, alumina-boria, alumina-silica-boria, and alumina-phosphorus-boria are preferable because the specific surface area and pore volume of the carrier are large.
In addition, as a method for supporting the impregnating solution on the porous inorganic oxide carrier, a conventional method for producing a hydrotreating catalyst can be employed. Examples thereof include a method of supporting by a method, a method of kneading a porous inorganic oxide precursor and the impregnation solution, molding, drying, and firing.
[0014]
Contained in an amount of 1 to 10 wt% is preferably contained in the range of 5 to 30 wt% as hydrotreating catalysts oxides of molybdenum, the cobalt Thomas et nickel in addition to that as an oxide of the present invention It is desirable to do.
[0015]
The use of the hydrotreating catalyst of the present invention employs ordinary hydrotreating conditions, and the target oil for hydrotreating is not particularly limited, and includes crude oil, normal pressure residue oil, reduced pressure residue oil, etc. It can be used for hydrotreating distillate oil such as heavy oil, straight-run light oil, and vacuum distilled light oil. In particular, the hydrotreating catalyst has a boiling range of 150 to 450 ° C. and a sulfur content of 2 such as straight-run gas oil, desulfurized gas oil, hydrotreated gas oil, catalytic cracking gas oil, pyrolysis gas oil / vacuum distilled gas oil, etc. It is suitable for use in ultra deep desulfurization of diesel oil fractions of less than wt%.
[0016]
【Example】
EXAMPLES The present invention will be described below with reference to examples and comparative examples, but the present invention is not limited thereby.
[0017]
Example 1 (Preparation of impregnation solution A)
To a 300 ml beaker, 250 ml of water and 16.8 g of molybdenum trioxide were added and stirred at 95 ° C. for 10 hours. Subsequently, 7.9 g of basic nickel carbonate was added and stirred at 95 ° C. for 5 hours. The mixture was cooled to 75 ° C., 27.3 g of a 50% gluconic acid aqueous solution [gluconic acid / nickel = 1.2 / 1 (mol / mol)] was added, and the mixture was stirred at the same temperature for 5 hours. The resulting solution was concentrated to 44 ml to prepare impregnation solution A.
[0018]
Example 2 (Preparation of impregnation solution B)
To a 300 ml beaker, 250 ml of water and 16.8 g of molybdenum trioxide were added and stirred at 95 ° C. for 10 hours. Next, 7.1 g of basic cobalt carbonate was added, and the mixture was stirred at 95 ° C. for 5 hours. The mixture was cooled to 75 ° C., 27.3 g of a 50% gluconic acid aqueous solution [gluconic acid / cobalt = 1.2 / 1 (mol / mol)] was added, and the mixture was stirred at the same temperature for 5 hours. The resulting solution was concentrated to 44 ml to prepare impregnation solution B.
[0019]
Comparative Example 1 (Preparation of impregnation solution C)
To a 300 ml beaker, 250 ml of water and 16.8 g of molybdenum trioxide were added and stirred at 95 ° C. for 10 hours. Subsequently, 7.9 g of basic nickel carbonate was added and stirred at 95 ° C. for 5 hours. The mixture was cooled to 75 ° C., 7.8 g of malic acid [malic acid / nickel = 1/1 (mol / mol)] was added, and the mixture was stirred at the same temperature for 5 hours. The resulting solution was concentrated to 44 ml to prepare impregnation solution C.
[0020]
Comparative Example 2 (Preparation of impregnation solution D)
To a 300 ml beaker, 250 ml of water and 16.8 g of molybdenum trioxide were added and stirred at 95 ° C. for 10 hours. Next, 7.1 g of basic cobalt carbonate was added, and the mixture was stirred at 95 ° C. for 5 hours. The mixture was cooled to 75 ° C., 7.8 g of malic acid [malic acid / cobalt = 1/1 (mol / mol)] was added, and the mixture was stirred at the same temperature for 5 hours. The resulting solution was concentrated to 44 ml to prepare impregnation solution D.
[0021]
Comparative Example 3 (Preparation of impregnation solution E)
To a 300 ml beaker, 250 ml of water and 16.8 g of molybdenum trioxide were added and stirred at 95 ° C. for 10 hours. Subsequently, 7.9 g of basic nickel carbonate was added and stirred at 95 ° C. for 5 hours. The mixture was cooled to 75 ° C., 8.1 g of citric acid [citric acid / nickel = 2/3 (mol / mol)] was added, and the mixture was stirred at the same temperature for 5 hours. The resulting solution was concentrated to 44 ml to prepare impregnation solution E.
[0022]
Comparative Example 4 (Preparation of impregnation solution F)
To a 300 ml beaker, 250 ml of water and 16.8 g of molybdenum trioxide were added and stirred at 95 ° C. for 10 hours. Next, 7.1 g of basic cobalt carbonate was added, and the mixture was stirred at 95 ° C. for 5 hours. The mixture was cooled to 75 ° C., 8.1 g of citric acid [citric acid / cobalt = 2/3 (mol / mol)] was added, and the mixture was stirred at the same temperature for 5 hours. The resulting solution was concentrated to 44 ml to prepare impregnation solution F.
[0023]
Example 3 (Preparation of catalyst)
(1) Preparation of carrier In preparing the catalyst, γ-alumina, which is a porous inorganic oxide, was used as a carrier. The surface area of the support is 195 m 2 / g and the pore volume is 0.80 cm 3 / g.
(2) Preparation of catalyst The impregnation solution A prepared in Example 1 was supported on the γ-alumina of (1) by an impregnation method. That is, 44 g of impregnation solution A was impregnated in 50 g of γ-alumina. Next, the impregnated product was irradiated with microwaves having a frequency of 2.45 GHz for 10 minutes to evaporate 98% of the moisture and dried. After drying, the catalyst A-1 was prepared by pulverizing to have a particle size of 300 to 710 microns.
[0024]
Comparative Example 5 (Preparation of catalyst)
A catalyst was prepared in the same manner as in Example 3, except that γ-alumina of Example 3 was used and impregnation solution C prepared in Comparative Example 1 was used. That is, 50 g of γ-alumina was impregnated with 44 ml of impregnation solution C prepared in the same manner as in Comparative Example 1. Next, the impregnated product was irradiated with microwaves having a frequency of 2.45 GHz for 10 minutes to evaporate 98% of the moisture and dried. After drying, the catalyst C-1 was prepared by pulverizing to have a particle size of 300 to 710 microns.
[0025]
Comparative Example 6 (Preparation of catalyst)
A catalyst was prepared in the same manner as in Example 3, except that the γ-alumina of Example 3 was used and the impregnation solution E prepared in Comparative Example 3 was used. That is, 50 g of γ-alumina was impregnated with 44 ml of impregnation solution E prepared in the same manner as in Comparative Example 3. Next, the impregnated product was irradiated with microwaves having a frequency of 2.45 GHz for 10 minutes to evaporate 98% of the moisture and dried. After drying, the catalyst E-1 was prepared by pulverizing to have a particle size of 300 to 710 microns.
[0026]
Application Example 1 (Evaluation of Impregnation Solution)
Molybdenum of molybdenum polyions (consisting of MoO 6 aggregates) in the impregnation solution using the impregnation solutions A, B, C, D, E, and F prepared in Examples 1 and 2 and Comparative Examples 1, 2, 3, and 4. The local structure of the atoms was analyzed using an extended X-ray absorption fine structure analyzer (EXAFS). For measurement by EXAFS, a hard X-ray beam line (BL10B) of the Synchrotron Radiation Research Facility, Institute for Materials Structure Science, High Energy Accelerator Research Organization was used.
Each of the above impregnation solutions was diluted 2.65 times with water to adjust the molybdenum concentration to about 1 mol / L. After this impregnation solution is sealed in a polyethylene pack, it is sandwiched between two brass plates having an opening in the center together with a spacer for adjusting the thickness of the liquid phase, and measurement of the Mo K-edge absorption edge in transmitted light mode. Went. Spectral crystal was Si (311). In the analysis, the Mo-Mo interatomic distance in the Mo radial distribution function obtained by Fourier transforming the Mo K-edge spectrum was obtained. The Mo-Mo interatomic distance is an index of the size of the MoO 6 aggregate ion. The obtained Fourier transform spectrum is shown in FIGS. Further, the determined peak intensity and length of oxygen atoms around the molybdenum atoms in the MoO 6 aggregates ions present in the impregnation solution (MoO), molybdenum atom (Mo-Mo) peak intensity around the molybdenum atoms And the distance, and the Fourier transform intensity of Mo-Mo, that is, the ratio of I (Mo-Mo) to the Fourier transform intensity of Mo-O, that is, I (Mo-O), that is, I (Mo-Mo) / I ( Mo-O)
The strength ratio was also determined. It is shown that the larger the intensity ratio, the larger the amount of molybdenum atoms around the molybdenum atom, and the larger the molybdenum aggregate. On the other hand, the smaller the intensity ratio, the smaller the amount of molybdenum atoms around the molybdenum atoms, indicating that the molybdenum aggregate is smaller. Further, sodium molybdate (NaMoO 4 .2H 2 O) was used as a standard sample necessary for the analysis, and the Mo—O bond distance was corrected.
Each measurement result is shown in Table 1. As shown in Table 1 and FIGS. 1 to 6, the impregnation solutions A and B, which are examples of the present invention, have a shorter Mo-Mo interatomic distance than the impregnation solutions C, D, E, and F that are comparative examples. Moreover, since I (Mo—Mo) / I (Mo—O) is also small, it can be seen that the MoO 6 aggregate ions are small.
[0027]
[Table 1]
[0028]
Application example 2 (Evaluation of catalyst)
The hydrodesulfurization activity of aromatic hydrocarbon oils containing sulfur and nitrogen compounds was evaluated using the catalysts A-1, C-1, and E-1 prepared in Example 3 and Comparative Examples 5 and 6. After the catalyst was filled in the reaction tube, it was presulfided at 360 ° C. for 3 hours in a 5% hydrogen sulfide / 95% hydrogen stream and used for the reaction. The reaction for evaluating hydrodesulfurization activity was 4,6-dimethyldibenzothiophene (300 ppm as sulfur) / n-butylamine (20 ppm as nitrogen) / tetralin (aromatic component: 30%) / n-hexadecane (about 70%). ) Using mixed oil, the reaction temperature was 320 ° C., the reaction pressure was 3.9 MPa, WHSV: 16 h −1 , and the hydrogen initial pressure was 500 Nl / l. The desulfurization activity of 4,6-dimethyldibenzothiophene was analyzed and determined by measuring the concentration of sulfur by elemental analysis.
The reaction results after 50 hours of reaction are shown in Table 2. As shown in Table 2, Catalyst A-1, which is an example of the present invention, exhibits higher desulfurization performance than Catalysts C-1 and E-1 of Comparative Examples 5 and 6.
[0029]
[Table 2]
[0030]
【The invention's effect】
In the impregnating solution according to the present invention, the Mo-Mo interatomic distance is as short as 3.3 mm or less, and thus it can be seen that the MoO 6 aggregate ions are formed small. Therefore, the hydrotreating catalyst prepared from the impregnating solution has MoO 6 aggregates supported on γ-alumina in a small and highly dispersed state, and as a result, the hydrotreating catalyst has high hydrodesulfurization performance. .
[Brief description of the drawings]
1 shows a Fourier transform spectrum of molybdenum in impregnation solution A prepared in Example 1. FIG.
2 shows a Fourier transform spectrum of molybdenum of impregnation solution B prepared in Example 2. FIG.
3 shows a Fourier transform spectrum of molybdenum of impregnation solution C prepared in Comparative Example 1. FIG.
4 shows a Fourier transform spectrum of molybdenum in impregnation solution D prepared in Comparative Example 2. FIG.
5 shows a Fourier transform spectrum of molybdenum in impregnation solution E prepared in Comparative Example 3. FIG.
6 shows a Fourier transform spectrum of molybdenum in impregnation solution F prepared in Comparative Example 4. FIG.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003142685A JP4646500B2 (en) | 2003-05-20 | 2003-05-20 | Hydrotreating catalyst using impregnation solution for hydrotreating catalyst |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003142685A JP4646500B2 (en) | 2003-05-20 | 2003-05-20 | Hydrotreating catalyst using impregnation solution for hydrotreating catalyst |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004344725A JP2004344725A (en) | 2004-12-09 |
JP4646500B2 true JP4646500B2 (en) | 2011-03-09 |
Family
ID=33530696
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003142685A Expired - Fee Related JP4646500B2 (en) | 2003-05-20 | 2003-05-20 | Hydrotreating catalyst using impregnation solution for hydrotreating catalyst |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4646500B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5268484B2 (en) * | 2008-08-05 | 2013-08-21 | Jx日鉱日石エネルギー株式会社 | Method for producing regenerated hydrotreating catalyst and method for producing petroleum product |
CN104368393B (en) * | 2013-08-16 | 2016-12-28 | 中国石油化工股份有限公司 | A kind of aluminium oxide article shaped and preparation method thereof and the catalyst prepared as carrier by this article shaped |
CN104368350B (en) * | 2013-08-16 | 2017-03-01 | 中国石油化工股份有限公司 | A kind of hydrogenation protecting catalyst and preparation method and application |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3232887A (en) * | 1962-05-07 | 1966-02-01 | Nalco Chemical Co | Stabilized aqueous solutions for use in impregnating catalyst carriers and method of making same |
JPS61245846A (en) * | 1984-12-28 | 1986-11-01 | エクソン リサ−チ アンド エンヂニアリング コムパニ− | Mo, which is cocatalized by amorphous iron, and w sulfide hydrogenation treating catalyst and usage thereof |
JPH01270945A (en) * | 1988-04-21 | 1989-10-30 | Sumitomo Metal Mining Co Ltd | Catalyst for hydrogenation treatment of hydrocarbon |
JPH04156948A (en) * | 1990-10-17 | 1992-05-29 | Sumitomo Metal Mining Co Ltd | Production of catalyst for hydrogenation of hydrocarbon oil |
JPH04210240A (en) * | 1990-11-30 | 1992-07-31 | Agency Of Ind Science & Technol | Hydrogenation catalyst and its production |
JPH04243547A (en) * | 1991-01-22 | 1992-08-31 | Sumitomo Metal Mining Co Ltd | Manufacture of hydrogenation catalyst for hydrocarbon oil |
JPH07136523A (en) * | 1993-11-12 | 1995-05-30 | Japan Energy Corp | Production of hydrogenation catalyst |
JP2000024507A (en) * | 1998-06-25 | 2000-01-25 | Inst Fr Petrole | Hydrocracking catalyst containing zeolite.beta and group vb elements |
JP2002363576A (en) * | 2001-06-08 | 2002-12-18 | Nippon Kecchen Kk | Method for two step hydrogenating heavy hydrocarbon oil |
-
2003
- 2003-05-20 JP JP2003142685A patent/JP4646500B2/en not_active Expired - Fee Related
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3232887A (en) * | 1962-05-07 | 1966-02-01 | Nalco Chemical Co | Stabilized aqueous solutions for use in impregnating catalyst carriers and method of making same |
JPS61245846A (en) * | 1984-12-28 | 1986-11-01 | エクソン リサ−チ アンド エンヂニアリング コムパニ− | Mo, which is cocatalized by amorphous iron, and w sulfide hydrogenation treating catalyst and usage thereof |
JPH01270945A (en) * | 1988-04-21 | 1989-10-30 | Sumitomo Metal Mining Co Ltd | Catalyst for hydrogenation treatment of hydrocarbon |
JPH04156948A (en) * | 1990-10-17 | 1992-05-29 | Sumitomo Metal Mining Co Ltd | Production of catalyst for hydrogenation of hydrocarbon oil |
JPH04210240A (en) * | 1990-11-30 | 1992-07-31 | Agency Of Ind Science & Technol | Hydrogenation catalyst and its production |
JPH04243547A (en) * | 1991-01-22 | 1992-08-31 | Sumitomo Metal Mining Co Ltd | Manufacture of hydrogenation catalyst for hydrocarbon oil |
JPH07136523A (en) * | 1993-11-12 | 1995-05-30 | Japan Energy Corp | Production of hydrogenation catalyst |
JP2000024507A (en) * | 1998-06-25 | 2000-01-25 | Inst Fr Petrole | Hydrocracking catalyst containing zeolite.beta and group vb elements |
JP2002363576A (en) * | 2001-06-08 | 2002-12-18 | Nippon Kecchen Kk | Method for two step hydrogenating heavy hydrocarbon oil |
Also Published As
Publication number | Publication date |
---|---|
JP2004344725A (en) | 2004-12-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7429550B2 (en) | Hydrogenation catalyst for hydrocarbon oil and process for hydrogenation using the catalyst | |
US7737071B2 (en) | Catalyst for hydrotreating hydrocarbon oil, process for producing the same, and method for hydrotreating hydrocarbon oil | |
JP5015818B2 (en) | Gas oil hydrotreating catalyst, method for producing the same, and gas oil hydrotreating method | |
US20070175797A1 (en) | Hydrodesulfurization Catalyst for Petroleum Hydrocarbons and Process for Hydrodesulfurization Using the Same | |
US20060249429A1 (en) | Hydrodesulfurization Catalyst for Petroleum Hydrocarbons and Process for Hydrodesulfurization Using the Same | |
JP2003299960A (en) | Hydrogenation treatment catalyst and method for light oil, and manufacturing method therefor | |
WO2011075928A1 (en) | Multi-metal bulk catalyst with layered structure and preparation method and use thereof | |
Huang et al. | Ti-modified alumina supports prepared by sol–gel method used for deep HDS catalysts | |
Xia et al. | Effects of the active phase of CoMo/γ-Al2O3 catalysts modified using cerium and phosphorus on the HDS performance for FCC gasoline | |
JP2005262063A (en) | Hydrogenation catalyst | |
JP4864106B2 (en) | Method for producing hydrocarbon oil hydrotreating catalyst | |
WO2011049134A1 (en) | Hydrodesulfurization catalyst for hydrocarbon oils | |
RU2663902C1 (en) | Method for hydrofining hydrocarbon feedstock | |
JP4482653B2 (en) | Hydrocracking catalyst for catalytic cracking gasoline | |
Bing et al. | The effects of chelating agents on CoMo/TiO 2–Al 2 O 3 hydrodesulfurization catalysts | |
JP4646500B2 (en) | Hydrotreating catalyst using impregnation solution for hydrotreating catalyst | |
RU2626400C1 (en) | Method for producing low-sulfur catalytic cracking feedstock | |
Wang et al. | Regulating the coordination environment of surface alumina on NiMo/Al2O3 to enhance ultra-deep hydrodesulfurization of diesel | |
JP4061380B2 (en) | Process for producing hydrocarbon hydrodesulfurization catalyst | |
Mashayekhi et al. | Activity study of NiMoW, NiCoMo trimetallic catalysts for heavy gas oil hydrotreating | |
JP2005000873A (en) | Method for producing hydrotreating catalyst composition of hydrocarbon | |
Yin et al. | Effects of aging treatment on the hydrotreating performance of the unsupported catalyst | |
JP2004344754A (en) | Method for preparing catalyst composition for hydrogenating hydrocarbon | |
Amous | Characterization of Fresh Oil Hydro Treating Catalysts |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060404 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090119 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090127 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090330 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090811 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090928 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20100202 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100506 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20100517 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100706 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100902 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101207 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101207 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131217 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4646500 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |