JP2518261B2 - Method for producing black powder - Google Patents

Method for producing black powder

Info

Publication number
JP2518261B2
JP2518261B2 JP62054202A JP5420287A JP2518261B2 JP 2518261 B2 JP2518261 B2 JP 2518261B2 JP 62054202 A JP62054202 A JP 62054202A JP 5420287 A JP5420287 A JP 5420287A JP 2518261 B2 JP2518261 B2 JP 2518261B2
Authority
JP
Japan
Prior art keywords
powder
titanium
raw material
titanium dioxide
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62054202A
Other languages
Japanese (ja)
Other versions
JPS63222007A (en
Inventor
彰 片井
洋一 坂井
健児 矢島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP62054202A priority Critical patent/JP2518261B2/en
Publication of JPS63222007A publication Critical patent/JPS63222007A/en
Application granted granted Critical
Publication of JP2518261B2 publication Critical patent/JP2518261B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は黒色顔料として好適な黒色粉末の製造方法に
関する。
TECHNICAL FIELD The present invention relates to a method for producing a black powder suitable as a black pigment.

[従来技術と問題点] 従来、黒色粉末は種々の原料からなるものが知られて
いるが、なかでも酸化チタン系の黒色粉末は樹脂とのな
じみが良く、また分散性、耐熱性、安全性に優れる利点
を有しており、需要が増加している。
[Prior Art and Problems] Conventionally, it has been known that black powder is made of various raw materials. Among them, titanium oxide-based black powder is well compatible with resins, and also has dispersibility, heat resistance, and safety. It has excellent advantages and is in high demand.

従来、酸窒化チタン系黒色粉末を製造する方法とし
て、二酸化チタン粉末と金属チタン粉末との混合物を真
空中で加熱還元する方法や、二酸化チタン粉末を水素ガ
スにより加熱還元する方法が試みられて来たが、何れの
方法によっても加熱時に原料粒子が焼結して生成粒子が
粗大、不均一になる問題を有しており、得られた黒色粉
末は黒色顔料としては不適当である。そこで、上記従来
方法に代え、アンモニアガスを用いて二酸化チタン粉末
を還元する方法が開発されている。一般に二酸化チタン
粉末をアンモニアガスで還元するには、(a)ボートに
装入した二酸化チタン粉末をアンモニア流と接触させる
方法、(b)二酸化チタンを回転炉内でアンモニア流と
接触させる方法、などの方法が実施されていたが、これ
らの方法は何れもアンモニアガスが粉末層の内部に浸入
し難く反応効率が極めて低い問題があり、上記方法に代
えて流動層を利用する方法が開発されている(例えば特
公昭61−25414号)。該流動層を利用する方法の概略
は、縦型円筒状の反応容器の底部を円錐状に下方に向っ
て傾斜させ、該底部に撹拌手段を設ける一方、該底部中
央にアンモニアガスの導入口を設け、更に該底部付近を
加熱する手段を設け、アンモニアガスの噴出により円錐
状底部に装入した二酸化チタン粉末を流動状態に保持
し、かつ撹拌手段により撹拌しながら加熱還元する。該
方法は従来の方法に比べ反応効率が優れる利点を有して
おり実用性が高い。但し、比表面積15m2/g以下の微細な
二酸化チタン粉末ないし水酸化チタン粉末を原料とする
場合には導入されるアンモニアガスにより反応系外に持
ち去られる量が増加し、回収率が低下し、また反応の制
御も難しい問題がある。
Conventionally, as a method of producing a titanium oxynitride-based black powder, a method of heating and reducing a mixture of titanium dioxide powder and metallic titanium powder in a vacuum, and a method of heating and reducing titanium dioxide powder with hydrogen gas have been tried. However, any of the methods has a problem that the raw material particles are sintered during heating and the produced particles become coarse and non-uniform, and the obtained black powder is unsuitable as a black pigment. Therefore, instead of the above-mentioned conventional method, a method of reducing the titanium dioxide powder using ammonia gas has been developed. Generally, in order to reduce titanium dioxide powder with ammonia gas, (a) a method of contacting titanium dioxide powder charged in a boat with an ammonia stream, (b) a method of contacting titanium dioxide powder with an ammonia stream in a rotary furnace, etc. However, all of these methods have a problem that ammonia gas is difficult to penetrate into the inside of the powder layer and the reaction efficiency is extremely low, and a method using a fluidized bed has been developed instead of the above method. (For example, Japanese Patent Publication No. 61-25414). An outline of the method of using the fluidized bed is as follows.The bottom of a vertical cylindrical reaction vessel is conically inclined downward, and a stirring means is provided at the bottom, while an ammonia gas inlet is provided at the center of the bottom. Further, a means for heating the bottom portion is provided, and the titanium dioxide powder charged into the conical bottom portion by ejecting ammonia gas is kept in a fluid state and is heated and reduced while being stirred by the stirring means. The method has the advantage that the reaction efficiency is superior to the conventional methods, and is highly practical. However, when a fine titanium dioxide powder or titanium hydroxide powder having a specific surface area of 15 m 2 / g or less is used as a raw material, the amount carried away from the reaction system by the ammonia gas introduced increases, and the recovery rate decreases, There is also a problem that control of the reaction is difficult.

[問題解決に係る知見] 一般に、上記反応系においては反応炉に装入される原
料粉末が大き過ぎると未反応部分を生じ、また微細粉末
が得られない等の理由から出来るだけ微細な粉末を用い
ている。ところが、本発明者等は、加熱時の焼結による
粗粒化を防止するには、むしろ予め原料粉を或程度果粒
化したほうが好ましいことを見出し、また果粒化すれば
反応効率や反応制御の点からも有利であることを見出し
た。
[Knowledge for Solving Problems] Generally, in the above reaction system, if the raw material powder charged into the reaction furnace is too large, unreacted portions are generated, and fine powder cannot be obtained. I am using. However, the present inventors have found that in order to prevent coarsening due to sintering during heating, it is rather preferable that the raw material powder be granulated to some extent in advance. It was also found to be advantageous in terms of control.

本発明者等は、上記知見に基き二酸化チタン粉末のア
ンモニアガスによる上記加熱還元反応において、原料粉
末の最適な粒度範囲を追求し、粒度を0.1〜5mm以下の果
粒状に調整することにより反応効率および原料の回収率
が格段に向上しかつ反応装置が簡略化されることを確認
した。
The present inventors, based on the above findings, in the heating reduction reaction of the titanium dioxide powder with ammonia gas, pursuing the optimum particle size range of the raw material powder, the reaction efficiency by adjusting the particle size to a grain size of 0.1 ~ 5 mm or less. It was also confirmed that the recovery rate of raw materials was remarkably improved and the reactor was simplified.

[発明の構成] 本発明によれば、縦型円筒状の反応容器内部に二酸化
チタンないし水酸化チタンからなる原料を装入し、該反
応容器底部から気体分散板を通じてアンモニアガスを吹
上げ同時に撹拌しながら該原料を流動状態に保持して加
熱還元する方法において、上記二酸化チタンないし水酸
化チタンの粉末を粒度0.1〜5mm以下の果粒状に調整した
後に反応容器に装入し炉内の最高温度を700〜950℃に維
持して還元し、得られた黒色の酸窒化チタン果粒物を解
砕することを特徴とする黒色粉末の製造方法が提供され
る。
[Structure of the Invention] According to the present invention, a raw material made of titanium dioxide or titanium hydroxide is charged into a vertical cylindrical reaction vessel, and ammonia gas is blown from the bottom of the reaction vessel through a gas dispersion plate and simultaneously stirred. While in the method of heating and reducing the raw material while keeping it in a fluidized state, the titanium dioxide or titanium hydroxide powder is adjusted to a particle size of 0.1 to 5 mm or less and then charged into a reaction vessel to obtain the maximum temperature in the furnace. Is maintained at 700 to 950 ° C. for reduction, and the obtained black titanium oxynitride granules are crushed to provide a method for producing a black powder.

また、その好適な実施態様として、比表面積4m2/g以
上の二酸化チタン粉末ないし水酸化チタン粉末に、水ま
たは水溶性有機結合剤を含む水を添加混練して造粒し、
上記粒度範囲の果粒状粒子にする製造方法が提供され
る。
Further, as a preferred embodiment thereof, titanium dioxide powder or titanium hydroxide powder having a specific surface area of 4 m 2 / g or more, water or water containing a water-soluble organic binder is kneaded and granulated,
There is provided a method for producing fruit-shaped particles in the above particle size range.

本発明においては、原料の二酸化チタンないし水酸化
チタンの粉末を粒度0.1〜5mm以下の果粒状に調整したも
のを用いる。この場合、原料の二酸化チタンまたは水酸
化チタンは比表面積4m2/g以上の粉末を用いるのが良
い。該原料粉末が4m2/g未満であると果粒状にした場合
に強度が小さく、加熱還元時に崩壊し粉化し易い。原料
粉末を果粒状にするには、該粉末に水または水溶性有機
結合剤を含む水を添加して混練し、造粒後、乾燥すれば
良い。二酸化チタン粉末に水を添加して混練し乾燥する
とケーキ状になり、これを解砕し篩分けして上記粒度に
調整しても良い。水溶性有機結合剤としてはポリビニー
ルアルコールやポリビニルメチルエーテル等の樹脂組成
物を用いることができる。上記果粒の粒度が0.1mm未満
であると反応容器に装入してアンモニアガスに接触させ
た際、系外へキャリオーバーされる量が多くなり、収率
の低下を招く。また果粒が5mmを越えると果粒内部への
反応が進行し難く、未反応物が残留する虞がある。
In the present invention, a raw material powder of titanium dioxide or titanium hydroxide is used which has been adjusted to a grain size of 0.1 to 5 mm or less. In this case, the raw material titanium dioxide or titanium hydroxide is preferably a powder having a specific surface area of 4 m 2 / g or more. If the raw material powder is less than 4 m 2 / g, the strength is small when it is made into a granular shape, and it easily disintegrates and pulverizes during heating and reduction. To form the raw material powder into a granular shape, water or water containing a water-soluble organic binder may be added to the powder, kneaded, granulated, and dried. Water may be added to the titanium dioxide powder, kneaded and dried to form a cake, which may be crushed, sieved and adjusted to the above particle size. As the water-soluble organic binder, a resin composition such as polyvinyl alcohol or polyvinyl methyl ether can be used. When the grain size of the fruit grains is less than 0.1 mm, the amount of carryover to the outside of the system increases when charged into a reaction vessel and brought into contact with ammonia gas, resulting in a decrease in yield. If the grain size exceeds 5 mm, the reaction inside the grain is difficult to proceed, and unreacted substances may remain.

次に、本発明方法の実施に最適な装置構成例を図に示
す。
Next, an example of an apparatus configuration most suitable for carrying out the method of the present invention is shown in the drawing.

図示するように該装置は、縦型円筒状の反応容器10を
有し、該反応容器10は加熱炉11に設置されている。反応
容器底部にはアンモニアガスの導入室12が形成されてお
り、該導入室12にアンモニアガスの導入路13が接続して
いる。該導入路13には予熱手段14が付設されている。ま
た該導入室12と上記反応容器10の内部はガス分散板15に
よって仕切られており、アンモニアガスは該分散板15を
通じて反応容器内部に吹上げられる。該導入室12の側方
には生成物を回収するための受器16が設けられており、
該受器16には冷却手段17が設けられている。一方、反応
容器10の頂部には原料の装入口18および排気口19が設け
られており、排気口19には邪魔板20を具えた排気路21が
接続している。また反応容器10の内部には分散板15の上
方近傍に回転羽22を具えた撹拌機23が設けられいる。
As shown, the apparatus has a vertical cylindrical reaction vessel 10, and the reaction vessel 10 is installed in a heating furnace 11. An ammonia gas introducing chamber 12 is formed at the bottom of the reaction vessel, and an ammonia gas introducing passage 13 is connected to the introducing chamber 12. A preheating means 14 is attached to the introduction path 13. The introduction chamber 12 and the interior of the reaction container 10 are partitioned by a gas dispersion plate 15, and ammonia gas is blown up into the reaction container through the dispersion plate 15. A receiver 16 for collecting the product is provided on the side of the introduction chamber 12.
The receiver 16 is provided with cooling means 17. On the other hand, a raw material inlet 18 and an exhaust port 19 are provided at the top of the reaction vessel 10, and an exhaust passage 21 having a baffle plate 20 is connected to the exhaust port 19. Further, inside the reaction vessel 10, a stirrer 23 having rotary vanes 22 is provided near the upper part of the dispersion plate 15.

果粒上に粒度調整された原料は装入口18から反応容器
内部に装入され、一方、アンモニアガスは予熱手段14を
経て導入室12に供給され、分散板15を通じて反応容器内
部に均一に分散され果粒状の原料を吹上げる。反応容器
内部に導入されたアンモニアガスによって果粒状の原料
粉末は流動状態に保持され、更に撹拌機23により均一に
撹拌される。このとき原料は果粒状であるのでアンモニ
アガスによってキャリーオーバーされ難く、反応効率お
よび回収率が向上する。更に反応の制御が容易になる。
一般的には原料粉体が微細である程、反応速度が向上す
るが、微細に過ぎる場合には導入されるガスによりキャ
リーオーバーを生じる虞れがあるためガス流量を制限し
なければならず、反応速度には限界がある。本発明にお
いては原料粉末を果粒状に調整するので原料粉末のキャ
リーオーバーを生じ難く、比較的多量のアンモニアガス
を導入出来るので反応速度も向上する。尚、撹拌は2〜
3回転/分以上であればよく、断続的に行なってもよ
い。
The raw material whose grain size is adjusted on the berries is charged into the reaction vessel through the charging port 18, while the ammonia gas is supplied to the introduction chamber 12 through the preheating means 14 and uniformly dispersed in the reaction vessel through the dispersion plate 15. And the granular material is blown up. The fruit-shaped raw material powder is kept in a fluid state by the ammonia gas introduced into the reaction vessel, and is further uniformly stirred by the stirrer 23. At this time, since the raw material is granular, it is difficult to carry over by the ammonia gas, and the reaction efficiency and the recovery rate are improved. Further, the reaction can be easily controlled.
Generally, the finer the raw material powder, the higher the reaction rate, but if it is too fine, the gas introduced may cause carryover, so the gas flow rate must be limited. There is a limit to the reaction rate. In the present invention, since the raw material powder is adjusted into a granular shape, carryover of the raw material powder is unlikely to occur, and a relatively large amount of ammonia gas can be introduced, so that the reaction rate is also improved. In addition, stirring is 2
It may be 3 revolutions / minute or more, and may be intermittently performed.

反応容器10は加熱炉11により、流動層内部の最高温度
が700〜950℃、好ましくは750〜900℃に加熱される。上
記温度が700℃未満であると反応が進行し難く原料が黒
色化せず、また950℃を越えると、果粒物が焼結し、し
かも茶褐色となりやすい。尚、反応容器内部の温度は撹
拌機23の回転軸を中心とし内部に温度計を設置すること
により測温できる。加熱温度はアンモニアガスの流量、
原料の装入量等により上記範囲内で適宜調整され、これ
は上記加熱炉11および予熱手段14により容易に制御でき
る。アンモニアガスの予熱は高温でアンモニアガスが分
解を起さずに反応効率を低下させない温度であればよ
く、具体的には600℃以下であればよい。
The reaction vessel 10 is heated by the heating furnace 11 to a maximum temperature inside the fluidized bed of 700 to 950 ° C, preferably 750 to 900 ° C. If the temperature is lower than 700 ° C, the reaction is difficult to proceed and the raw material is not blackened. If the temperature is higher than 950 ° C, the fruit granules are likely to sinter and become dark brown. The temperature inside the reaction vessel can be measured by installing a thermometer inside the stirrer 23 around the rotation axis. The heating temperature is the flow rate of ammonia gas,
The amount is appropriately adjusted within the above range depending on the charging amount of the raw material and the like, and this can be easily controlled by the heating furnace 11 and the preheating means 14. The preheating of the ammonia gas may be at a high temperature at a temperature at which the ammonia gas does not decompose and the reaction efficiency is not lowered, and specifically, it may be 600 ° C. or less.

尚、上記反応温度に耐えるよう装置は高温部が窒化さ
れ難い材料を用いるのが好ましい。
In addition, it is preferable to use a material that is resistant to nitriding in the high temperature portion of the device so as to withstand the above reaction temperature.

還元反応終了後は撹拌機23を回転させながら生成粒子
を冷却した受器16に貯留し、再び、原料を装入して還元
反応を実施する。
After the reduction reaction is completed, while rotating the stirrer 23, the produced particles are stored in the cooled receiver 16, and the raw materials are charged again to carry out the reduction reaction.

上記加熱還元反応により果粒状の酸窒化チタン粒子が
得られるが、本発明の上記加熱還元反応は比較的低温で
あるので該粒子は内部が焼結しておらず、容易に元の微
粉末に解砕することが出来る。この点、二酸化チタン粉
末を水素還元する方法においては加熱温度が950℃以上
と高く、原料粉末が焼結するので、本発明のような粒度
調整を行なうことが出来ない。
Fruit-shaped titanium oxynitride particles can be obtained by the heating reduction reaction, but since the heating reduction reaction of the present invention is at a relatively low temperature, the particles are not sintered inside and easily converted into the original fine powder. Can be crushed. In this respect, in the method of reducing the titanium dioxide powder with hydrogen, the heating temperature is as high as 950 ° C. or more and the raw material powder is sintered, so that the particle size adjustment as in the present invention cannot be performed.

また果粒状の酸窒化チタン粒子は粒子内部まで均一に
還元されており、元の原料粉末の粒度に解砕しても均一
な酸窒化チタン粉末を得ることが出来る。解砕は乾式法
によるハンマーミル、ジェットミルまたは湿式法による
ボールミル、サンドミルによる方法を適用できる。
Further, the fruit-shaped titanium oxynitride particles are uniformly reduced to the inside of the particles, and a uniform titanium oxynitride powder can be obtained even if the particle size of the original raw material powder is crushed. For the crushing, a hammer method by a dry method, a jet mill, a ball mill by a wet method, or a sand mill method can be applied.

[発明の効果] 本発明の製造方法によれば、微細な二酸化チタン粉末
や水酸化チタン粉末を用いる場合にも高い回収率で酸窒
化チタンの黒色粉末を製造することが出来る。
[Effects of the Invention] According to the production method of the present invention, black powder of titanium oxynitride can be produced with a high recovery rate even when using fine titanium dioxide powder or titanium hydroxide powder.

本発明の製造方法は原料のキャリーオーバーによる損
失が少なく、比較的多量のアンモニアガスを導入できる
ので反応速度も向上する。因に、従来はアンモニアガス
の流量が炉内線速度3cm/sec以上であると原料の再装入
が困難となったが、本発明においてはアンモニアガスの
流量を炉内線速度6〜8cm/secに高めることができる。
このように本発明の方法は原料の損失が少なく、反応の
制御が容易であり、また反応効率が良いので工業的規模
での実施に適する。
In the production method of the present invention, the loss due to carry-over of raw materials is small, and a relatively large amount of ammonia gas can be introduced, so that the reaction rate is also improved. Incidentally, conventionally, it was difficult to recharge the raw material when the flow rate of the ammonia gas was 3 cm / sec or more in the furnace linear velocity, but in the present invention, the flow rate of the ammonia gas is set to 6 to 8 cm / sec in the furnace linear velocity. Can be increased.
As described above, the method of the present invention is suitable for implementation on an industrial scale because the loss of raw materials is small, the reaction can be easily controlled, and the reaction efficiency is good.

また本発明の方法によれば、流動層を利用する従来の
方法では用いられなかったオルトチタン酸やメタチタン
酸等の水酸化チタンをも原料として用いることがでる。
これらは二酸化チタン粉末より安価であることから製造
コストの低減を図るうえで有利である。またこれら水酸
化チタンは、通常用いられる二酸化チタン粉末より微細
であり、従来より微細な酸窒化チタンの製造が可能であ
る。
Further, according to the method of the present invention, titanium hydroxide such as orthotitanic acid or metatitanic acid, which has not been used in the conventional method utilizing a fluidized bed, can be used as a raw material.
Since these are cheaper than titanium dioxide powder, they are advantageous in reducing the manufacturing cost. Further, these titanium hydroxides are finer than the titanium dioxide powders that are usually used, and it is possible to manufacture finer titanium oxynitride than before.

更に、本発明の実施装置は、果粒状の原料を用いるた
め、従来の粉末原料を用いる装置に比べ、アンモニアガ
スの供給系および排気系を大幅に簡略化できる。具体的
には、従来はアンモニアガスの導入管の冷却手段を付設
して熱分解を抑えているが、このような冷却手段が不要
となる。また炉外へキャリオーバーした粉末を回収する
ための機構が不要となる。また分散板が加熱炉の外部に
設置されるので保守等が容易である。
Further, since the apparatus for carrying out the present invention uses the granular material, the supply system and the exhaust system of the ammonia gas can be greatly simplified as compared with the conventional apparatus using the powdered material. Specifically, conventionally, a cooling means for the introduction pipe of the ammonia gas is attached to suppress the thermal decomposition, but such a cooling means becomes unnecessary. Further, a mechanism for collecting the powder carried over to the outside of the furnace becomes unnecessary. Further, since the dispersion plate is installed outside the heating furnace, maintenance and the like are easy.

[実施例1] 上記反応装置(容器内径30cm、高さ80cm)を用い、比
表面積40m2/gの二酸化チタン粉末をPVA0.3%水溶液で混
練し、乾燥させて粒径1mm以上4mm以下の果粒としたもの
を15Kg装入し、炉内線速度6cm/secの割合でアンモニア
ガスを導入し、15rpmで回転させながら流動層の最高温
度を750℃に制御して8時間加熱還元した。反応後、12.
3Kgの黒色果粒物を回収した。該果粒物を水を用いボー
ルミルで湿式解砕後、別乾燥したものをハンマーミル
により粉砕し、比表面積28m2/g、L値10の青黒色粉末を
得た。
[Example 1] Using the above reaction apparatus (vessel inner diameter 30 cm, height 80 cm), titanium dioxide powder having a specific surface area of 40 m 2 / g was kneaded with an aqueous solution of PVA 0.3% and dried to obtain a particle diameter of 1 mm or more and 4 mm or less. 15 kg of the granules were charged, ammonia gas was introduced at a rate of 6 cm / sec in the furnace, and the maximum temperature of the fluidized bed was controlled at 750 ° C. while rotating at 15 rpm to perform heat reduction for 8 hours. After the reaction, 12.
3 Kg of black granules were recovered. The fruit granules were wet-crushed with water using a ball mill and dried separately, and then ground with a hammer mill to obtain a bluish-black powder having a specific surface area of 28 m 2 / g and an L value of 10.

[実施例2、3] 実施例1の二酸化チタン果粒を用い、同一の反応装置
により、還元条件を変えて黒色粉末を製造した。尚、還
元後の解砕工程も同一である。還元条件と生成物の特性
を第1表に示す。
[Examples 2 and 3] Using the titanium dioxide granules of Example 1, different reducing conditions were used in the same reaction apparatus to produce black powder. The crushing process after reduction is also the same. The reducing conditions and the product properties are shown in Table 1.

[実施例4] 水酸化チタンスラリーを水洗し、別乾燥させ、2mm以
上4mm以下の果粒としたものを15kg装入し、実施例1と
同様の条件で還元し、生成物を水を用いてサンドミルに
より湿式解砕後、別乾燥し、更にハンマーミルおよび
ジットミルにより解砕して、比表面積32m2/g、L値9の
紫黒色の粉末を得た。
[Example 4] A titanium hydroxide slurry was washed with water, separately dried, and 15 kg of 2 mm or more and 4 mm or less fruit grains were charged and reduced under the same conditions as in Example 1, and the product was used with water. After wet crushing with a sand mill, it was separately dried and further crushed with a hammer mill and a git mill to obtain a purple black powder having a specific surface area of 32 m 2 / g and an L value of 9.

[比較例1] [実施励] 実施例1の二酸化チタン果粒を用い、炉内温度を500
℃に保持し、その他は実施例1と同一条件で還元反応を
行なった。得られた粉末は白みがかった青灰色となり黒
色粉末を得ることはできなかった。
[Comparative Example 1] [Execution encouragement] Using the titanium dioxide granules of Example 1, the furnace temperature was set to 500.
The reduction reaction was carried out under the same conditions as in Example 1 except that the temperature was maintained at 0 ° C. The obtained powder was whitish blue gray and black powder could not be obtained.

[比較例2] 実施例1の二酸化チタン粉末を果粒化せずに用い、従
来の装置(特開昭60−51616)により第1表に示す条件
で還元反応を実施した。得られた粉末の特性は第1表に
示すように略本発明の粉末と共通するが収量は1/2以下
であり、大幅に低下している。これは、アンモニアガス
を炉内線速度6cm/secで導入しているためキャリオーバ
ーされた原料粉を再装入することが困難であることに起
因する。
[Comparative Example 2] Using the titanium dioxide powder of Example 1 without granulation, the reduction reaction was carried out under the conditions shown in Table 1 by a conventional apparatus (JP-A-60-51616). As shown in Table 1, the characteristics of the obtained powder are almost the same as those of the powder of the present invention, but the yield is 1/2 or less, which is a significant decrease. This is because ammonia gas is introduced at a furnace linear velocity of 6 cm / sec, and it is difficult to reload the carry-over raw material powder.

【図面の簡単な説明】[Brief description of drawings]

図は本発明の方法を実施するための好適な装置構成の一
例を示す概略図である。 図面中、10……反応容器、11……加熱炉、 12……導入室、13……アンモニアガス導入路 15……分散板、16……受器、 23……撹拌機。
The figure is a schematic view showing an example of a suitable apparatus configuration for carrying out the method of the present invention. In the drawing, 10 ... reaction container, 11 ... heating furnace, 12 ... introduction chamber, 13 ... ammonia gas introduction path 15 ... dispersion plate, 16 ... receiver, 23 ... stirrer.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】縦型円筒状の反応容器内部に二酸化チタン
ないし水酸化チタンからなる原料を装入し、該反応容器
底部から気体分散板を通じてアンモニアガスを吹上げ同
時に撹拌しながら該原料を流動状態に保持して加熱還元
する方法において、上記二酸化チタンないし水酸化チタ
ンの粉末を粒度0.1〜5mm以下の果粒状に調整した後、反
応容器に装入し、炉内の最高温度を700〜950℃に維持し
て還元し、得られた黒色の酸窒化チタン果粒物を解砕す
ることを特徴とする黒色粉末の製造方法。
1. A vertical cylindrical reaction vessel is charged with a raw material made of titanium dioxide or titanium hydroxide, and ammonia gas is blown from the bottom of the reaction vessel through a gas dispersion plate while stirring to flow the raw material. In the method of heating and reducing while maintaining the state, after adjusting the powder of titanium dioxide or titanium hydroxide to a grain size of 0.1 to 5 mm or less, charged into a reaction vessel, the maximum temperature in the furnace is 700 to 950. A method for producing a black powder, which is characterized in that the black titanium oxynitride granules thus obtained are reduced by maintaining the temperature at ℃ and reduced.
【請求項2】比表面積4m2/g以上の二酸化チタン粉末な
いし水酸化チタン粉末に、水または水溶性有機結合剤を
含む水を添加混練して造粒し、上記粒度範囲の果粒状粒
子にすることを特徴とする特許請求の範囲第1項の方
法。
2. Titanium dioxide powder or titanium hydroxide powder having a specific surface area of 4 m 2 / g or more is added and kneaded with water or water containing a water-soluble organic binder to form granules. The method according to claim 1, characterized in that
JP62054202A 1987-03-11 1987-03-11 Method for producing black powder Expired - Lifetime JP2518261B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62054202A JP2518261B2 (en) 1987-03-11 1987-03-11 Method for producing black powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62054202A JP2518261B2 (en) 1987-03-11 1987-03-11 Method for producing black powder

Publications (2)

Publication Number Publication Date
JPS63222007A JPS63222007A (en) 1988-09-14
JP2518261B2 true JP2518261B2 (en) 1996-07-24

Family

ID=12963961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62054202A Expired - Lifetime JP2518261B2 (en) 1987-03-11 1987-03-11 Method for producing black powder

Country Status (1)

Country Link
JP (1) JP2518261B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8476351B2 (en) 2003-10-15 2013-07-02 Toray Industries, Inc. Black composition, black coating composition, resin black matrix, color filter for liquid crystal display and liquid crystal display
GB2414729A (en) * 2004-06-01 2005-12-07 Atraverda Ltd Method of producing sub-oxides with a substantially moisture free gas
CN107233857B (en) * 2017-07-27 2019-02-05 青岛信泰科技有限公司 It is a kind of to realize the reaction kettle being sufficiently stirred

Also Published As

Publication number Publication date
JPS63222007A (en) 1988-09-14

Similar Documents

Publication Publication Date Title
US4804525A (en) Producing boron carbide
JP2874925B2 (en) Apparatus and method for producing uniform, fine boron-containing ceramic powder
JP2638890B2 (en) Method for producing easily crushable alumina
CN102649161B (en) Nickel powder with large furnace safety supervision system (FSSS) particle size and preparation method thereof
US5070049A (en) Starting composition for the production of silicon carbide and method of producing the same
KR20070013213A (en) FINE alpha;-ALUMINA PARTICLE
JP2000503294A (en) Spherical ceramic molded body, its production method and use
JP2617140B2 (en) Ultrafine WC powder and method for producing the same
JP2007055888A (en) FINE alpha-ALUMINA PARTICLE
CN111924889A (en) Preparation method of cobaltosic oxide for sintering-free agglomerated cobalt powder
JP2518261B2 (en) Method for producing black powder
JP3413625B2 (en) Method for producing titanium carbonitride powder
JPH10194711A (en) Highly filling boron nitride powder and its production
JP2699770B2 (en) Highly-fillable silicon nitride powder and method for producing the same
JPS6362449B2 (en)
US5538705A (en) Carbonitriding of alumina to produce aluminum nitride
US5382554A (en) High-packing silicon nitride powder and method for making
JPH0118005B2 (en)
JP2634451B2 (en) Method and apparatus for producing fine β-type silicon carbide powder
Yildiz A Novel Synthesis Process of ZnO Nano Powders in Granule Form
JPH11171647A (en) Silicon carbide powder and its production
CN107697949A (en) A kind of sulfuric acid process falls kiln product and is used for the production process of titanium pigment that chloridising removes scar sand
JPH0712927B2 (en) Method for producing easily sinterable alumina powder
JPH05279002A (en) Production of al nitride powder
JP3006843B2 (en) Method for producing metal complex containing silicon carbide powder

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term