JPH04209705A - Production of silicon nitride-based powder - Google Patents

Production of silicon nitride-based powder

Info

Publication number
JPH04209705A
JPH04209705A JP33906590A JP33906590A JPH04209705A JP H04209705 A JPH04209705 A JP H04209705A JP 33906590 A JP33906590 A JP 33906590A JP 33906590 A JP33906590 A JP 33906590A JP H04209705 A JPH04209705 A JP H04209705A
Authority
JP
Japan
Prior art keywords
silicon nitride
silicon oxide
mixed
particle
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33906590A
Other languages
Japanese (ja)
Inventor
Mitsutoshi Murase
村瀬 光俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP33906590A priority Critical patent/JPH04209705A/en
Publication of JPH04209705A publication Critical patent/JPH04209705A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To obtain powder reduced in production of whisker in a shortened production time by heating a mixture of silicon oxide particles and carbon particles respectively specified in particle diameters to a prescribed temperature in a rotating furnace under atmosphere containing nitrogen gas, etc. CONSTITUTION:Silicon oxide having <=50mum particle diameter and carbon black having <=5mum particle diameter are granulated to prepare a mixed particle having 50mum to 5mm particle diameter. The mixed particle is heated at 1200-1700 deg.C in a gas atmosphere containing nitrogen or ammonia while oscillating the mixed particle in a rotating furnace. Thereby silicon nitride-based powder reduced in formation of whisker is obtained, and further, production time thereof is shortened to half or below.

Description

【発明の詳細な説明】 (産業上の利用分野) 、 本発明は回転炉を用いた窒化珪素質粉末の製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for producing silicon nitride powder using a rotary furnace.

(従来の技術) 現在窒化珪素質粉末の工業的製法としては、酸化珪素粉
末と炭素よりなる混合物をカーボン容器に充填し、該原
料充填部の上部に窒素含有ガスを導入し、1200℃〜
1700℃で加熱反応させて窒化珪素質粉末を得る、所
tII酸化物還元法が一般的である。
(Prior art) The current industrial method for producing silicon nitride powder is to fill a carbon container with a mixture of silicon oxide powder and carbon, introduce a nitrogen-containing gas into the upper part of the raw material filling section, and heat the mixture to 1200°C
A common method is a tII oxide reduction method in which a silicon nitride powder is obtained by a heating reaction at 1700°C.

しかしながら上記方法は ■反応式 s log+c−s t o+c。However, the above method ■Reaction formula s log + c - s t o + c.

3SiO+2N、+C→S l *Nm+ 3 COで
あり、00分圧が高いと反応は進みにくく、また副反応
としてS I SN4+ 2 CO→2SiC+510
m+2Nmの反応が生じやすく、00分圧の場所による
変動により得られる窒化珪素中のSICの含有量が高く
なるかまたは不均一になる。このため発生した00分圧
を均一にすることが必要であるが、充填層の厚さが厚い
と内部の発生COの除去が困難で内部はど00分圧が高
くなるため、層の厚さを薄くしなければならず、生産性
に劣る。
3SiO+2N, +C→S l *Nm+ 3 CO, and if the 00 partial pressure is high, the reaction will be difficult to proceed, and as a side reaction, S I SN4+ 2 CO → 2SiC+510
m+2Nm reactions are likely to occur, and the SIC content in the resulting silicon nitride becomes high or non-uniform due to local variations in the 00 partial pressure. For this reason, it is necessary to make the generated 00 partial pressure uniform, but if the thickness of the filling layer is thick, it will be difficult to remove the CO generated inside, and the 00 partial pressure will become high inside. must be made thinner, which lowers productivity.

■ 反応により発生したCOはNtの流れに乗せて除去
しなければならず通常理論反応量の数十倍という過剰の
Nt量が必要であり、経済性に劣る。
(2) The CO generated by the reaction must be removed along with the Nt flow, and an excessive amount of Nt, usually several tens of times the theoretical reaction amount, is required, which is uneconomical.

■ ウィスカーが生成しやすい。■ Easy to generate whiskers.

等の欠点を有する。It has the following disadvantages.

(発明が解決しようとする謀R) かかる事情下に鑑み本発明者らは従来法に比較し、生産
性が高く、SiC含有量が少ないか、または生成物中に
存在するSiC含有量が均一で、かつウィスカー生成量
の少ない窒化珪素質粉末の製造方法を見出すべく鋭意検
討した結果、遂に本発明を完成するに至った。
(Plan R to be solved by the invention) In view of the above circumstances, the present inventors have developed a method that has higher productivity, lower SiC content, or uniform SiC content in the product compared to conventional methods. As a result of intensive studies to find a method for producing silicon nitride powder that also produces a small amount of whiskers, the present invention was finally completed.

(課題を解決するための手段) すなわち本発明は、酸化珪素とカーボンの混合粒を回転
炉中で揺動させながら、窒素またはアンモニアを含むガ
ス雰囲気下で1200℃〜1700℃で加熱することを
特徴とする窒化珪素質粉末の製造方法を提供するもので
ある。
(Means for Solving the Problems) That is, the present invention involves heating mixed grains of silicon oxide and carbon at 1200°C to 1700°C in a gas atmosphere containing nitrogen or ammonia while shaking them in a rotary furnace. The present invention provides a method for producing a characteristic silicon nitride powder.

以下、本発明方法をさらに詳述する。The method of the present invention will be explained in further detail below.

本発明方法の実施に際し、原料としての酸化珪素は、こ
の反応が気相反応であり窒化珪素質粉末の粒度は原料の
酸化珪素には依存しない為、特に制限されていないが、
反応の容易性等より通常100μ以下の粒径のものが使
用される。
When carrying out the method of the present invention, silicon oxide as a raw material is not particularly limited because this reaction is a gas phase reaction and the particle size of the silicon nitride powder does not depend on the silicon oxide raw material.
For ease of reaction, particles with a particle size of 100 μm or less are usually used.

反応に際して、より微粒で粒度分布のシャープな窒化珪
素質粉末を得るために超微粒の窒化珪素粉末をこれら原
料としての酸化珪素粉末中に種として配合しておくこと
も可能である。
During the reaction, it is also possible to mix ultrafine silicon nitride powder as a seed into the silicon oxide powder used as the raw material in order to obtain a silicon nitride powder that is finer and has a sharper particle size distribution.

また原料としてのカーボンは通常、カーボンブラックが
好ましく、粒径は5μ以下、好ましくは3μ以下のもの
が使用される。
Further, carbon as a raw material is usually preferably carbon black, with a particle size of 5 μm or less, preferably 3 μm or less.

粒径が大きいと反応し難い。If the particle size is large, it is difficult to react.

反応に際して、酸化珪素とアルミナは予め混合、造粒し
て使用する。
During the reaction, silicon oxide and alumina are mixed and granulated in advance.

混合に際しての、酸化珪素とカーボンの使用割合は通常
、酸化珪素100重量部に対しカーボン40〜140重
量部、好ましくは45〜120重量部の範囲である。酸
化珪素に対しカーボンが少ないと反応が充分でなく、ま
た多いと脱炭素に長時間を要する。
The ratio of silicon oxide and carbon used during mixing is usually in the range of 40 to 140 parts by weight, preferably 45 to 120 parts by weight, per 100 parts by weight of silicon oxide. If there is less carbon than silicon oxide, the reaction will not be sufficient, and if there is too much carbon, it will take a long time to decarbonize.

混合時間は使用する混合機、混合量により異なるので、
予め使用する混合条件で混合を行い、酸化珪素とカーボ
ンの均一撹拌が可能となる時間を設定すれば良い。
The mixing time varies depending on the mixer used and the mixing amount.
Mixing may be performed in advance under the mixing conditions used, and a time may be set to allow uniform stirring of silicon oxide and carbon.

本発明に於いて混合粒は50μ以上〜5−以下の粒状に
造粒し使用する。
In the present invention, the mixed granules are used after being granulated into particles of 50 microns or more to 5 microns or less.

混合粒が50μ未満の場合には反応時気流に乗り飛散す
るとか、炉壁に付着しやすい等の問題を生起する。
If the mixed grains are less than 50 μm, problems such as being easily scattered by air currents during reaction or easily adhering to the furnace wall occur.

本発明方法に於いて混合粒は回転炉で揺動させながら窒
化処理を必須とする。
In the method of the present invention, the mixed grains must be nitrided while being shaken in a rotary furnace.

回転炉はキルン等の公知のものであればよく回分式、連
続式のいずれも使用できる。
The rotary furnace may be a known rotary furnace such as a kiln, and either a batch type or a continuous type can be used.

窒化処理は通常窒素またはアンモニア雰囲気中で120
0℃〜1700℃の温度で1時間以上、通常2時間〜8
時間行えばよい。
Nitriding is usually carried out at 120°C in a nitrogen or ammonia atmosphere.
At a temperature of 0°C to 1700°C for 1 hour or more, usually 2 hours to 8
All you have to do is take your time.

第1図に本発明方法で連続式窒化処理を行う場合使用す
る装置の一実施態様として、回転炉の長手方間に対して
平行な平面で切断した概略断面図を示した。
FIG. 1 shows a schematic cross-sectional view taken along a plane parallel to the longitudinal direction of a rotary furnace, as one embodiment of an apparatus used when carrying out continuous nitriding according to the method of the present invention.

図中1は原料ホッパー、2は混合粒供給機、3は回転炉
、4はシェル内、5ばヒータ、6は窒化物回収容器、7
はガス供給口、8はガス排出口を示す。
In the figure, 1 is a raw material hopper, 2 is a mixed grain feeder, 3 is a rotary furnace, 4 is inside the shell, 5 is a heater, 6 is a nitride recovery container, 7
8 indicates a gas supply port, and 8 indicates a gas discharge port.

図において原料ホッパー1内の酸化珪素とカーボンから
なる混合粒はスクリューフィダー等の供給機2により回
転炉3のシェル内4に供給される0回転炉は混合物の入
口側が高くなるように傾斜させて設置されているが、回
分式炉の場合には必ずしも傾斜させる必要はない。
In the figure, mixed grains of silicon oxide and carbon in a raw material hopper 1 are fed into the shell 4 of a rotary furnace 3 by a feeder 2 such as a screw feeder.The rotary furnace is tilted so that the inlet side of the mixture is higher. However, in the case of a batch type furnace, it is not necessarily necessary to tilt the furnace.

供給機2より回転炉内に供給された混合粒はシェル内を
移動しなからヒータで加熱され、窒素と反応し窒化処理
される。
The mixed grains supplied from the supply device 2 into the rotary furnace are heated by a heater while moving inside the shell, react with nitrogen, and undergo nitriding treatment.

窒化処理に際し反応系内の窒素中のCOの分圧をコント
ロールすることにより窒化珪素と炭化珪素の任意の組成
の複合粉末を得ることも可能である。窒化された粉末は
、窒化物回収容器6に回収される。
It is also possible to obtain a composite powder of silicon nitride and silicon carbide with an arbitrary composition by controlling the partial pressure of CO in nitrogen in the reaction system during the nitriding treatment. The nitrided powder is collected in a nitride collection container 6.

シェル内には窒化処理を良好に行う為に窒素またはアン
モニウム含有ガスがガス供給ロアから強制的に供給され
る。
Nitrogen or ammonium-containing gas is forcibly supplied into the shell from the gas supply lower in order to perform the nitriding process well.

これらのガスは混合粒と向流に流す方が窒化の効率がよ
く、また熱回収の面からも効率がよく好ましい。
It is preferable to flow these gases in a countercurrent direction to the mixed grains, since this is more efficient in nitriding and also more efficient in terms of heat recovery.

回転炉の回転数は使用する回転炉の直径等により一義的
ではなく、また時に制限されないが反応を均一に行うた
めには0.1〜10回転/分とすることが好ましい。
The rotation speed of the rotary furnace is not unique depending on the diameter of the rotary furnace used, and is not limited in some cases, but in order to carry out the reaction uniformly, it is preferably 0.1 to 10 rotations/min.

(発明の効果) 以上詳述した本発明方法によれば、従来の静置法に比べ
窒化に要する時間を1/2以下に短縮することができる
のみならず、ウィスカー生成の少ない粉末を得ることが
できる等、その工業的価値は頗る大である。
(Effects of the Invention) According to the method of the present invention detailed above, not only can the time required for nitriding be reduced to 1/2 or less compared to the conventional standing method, but also powder with less whisker formation can be obtained. Its industrial value is enormous.

(実施例) 以下、本発明方法を実施例によりさらに詳細に説明する
が本発明方法はかかる実施例により制限を受けるもので
はない。
(Examples) Hereinafter, the method of the present invention will be explained in more detail with reference to Examples, but the method of the present invention is not limited by these Examples.

なお、本発明において40μm以下の粒径の測定はセデ
ィグラフ、40μmを超える粒径は篩別法を用いた。
In the present invention, a Sedigraph was used to measure the particle size of 40 μm or less, and a sieving method was used to measure the particle size of more than 40 μm.

ウィスカーの量は脱炭素後湿式にて10μで篩別し求め
た。
The amount of whiskers was determined by wet sieving with a 10μ screen after decarbonization.

尚、実施例において部は特に断わりがない限り重量部で
ある。
In the examples, parts are parts by weight unless otherwise specified.

実施例1 平均粒子径10μ、純度99.8%の酸化珪素粉末10
0部と平均粒子径1.5μ、灰分0.1%のカーボンブ
ラック80部を混合造粒機に投入し、ポリエチレングリ
コール1部を溶解した水435部に、これに平均粒子径
0.5μの窒化珪素1部を分散したスラリーを添加しな
がら高速撹拌し混合し、造粒し、混合粒とした後、熱風
乾燥機にて150℃で乾燥した。得られた混合粒の粒子
径は 0.1〜3mmであった。
Example 1 Silicon oxide powder 10 with an average particle size of 10μ and a purity of 99.8%
0 parts and 80 parts of carbon black with an average particle size of 1.5μ and ash content of 0.1% were put into a mixing granulator, and 435 parts of water in which 1 part of polyethylene glycol was dissolved were added. While adding a slurry in which 1 part of silicon nitride was dispersed, the mixture was stirred at high speed and mixed, granulated to form mixed granules, and then dried at 150° C. in a hot air dryer. The particle diameter of the obtained mixed particles was 0.1 to 3 mm.

この混合粒を第1図に示すホッパーに充填し、1回転/
分で回転し、炉内温度が1530℃に設定され、99.
99%以上の純度の窒素が2ONrrr/Hrで混合粒
とは向流に導入されている回転炉内に3 kg/ Hr
で供給し、窒化処理した。
The mixed grains were filled into the hopper shown in Fig. 1, and
The temperature inside the furnace was set at 1530°C, and the temperature was set at 99°C.
3 kg/Hr of nitrogen with a purity of 99% or higher is introduced into a rotary furnace in countercurrent flow to the mixed grains at 2ONrrr/Hr.
was supplied and nitrided.

このようにして得られた窒化珪素粉末中の残留カーボン
を750℃で酸化除去した。
Residual carbon in the silicon nitride powder thus obtained was removed by oxidation at 750°C.

得られた粉末の平均粒径は0.6μ、SIC生成量は0
.5%以下であり、ウィスカー生成量は0.5%以下で
あった。
The average particle size of the obtained powder was 0.6μ, and the amount of SIC produced was 0.
.. 5% or less, and the amount of whiskers produced was 0.5% or less.

比較例−1 実施例1と同じ方法で混合粒を調製し、混合物を25c
m角のカーボン製の容器に約600g充填し、このよう
な容器を5段積み重ねた(充填物の充填高さは1.5 
cmである。)5段積み容器を1単位としてプッシャー
式のトンネル炉に1単位/Hrで挿入し、炉内温度15
30℃で窒化反応させた(炉内滞留時間は8時間必要で
あった。) なお窒素は純度99.99%以上のものを、充填物と上
部容器の底との間隙を(1,5C11)より導入した。
Comparative Example-1 Mixed grains were prepared in the same manner as in Example 1, and the mixture was
Approximately 600 g was filled into an m square carbon container, and such containers were stacked in 5 layers (the filling height of the filling was 1.5
cm. ) A 5-tiered container is inserted into a pusher-type tunnel furnace at a rate of 1 unit/Hr, and the temperature inside the furnace is 15.
The nitriding reaction was carried out at 30°C (residence time in the furnace was 8 hours).The nitrogen had a purity of 99.99% or higher, and the gap between the filling and the bottom of the upper container was (1.5C11). introduced more.

使用窒素は25μm”/Hrであり、これ以下であれば
反応が完結しなかった。
The amount of nitrogen used was 25 μm''/Hr, and if it was less than this, the reaction would not be completed.

得られた窒化珪素粉末中の残留カーボンを750℃で酸
化除去した。
Residual carbon in the obtained silicon nitride powder was removed by oxidation at 750°C.

得られた粉末の平均粒径は0.6μ、SIC生成量は1
.7%、ウィスカー生成量は28%であった。
The average particle size of the obtained powder was 0.6μ, and the amount of SIC produced was 1
.. 7%, and the whisker production amount was 28%.

実施例−2 平均粒子径10μ、純度99.8%の酸化珪素粉末10
0部と平均粒子径1.5μ、灰分0.1%のカーボンブ
ラック80部を混合造粒機に投入し、ポリエチレングリ
コール1部を溶解した水435部に、これに平均粒子径
0.5μの窒化珪素1部を分散したスラリーを添加しな
がら高速撹拌し混合し、造粒し、混合粒とした後、熱風
乾燥機にて150℃で乾燥した。得られた混合粒の粒子
径は 0.1〜3mmであった。
Example-2 Silicon oxide powder 10 with an average particle size of 10μ and a purity of 99.8%
0 parts and 80 parts of carbon black with an average particle size of 1.5μ and ash content of 0.1% were put into a mixing granulator, and 435 parts of water in which 1 part of polyethylene glycol was dissolved were added. While adding a slurry in which 1 part of silicon nitride was dispersed, the mixture was stirred at high speed and mixed, granulated to form mixed granules, and then dried at 150° C. in a hot air dryer. The particle diameter of the obtained mixed particles was 0.1 to 3 mm.

この混合粒を第1図に示すホッパーに充填し、1回転/
分で回転し、炉内温度が1560”Cに設定され、99
.99%以上の純度の窒素が15Nnf/)Irで混合
粒とは向流に導入されている回転炉内に3kg/Hrで
供給し、窒化処理した。
The mixed grains were filled into the hopper shown in Fig. 1, and
The furnace temperature was set at 1560"C and 99"
.. Nitrogen with a purity of 99% or higher was supplied at 3 kg/Hr into a rotary furnace in which 15Nnf/)Ir was introduced in countercurrent to the mixed grains, and nitriding was performed.

このようにして得られた窒化珪素粉末中の残留カーボン
を750℃で酸化除去した。
Residual carbon in the silicon nitride powder thus obtained was removed by oxidation at 750°C.

得られた粉末の平均粒径は0.5p、SIC生底置は3
2%であり、5isNaと SiCとの複合粉であった
。またウィスカー生成量は0゜5%以下であった。
The average particle size of the obtained powder was 0.5p, and the SIC raw bottom was 3.
2%, and was a composite powder of 5isNa and SiC. Further, the amount of whiskers produced was 0.5% or less.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法で連続式窒化処理に用いる装置の概
略断面図であり、図中、1;原料ホッパー、2;混合粒
供給機、3;回転炉、4;シェル内、5;ヒータ、6;
窒化物回収容器、7;ガス供給口、8;ガス排出口を示
す。 第1図
FIG. 1 is a schematic cross-sectional view of an apparatus used for continuous nitriding in the method of the present invention, and in the figure, 1: raw material hopper, 2: mixed grain feeder, 3: rotary furnace, 4: inside shell, 5: heater ,6;
Nitride recovery container, 7; gas supply port; 8; gas discharge port is shown. Figure 1

Claims (1)

【特許請求の範囲】 1)酸化珪素とカーボンの混合粒を回転炉中で揺動させ
ながら、窒素またはアンモニアを含むガス雰囲気下で1
200℃〜1700℃で加熱することを特徴とする窒化
珪素質粉末の製造方法。 2)混合粒が50μm〜5mmの粒径を有する、50μ
m以下の酸化珪素と5μ以下のカーボンブラックの造粒
物であることを特徴とする請求項1)記載の窒化珪素質
粉末の製造方法。
[Claims] 1) Mixed grains of silicon oxide and carbon are heated in a gas atmosphere containing nitrogen or ammonia while being shaken in a rotary furnace.
A method for producing silicon nitride powder, the method comprising heating at 200°C to 1700°C. 2) The mixed grains have a particle size of 50 μm to 5 mm, 50μ
2. The method for producing a silicon nitride powder according to claim 1, wherein the powder is a granulated product of silicon oxide having a particle diameter of 5 μm or less and carbon black having a particle size of 5 μm or less.
JP33906590A 1990-11-30 1990-11-30 Production of silicon nitride-based powder Pending JPH04209705A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33906590A JPH04209705A (en) 1990-11-30 1990-11-30 Production of silicon nitride-based powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33906590A JPH04209705A (en) 1990-11-30 1990-11-30 Production of silicon nitride-based powder

Publications (1)

Publication Number Publication Date
JPH04209705A true JPH04209705A (en) 1992-07-31

Family

ID=18323933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33906590A Pending JPH04209705A (en) 1990-11-30 1990-11-30 Production of silicon nitride-based powder

Country Status (1)

Country Link
JP (1) JPH04209705A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5525556A (en) * 1994-04-14 1996-06-11 The Dow Chemical Company Silicon nitride/silicon carbide composite powders
JP2017511295A (en) * 2014-04-14 2017-04-20 オーシーアイ カンパニー リミテッドOCI Company Ltd. Continuous silicon nitride production apparatus and method with improved uniformity of particle size
JP2021085101A (en) * 2019-11-25 2021-06-03 日本バイリーン株式会社 Method for producing silicon nitride fiber

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5525556A (en) * 1994-04-14 1996-06-11 The Dow Chemical Company Silicon nitride/silicon carbide composite powders
US5538675A (en) * 1994-04-14 1996-07-23 The Dow Chemical Company Method for producing silicon nitride/silicon carbide composite
US5643843A (en) * 1994-04-14 1997-07-01 The Dow Chemical Company Silicon nitride/silicon carbide composite densified materials prepared using composite powders
JP2017511295A (en) * 2014-04-14 2017-04-20 オーシーアイ カンパニー リミテッドOCI Company Ltd. Continuous silicon nitride production apparatus and method with improved uniformity of particle size
JP2021085101A (en) * 2019-11-25 2021-06-03 日本バイリーン株式会社 Method for producing silicon nitride fiber

Similar Documents

Publication Publication Date Title
JP3816141B2 (en) Method for producing lithium sulfide
JPS6227318A (en) Method and apparatus for producing pulverous sio powder
US5126121A (en) Process for preparing aluminum nitride powder via controlled combustion nitridation
US5070049A (en) Starting composition for the production of silicon carbide and method of producing the same
JPS63103807A (en) Continuous manufacture of high purity, superfine aluminum nitride by carbon-nitration of alumina
JPH0638911B2 (en) Method for producing non-oxide powder
US6416862B1 (en) Ultrafine particulate zinc oxide and production process thereof
US2843458A (en) Process for producing silicon tetrachloride
JPH04209705A (en) Production of silicon nitride-based powder
KR19980064645A (en) Method of manufacturing slaked lime
JPH06206720A (en) Method of producing hydrophobic silica by thermal decomposition process
AU765840B2 (en) Highly white zinc oxide fine particles and method for preparation thereof
JPS6197110A (en) Manufacture of silicon nitride having high alpha-phase content
JPH04209716A (en) Production of silicon carbide powder
US3956454A (en) Process for producing aluminum trichloride
JPH04209707A (en) Production of aluminum nitride powder
US3211527A (en) Process for producing ultrafine silicon nitride
US4085201A (en) Process for manufacturing aluminum oxide
JPH09278422A (en) Production of silicon sulfide
JPS616109A (en) Manufacture of sic
JPH05117035A (en) Production of crystalline silicon nitride powder
JPS5945637B2 (en) Method for manufacturing silicon carbide whiskers
JPH08253364A (en) Preparation of sialon
JPS60251108A (en) Device for preparing silicon nitride powder
WO2004076048A1 (en) Homogenisation of nanoscale powders