JPH04209716A - Production of silicon carbide powder - Google Patents

Production of silicon carbide powder

Info

Publication number
JPH04209716A
JPH04209716A JP2400759A JP40075990A JPH04209716A JP H04209716 A JPH04209716 A JP H04209716A JP 2400759 A JP2400759 A JP 2400759A JP 40075990 A JP40075990 A JP 40075990A JP H04209716 A JPH04209716 A JP H04209716A
Authority
JP
Japan
Prior art keywords
mixed
powder
carbon
silicon carbide
rotary furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2400759A
Other languages
Japanese (ja)
Inventor
Mitsutoshi Murase
村瀬 光俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2400759A priority Critical patent/JPH04209716A/en
Publication of JPH04209716A publication Critical patent/JPH04209716A/en
Pending legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To reduce an amount of whiskery material by heating mixed granules of SiO2 and C in a rotary furnace in a nonoxidizing atmosphere not containing N2 at a specific temperature. CONSTITUTION:100 pts.wt. SiO2 powder having <=50mum particle diameter and 60-180 pts.wt. carbon powder having <=5mum particle diameter are fed to a blending granulator, mixed with water having dissolved a small amount of polyethylene glycol, stirred at high speed, made into granules having 50mum to 5mm grain diameter, heated and dried to give mixed granules. Then the mixed granules are fed from a raw material hopper 1 of a continuous reducing carbonizing device through a blended granule feeder 2 to a shell 4 of a rotary furnace 3. The mixed granule is heated to 1,200-1,700 deg.C by a heater 5, reduced and carbonized in a nonoxidizing atmosphere not containing N2 while rocking, and SiC is taken out from a carbide recovery container 6. Carbon in the prepared SiC powder is heated and oxidized and removed to give B-SiC having a small amount of whiskery material.

Description

【発明の詳細な説明】[Detailed description of the invention]

[00011 [00011

【産業上の利用分野]本発明は回転炉を用いた炭化珪素
粉末の製造方法に関する。 [0O02] 【従来の技術】現在炭化珪素粉末の製造方法としては、
アチソン炉によるアチソン法、縦型炉の上部から原料を
投入し下部から製品を抜き取る縦型連続法、容器に原料
を充填し連続的に容器を移動し製品を取り出すブツシャ
−炉法などがある。 [0003]Lかしながら上記方法においては、■ ア
チソン法は2000℃以上の高温で反応さぜるためαS
 icLか生成せず、また得られる炭化珪素粒が粗大化
するため後工程として粉砕処理が必要であり、ファイン
セラミックス用原料として利用できるのは全体のごく一
部の微粒化した粉末のみであり効率が悪い。 [0004)■ 縦型炉法は微粒のβ−3iCが得られ
、後の粉砕工程が不要であるという利点を有するが炉が
大型化した際、炉壁近傍と炉中心部の温度差がつきやす
く、反応が不均一となりやすい。 [00051■ プッシャー炉法は容器への原料充填層
の厚さが厚いと、反応速度が遅く、また原料粉が静止し
ているためにウィスカーが生成しやすい。等の欠点を有
する。 [0006N
[Industrial Application Field] The present invention relates to a method for producing silicon carbide powder using a rotary furnace. [0O02] [Prior Art] Current methods for producing silicon carbide powder include:
There are the Acheson method using an Acheson furnace, the vertical continuous method in which raw materials are introduced from the top of a vertical furnace and the product is taken out from the bottom, and the Bushar furnace method in which raw materials are filled into a container and the container is continuously moved to take out the product. [0003]L However, in the above method, ■ Since the Acheson method involves reaction at a high temperature of 2000°C or higher, αS
icL is not produced, and the resulting silicon carbide particles become coarse, so pulverization is required as a post-process, and only a small portion of the atomized powder can be used as a raw material for fine ceramics, resulting in low efficiency. It's bad. [0004) ■ The vertical furnace method has the advantage that fine particles of β-3iC can be obtained and no subsequent pulverization step is required, but when the furnace becomes larger, there is a temperature difference between the vicinity of the furnace wall and the center of the furnace. The reaction tends to be non-uniform. [00051■ In the pusher furnace method, when the thickness of the layer filled with the raw material in the container is large, the reaction rate is slow, and whiskers are likely to be generated because the raw material powder is stationary. It has the following disadvantages. [0006N

【発明が解決しようとする課題]かかる事情下に鑑み本
発明者らは従来法に比較し微粒でウィスカーの混入が少
なく、かつ工業的に反応時間が短く、大型化可能な炭化
珪素粉末の製造方法を見出すべく鋭意検討した結果、遂
に本発明を完成するに至った。 [0007] 【課題を解決するための手段】すなわち本発明は、酸化
珪素とカーボンの混合粒を回転炉中で揺動させながら、
窒素を含まない非酸化性雰囲気下で1200℃〜170
0℃で加熱することを特徴とする炭化珪素粉末の製造方
法を提供するものである。 [0008)以下、本発明方法をさらに詳細に説明する
。本発明方法の実施に際し、原料としての酸化珪素は、
この反応が気相反応であり炭化珪素粉末の粒度は原料の
酸化珪素の粒径には依存しないため、特に制限されない
が、反応の容易性等より通常50μm以下の粒径のもの
が使用される。 [00091反応に際して、より微粒で粒度分布のシャ
ープな炭化珪素粉末を得るために超微粒、例えば1μm
以下、好ましくは0゜571m以下の炭化珪素粉末をこ
ねらの原料とじての酸化珪素粉末中に種として配合して
おくことも可能である。 [00101まだ、原料としてのカーボンは通常、カー
ボンブラックが好ましく粒径は511m以下、好ましく
は3gm以下のものが使用される。粒径が大きい場合に
は反応し難い。 [001,11反応に際して、酸化珪素とカーボンは予
め混合、造粒して使用する。混合に際し2ての酸化珪素
とカーボンの使用割合は通常酸化珪素100!1部に対
しカーボン60〜180重竜部、好ましくは65〜15
0重凰部の範風邪ある。酸化珪素に対しカーボンが少な
いと炭化珪素への転換反応が充分でなく、また多いと脱
炭素に長時間を要すると共に得られた炭化珪素が再酸化
される可能性を有する。 [0012]混合時間は使用する混合機、混合域により
異なるので、予め使用する混合条件で混合を行い、酸化
珪素とカーボンの均一撹拌が可能となる時間を設定すれ
ば良い。 [001,31本発明に於いて混合粒は5011m〜5
mm以下の粒状に造粒し使用する。混合粒が50I1.
m未満の場合には反応時気流に乗り飛散するとか、炉壁
に付着しやすい等の問題を生起する。 [001,41本発明方法に於いて混合粒は回転炉で揺
動さぜながら還元炭化処理することを必須とする。回転
炉はキルン等の公知のものであればよく回分式、連続式
のいずれも使用できる。還元炭化処理は通常アルゴン雰
囲気中で1200〜1700℃の温度で1時間以上、通
常2時間〜8時間行えばよい。 [0015]図1に本発明方法で連続式還元炭化処理を
行う場合使用する装置の一実施態様を、回転炉の長手方
向に対して平行な平面で切断した概略断面図を示した。 図中1は原料ホッパー、2は混合粒供給機、3は回転炉
、4はシェル内、5はヒータ、6は炭化物回収容器、7
はガス供給口、8はガス排出口を示す。 [0016]図において、原料ホッパー1内の酸化珪素
とカーボンからなる混合粒はスクリューフィダー等の供
給機2により回転炉3のシェル内4に供給される。回転
炉は混合粒の入口側が高くなるように傾斜させて設置さ
れているが、回分式の場合には必ずしも傾斜させる必要
はない。 [00171供給機2より回転炉内に供給された混合粒
はシェル内を移動しながらヒータで加熱され、炭素と反
応し炭化珪素となる。還元炭化された粉末は、炭化物回
収容器6に回収される。シェル内には還元炭化処理を良
好に行う為にアルゴン含有ガスがガス供給ロアから強制
的に供給される。これらのガスは混合粒と向流に流す方
が還元炭化の効率がよく、また熱回収の面からも効率が
よく、好ましい。回転炉の回転数は使用する回転炉の直
径等により一義的ではないが、反応を均一に行うために
0.1〜10回転/分とすることが好ましい。 [00181本発明方法により得られる炭化珪素粉末が
、何故ウィスカー生成量が少ないのか詳らかではないが
、原料である混合粒が回転炉内で常に動いている為、特
定方向への結晶成長が阻害され、この為ウィスカーの発
生が少ないものと推測される。 [0019]
[Problems to be Solved by the Invention] In view of the above circumstances, the present inventors have produced a silicon carbide powder that has finer particles and less whisker contamination than conventional methods, has a short industrial reaction time, and can be made into large scale. As a result of intensive study to find a method, the present invention was finally completed. [0007] [Means for Solving the Problems] That is, the present invention provides a process in which mixed grains of silicon oxide and carbon are shaken in a rotary furnace,
1200℃~170℃ under nitrogen-free non-oxidizing atmosphere
The present invention provides a method for producing silicon carbide powder, which is characterized by heating at 0°C. [0008] The method of the present invention will be explained in more detail below. When carrying out the method of the present invention, silicon oxide as a raw material is
This reaction is a gas phase reaction, and the particle size of the silicon carbide powder is not particularly limited because it does not depend on the particle size of the raw material silicon oxide, but from the viewpoint of ease of reaction, a particle size of 50 μm or less is usually used. . [00091 During the reaction, in order to obtain silicon carbide powder with finer particles and a sharp particle size distribution, ultrafine particles, e.g.
Hereinafter, it is also possible to mix silicon carbide powder, which preferably has a diameter of 0°571 m or less, as a seed in the silicon oxide powder used as the raw material for kneading. [00101 The carbon used as a raw material is usually carbon black, with a particle size of 511 m or less, preferably 3 gm or less. If the particle size is large, it is difficult to react. [001,11 In the reaction, silicon oxide and carbon are mixed and granulated in advance before use. During mixing, the ratio of silicon oxide and carbon used in step 2 is usually 60 to 180 parts, preferably 65 to 15 parts, of carbon per 100 parts of silicon oxide.
There is a cold in the 0th grade. If there is less carbon than silicon oxide, the conversion reaction to silicon carbide will not be sufficient, and if there is too much carbon, decarbonization will take a long time and the obtained silicon carbide may be reoxidized. [0012] Since the mixing time varies depending on the mixer used and the mixing area, it is sufficient to carry out mixing in advance under the mixing conditions used and set a time that enables uniform stirring of silicon oxide and carbon. [001,31 In the present invention, the mixed grains are 5011m to 5
It is used by granulating it into granules of mm or less. Mixed grains are 50I1.
If it is less than m, problems such as being easily scattered in the air current during reaction or easily adhering to the furnace wall may occur. [001,41 In the method of the present invention, it is essential that the mixed grains be subjected to reduction carbonization treatment while being shaken in a rotary furnace. The rotary furnace may be a known rotary furnace such as a kiln, and either a batch type or a continuous type can be used. The reduction carbonization treatment may be carried out normally in an argon atmosphere at a temperature of 1200 to 1700°C for 1 hour or more, usually 2 hours to 8 hours. [0015] FIG. 1 shows a schematic cross-sectional view of an embodiment of the apparatus used when performing continuous reduction carbonization treatment according to the method of the present invention, taken along a plane parallel to the longitudinal direction of the rotary furnace. In the figure, 1 is a raw material hopper, 2 is a mixed grain feeder, 3 is a rotary furnace, 4 is inside the shell, 5 is a heater, 6 is a carbide recovery container, 7
8 indicates a gas supply port, and 8 indicates a gas discharge port. [0016] In the figure, mixed grains consisting of silicon oxide and carbon in a raw material hopper 1 are fed into a shell 4 of a rotary furnace 3 by a feeder 2 such as a screw feeder. The rotary furnace is installed at an angle so that the inlet side of the mixed grains is higher, but in the case of a batch type, it is not necessarily necessary to be inclined. [00171 The mixed grains supplied into the rotary furnace from the supply device 2 are heated by a heater while moving within the shell, react with carbon, and become silicon carbide. The reduced and carbonized powder is collected in a carbide collection container 6. Argon-containing gas is forcibly supplied into the shell from the gas supply lower in order to perform the reduction carbonization process well. It is preferable to flow these gases in a countercurrent direction to the mixed grains because the efficiency of reduction carbonization is better and the efficiency is also better in terms of heat recovery. Although the rotation speed of the rotary furnace is not unique depending on the diameter of the rotary furnace used, etc., it is preferably 0.1 to 10 rotations/min in order to carry out the reaction uniformly. [00181 It is not clear why the silicon carbide powder obtained by the method of the present invention produces a small amount of whiskers, but because the mixed grains that are the raw material are constantly moving in the rotary furnace, crystal growth in a specific direction is inhibited. , Therefore, it is presumed that whiskers are less likely to occur. [0019]

【効果】以上詳述した本発明方法によれば、従来の静置
法に比べ還元炭化に要する時間を1/2以下に短縮する
ことができるのみならず、ウィスカー生成量の少ない粉
末を得ることができる等、その工業的価値は頗る大であ
る。 [00201 【実施例]以下、本発明方法を実施例によりさらに詳細
に説明するが本発明方法はかかる実施例により制限を受
けるものではない。本発明において40μm以下の粒径
の測定はセディグラフ、40μmを超える粒径は篩別法
を用いた。ウィスカーの量は脱炭素後湿式にて10μm
で篩別し求めた。尚、実施例において部は特に断わりが
ない限り重量部である。 [00213実施例1 平均粒子径10μm、純度99.8%の酸化珪素粉末1
00部と、平均粒子径1.5μm、灰分0. 1%のカ
ーボンブラック100部を混合造粒機に投入し、ポリエ
チレングリコール1部を溶解した水545部に、これに
平均粒子径0.5μmの種窒化珪素1部を分散したスラ
リーを添加しながら高速撹拌し混合し、造粒し、混合粒
とした後、熱風乾燥機にて150℃で乾燥した。得られ
た混合粒の粒子径は0. 1〜3mmであった。 [0022]この混合物を図1に示すホッパーに充填し
、1回転/分で回転し、炉内温度が1600℃に設定さ
れ、99.99%以上の純度のアルゴンが1ONm3/
Hrで混合粒とは向流に導入されている回転炉内に3k
g/Hで供給し、還元炭化処理した。 [0023]このようにして得られた炭化珪素粉末中の
残留カーボンを750℃で通常の方法で酸化除去した。 得られた炭化珪素粉末の平均粒径は0.6μであり、そ
の結晶構造はβ−8iCであり、ウィスカー生成量は0
゜5%以下であった。 [0024]比較例1 実施例1と同じ方法で調製した混合粒を25cm角のカ
ーボン製の容器に約600g充填し、このような容器を
5段積み重ねた。 (充填物の充填高さは1.5cmで
ある。) [0025]5段積み容器を1単位としてプッシャー式
のトンネル炉に1単位/Hrで挿入し、炉内温度153
0℃で還元炭化反応させた。(炉内滞留時間は8時間必
要であった。) [0026]なお充填物と上部容器の底との間の間隙を
1.5cmとし、その間隙より99.99%以上の純度
のアルゴンを導入した。使用アルゴンは25Nm3/H
rであり、これ以下であれば8時間では反応が完結しな
かった。 [0027]得られた炭化珪素粉末中の残留カーボンを
750℃で酸化した。得られた粉末の平均粒径は0.6
μ、その結晶構造はβ−3iCであり、ウィスカー生成
量は1.8%であった。 [0028]
[Effects] According to the method of the present invention detailed above, the time required for reduction carbonization can be reduced to less than half compared to the conventional standing method, and it is also possible to obtain powder with a small amount of whisker formation. Its industrial value is enormous. [00201] [Examples] The method of the present invention will be explained in more detail by Examples below, but the method of the present invention is not limited by these Examples. In the present invention, a Sedigraph was used to measure the particle size of 40 μm or less, and a sieving method was used to measure the particle size of more than 40 μm. The amount of whiskers is 10μm by wet method after decarbonization.
I screened it out and found it. In the examples, parts are parts by weight unless otherwise specified. [00213 Example 1 Silicon oxide powder 1 with an average particle size of 10 μm and a purity of 99.8%
00 parts, average particle size 1.5 μm, ash content 0. 100 parts of 1% carbon black was put into a mixing granulator, and a slurry in which 1 part of silicon nitride seed with an average particle size of 0.5 μm was dispersed was added to 545 parts of water in which 1 part of polyethylene glycol was dissolved. The mixture was stirred at high speed and mixed, granulated into mixed granules, and then dried at 150° C. in a hot air dryer. The particle size of the obtained mixed grains was 0. It was 1 to 3 mm. [0022] This mixture was charged into the hopper shown in FIG. 1, rotated at 1 revolution/min, the furnace temperature was set at 1600°C, and argon with a purity of 99.99% or more was pumped at 1ONm3/min.
At 3K, the mixed grains are introduced into a rotary furnace in a countercurrent flow with Hr.
g/H and subjected to reduction carbonization treatment. [0023] Residual carbon in the silicon carbide powder thus obtained was removed by oxidation at 750° C. using a conventional method. The average particle size of the obtained silicon carbide powder was 0.6μ, its crystal structure was β-8iC, and the amount of whiskers produced was 0.
It was less than 5%. [0024] Comparative Example 1 Approximately 600 g of mixed grains prepared in the same manner as in Example 1 was filled into a 25 cm square carbon container, and such containers were stacked in five stages. (The filling height of the filling material is 1.5 cm.) [0025] The 5-tiered container is inserted into a pusher-type tunnel furnace at a rate of 1 unit/Hr, and the furnace temperature is 153 cm.
A reduction and carbonization reaction was carried out at 0°C. (The residence time in the furnace was 8 hours.) [0026] The gap between the filling and the bottom of the upper container was 1.5 cm, and argon with a purity of 99.99% or more was introduced through the gap. did. Argon used is 25Nm3/H
r, and if it was less than this, the reaction would not be completed within 8 hours. [0027] Residual carbon in the obtained silicon carbide powder was oxidized at 750°C. The average particle size of the obtained powder was 0.6
μ, its crystal structure was β-3iC, and the amount of whiskers produced was 1.8%. [0028]

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】図1は本発明方法で連続式還元炭化処理に用い
る装置の概略断面図である。
FIG. 1 is a schematic cross-sectional view of an apparatus used for continuous reduction carbonization treatment in the method of the present invention.

【符号の説明】[Explanation of symbols]

図中、1は原料ホッパー、2は混合粒供給機、3は回転
炉、4はシェル内、5はヒータ、6は炭化物回収容器、
7はガス供給口、8はガス排出口を示す。
In the figure, 1 is a raw material hopper, 2 is a mixed grain feeder, 3 is a rotary furnace, 4 is inside the shell, 5 is a heater, 6 is a carbide recovery container,
7 indicates a gas supply port, and 8 indicates a gas discharge port.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】酸化珪素とカーボンの混合粒を回転炉中で
揺動させながら、窒素を含まない非酸化性雰囲気下で1
200℃〜1700℃で加熱することを特徴とする炭化
珪素粉末の製造方法。
Claim 1: Mixed grains of silicon oxide and carbon are heated in a non-oxidizing atmosphere without nitrogen while being rocked in a rotary furnace.
A method for producing silicon carbide powder, the method comprising heating at 200°C to 1700°C.
【請求項2】混合粒が50μm〜5mmの粒径を有する
50μm以下の酸化珪素と5μm以下のカーボンブラッ
クの造粒物であることを特徴とする請求項1記載の炭化
珪素粉末の製造方法。
2. The method for producing silicon carbide powder according to claim 1, wherein the mixed grains are granules of silicon oxide of 50 μm or less and carbon black of 5 μm or less and having a particle size of 50 μm to 5 mm.
JP2400759A 1990-12-07 1990-12-07 Production of silicon carbide powder Pending JPH04209716A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2400759A JPH04209716A (en) 1990-12-07 1990-12-07 Production of silicon carbide powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2400759A JPH04209716A (en) 1990-12-07 1990-12-07 Production of silicon carbide powder

Publications (1)

Publication Number Publication Date
JPH04209716A true JPH04209716A (en) 1992-07-31

Family

ID=18510639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2400759A Pending JPH04209716A (en) 1990-12-07 1990-12-07 Production of silicon carbide powder

Country Status (1)

Country Link
JP (1) JPH04209716A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104477919A (en) * 2014-12-18 2015-04-01 新疆工程学院 Method for producing silicon carbide by use of rotary external heating resistance furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104477919A (en) * 2014-12-18 2015-04-01 新疆工程学院 Method for producing silicon carbide by use of rotary external heating resistance furnace

Similar Documents

Publication Publication Date Title
EP0734362B1 (en) Firing fines
US3676365A (en) Method for manufacturing activated carbon and apparatus therefor
US5070049A (en) Starting composition for the production of silicon carbide and method of producing the same
EP0766645A1 (en) Process for producing silicon carbide
JP2001089168A (en) Production of synthetic silica glass powder of high purity
JPS63103807A (en) Continuous manufacture of high purity, superfine aluminum nitride by carbon-nitration of alumina
US5021230A (en) Method of making silicon carbide
US3307908A (en) Preparation of aluminum nitride
JPH04209716A (en) Production of silicon carbide powder
EP0195491B1 (en) Method of making aluminous abrasives
JPS6197110A (en) Manufacture of silicon nitride having high alpha-phase content
Mishra et al. Synthesis of silicon carbide from rice husk in a packed bed arc reactor
JPH04209705A (en) Production of silicon nitride-based powder
US4085201A (en) Process for manufacturing aluminum oxide
US3956454A (en) Process for producing aluminum trichloride
JPH0118005B2 (en)
JPH04209707A (en) Production of aluminum nitride powder
JPH06321508A (en) Production of crystalline silicon nitride powder
JPH0138042B2 (en)
JPS616109A (en) Manufacture of sic
JP2518261B2 (en) Method for producing black powder
JPH05279002A (en) Production of al nitride powder
JP2719394B2 (en) Method for producing silicon carbide
JPH05117035A (en) Production of crystalline silicon nitride powder
JP3006843B2 (en) Method for producing metal complex containing silicon carbide powder