JPH04208817A - Residual fuel amount detector for vehicle - Google Patents

Residual fuel amount detector for vehicle

Info

Publication number
JPH04208817A
JPH04208817A JP40044890A JP40044890A JPH04208817A JP H04208817 A JPH04208817 A JP H04208817A JP 40044890 A JP40044890 A JP 40044890A JP 40044890 A JP40044890 A JP 40044890A JP H04208817 A JPH04208817 A JP H04208817A
Authority
JP
Japan
Prior art keywords
fuel
reference potential
temperature
liquid level
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP40044890A
Other languages
Japanese (ja)
Inventor
Hidekazu Uryu
英一 瓜生
Koji Nishida
孝治 西田
Takuji Tokuyama
徳山 拓司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP40044890A priority Critical patent/JPH04208817A/en
Publication of JPH04208817A publication Critical patent/JPH04208817A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

PURPOSE:To enhance reliability in the detection of the residual amount of fuel by a method wherein a large number of resistors each having a high temp. coefficient connected in series/parallel are received in a fuel tank to be subjected to self-heating and the change of resistance values due to the temp. difference generated by the up and down movement of a liquid level is detected. CONSTITUTION:A liquid level detector 8 is constituted by parallelly connecting resistor groups 3 each formed by connecting a plurality of resistance temp. sensors 1, 2 having high and low resistance temp. coefficients in series and received in a fuel tank. The reference potential generated by a reference potential generating part 6 is set so as to be higher than the potential of the resistors in a liquid but lower than that of the exposed resistors and compared with each of the potentials of the resistor groups by a comparator 7. The value of the current flowing to a signal wire 9 corresponding to the output signal of the comparator is detected by a current detection part 12 and the number of the resistors in the liquid is confirmed on the basis of the current value to detect a liquid level. By this constitution, a simple and highly reliable detector can be obtained.

Description

【発明の詳細な説明】[Detailed description of the invention]

[00011 [00011

【産業上の利用分野]本発明は自動車等の燃料タンクの
燃料残量を検出する自動車用燃料残量検出器に関するも
のである。 [0002] 【従来の技術】従来、この種の燃料残量計測法は液面フ
ロートの末端に取り付けられた接点摺動式のポテンショ
メーターを用いたものが一般的である。 [0003]
[Field of Industrial Application] The present invention relates to a fuel remaining amount detector for an automobile, which detects the remaining amount of fuel in a fuel tank of an automobile or the like. [0002] Conventionally, this type of fuel remaining amount measuring method has generally used a sliding contact potentiometer attached to the end of a liquid level float. [0003]

【発明が解決しようとする課題】このようなポテンショ
メーターを利用する従来の構成では、接点が燃料液中、
または蒸気中にさらされるため、燃料に含まれる硫化物
、その他の添加物によって、接点不良を起こし、正しい
摺動抵抗値を長期にわたり維持するのが困難であった。 [0004]上上記点を解決するため、図4に示すよう
に、支持基板14上に通電発熱される複数個の抵抗温度
係数の大きい自己発熱用の感温抵抗体15を多段にわた
り分離して配置し、かつ抵抗温度係数の小さい抵抗体1
6を各感温抵抗体15に直列に接続し、その直列に接続
された抵抗体群を並列に接続することにより構成された
感熱式燃料残量検出器が考案されている。 [0005]そして回路的には図5に示すように、通電
発熱される感温抵抗体15と抵抗温度係数の小さい抵抗
体を支持基板14上に燃料液面と平行または液面とある
一定の角度をもって多段にわたり分離して配置した感温
素子を有する液位検出部と、この液位検出部で検出した
信号を回路処理し出力する液位検出回路とからなる。燃
料液面が該当感温抵抗体15に達したならば、即座に通
電発熱された感温抵抗体15が冷却され、抵抗値変化が
その液面部位で発生し、これによる差動出力電圧の変動
を液面検出回路のコンパレータ17で検出し、このコン
パレータ出力をニジコーダーICl3で信号処理するこ
とにより、燃料液面を瞬時に検出するものである。 [0006]Lかしながら、上記エンコーダICl3を
用いる液面検出回路は、実用上あまり好ましいものでは
ない。なぜならば液位検出部19は燃料中に配置し、液
面検出回路20は燃料に直接接触しないように燃料タン
ク上部に配置しなければならないため、両者を接続する
には、複数本(この例では13本)の接続用リード線が
必要になる。このような配線はコスト的に実現困難であ
り、またリード線が長くなるとノイズの影響を受は易い
ため、液面検出回路部も燃料タンク内に設置するか或は
液位検出部と同一基板上に設けるしかない。 [0007]そこで、エンコーダICl3を燃料中に浸
漬した形を考えた場合、複数(この例では12個)のコ
ンパレータ出力を1つの(この例では1個)のエンコー
ダICl3で信号処理する構成であるため、万が−この
エンコーダICl3が故障したならば、同時に複数のコ
ンパレータ出力の信号処理ができなくなり、燃料液面を
全く検出できなくなる危険性がある。自動車の燃料残量
検出に用いる場合、特に検出不能となることは許されな
い。 [0008]またエンコーダーICl3から出力される
信号は、バイナリ−コード(以後BCD出力と言う)で
あるため、感熱式燃料残量検出器の出力信号線は通常4
〜6本になってしまうが、燃料タンクから自動車車室内
の燃料残量表示器(残量計)まで4〜6本の信号線を引
き出すのはコスト的に困難である。従って、出力信号線
の配線数を1本(GND線は除く)にするために、BC
D出力に変換された信号をわざわざD/Aコンバータ2
1を用いて、再度アナログ信号に再変換する必要がある
。しかし、このD/Aコンバータ17の設置もコスト的
に実現が難しい。 [0009]本発明は以上の問題点に鑑みてなされたも
ので、燃料残量検出の信頼性を確保し、コスト的に安価
な感熱式燃料残量検出器を提供することを目的とする。 [00101
[Problems to be Solved by the Invention] In the conventional configuration using such a potentiometer, the contact point is in the fuel liquid,
Otherwise, due to exposure to steam, sulfides and other additives contained in the fuel may cause contact failure, making it difficult to maintain a correct sliding resistance value over a long period of time. [0004] In order to solve the above-mentioned problem, as shown in FIG. 4, a plurality of self-heating temperature-sensitive resistors 15 having a large resistance temperature coefficient are separated in multiple stages on a support substrate 14 to generate heat by energization. Resistor 1 with a small resistance temperature coefficient
6 is connected in series to each temperature-sensitive resistor 15, and a group of resistors connected in series are connected in parallel to form a thermal fuel remaining amount detector. [0005] In terms of the circuit, as shown in FIG. 5, a temperature-sensitive resistor 15 that generates heat when energized and a resistor with a small temperature coefficient of resistance are mounted on a support substrate 14 parallel to the fuel liquid level or at a certain level with the liquid level. It consists of a liquid level detecting section having temperature sensitive elements arranged in multiple stages separated by an angle, and a liquid level detecting circuit that circuit-processes and outputs the signal detected by this liquid level detecting section. When the fuel liquid level reaches the relevant temperature-sensitive resistor 15, the temperature-sensitive resistor 15, which has been energized and generates heat, is immediately cooled down, and a resistance value change occurs at that liquid level, resulting in a change in the differential output voltage. Fluctuations are detected by the comparator 17 of the liquid level detection circuit, and the output of this comparator is processed as a signal by the Nijicorder ICl3, thereby instantaneously detecting the fuel level. [0006] However, the liquid level detection circuit using the encoder ICl3 is not very preferable in practice. This is because the liquid level detection unit 19 must be placed in the fuel, and the liquid level detection circuit 20 must be placed at the top of the fuel tank so as not to come into direct contact with the fuel. In this case, 13 connection lead wires are required. This type of wiring is difficult to implement due to cost considerations, and the longer the lead wires, the more susceptible to the effects of noise. Therefore, the liquid level detection circuit must be installed inside the fuel tank or installed on the same board as the liquid level detection circuit. It has no choice but to be placed on top. [0007] Therefore, when considering a configuration in which the encoder ICl3 is immersed in fuel, the configuration is such that multiple (12 in this example) comparator outputs are signal-processed by one (1 in this example) encoder ICl3. Therefore, if this encoder ICl3 were to fail, it would become impossible to simultaneously process signals from a plurality of comparator outputs, and there is a risk that the fuel level would not be detected at all. When used to detect the remaining amount of fuel in an automobile, failure to detect it is particularly unacceptable. [0008] Also, since the signal output from the encoder ICl3 is a binary code (hereinafter referred to as BCD output), the output signal line of the thermal fuel level detector is normally 4.
However, it is difficult in terms of cost to draw out 4 to 6 signal lines from the fuel tank to the remaining fuel level indicator (residual level gauge) inside the vehicle cabin. Therefore, in order to reduce the number of output signal lines to one (excluding the GND line), the BC
The signal converted to D output is sent to D/A converter 2.
1, it is necessary to reconvert it into an analog signal again. However, installation of this D/A converter 17 is also difficult to realize due to cost considerations. [0009] The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a thermal fuel remaining amount detector that ensures reliability of remaining fuel amount detection and is inexpensive in terms of cost. [00101

【課題を解決するための手段]上記目的を達成するため
に、本発明は、支持基板上に通電発熱゛される複数個の
抵抗温度係数の大きい自己発熱用の感温抵抗体を多段に
わたり分離して配置し、抵抗温度係数の小さい抵抗体を
各感温抵抗体に直列に接続して抵抗体群を構成し、これ
らの抵抗体群を並列に接続することにより構成された液
位検出部と、この検出部と並列に接続され温度補償され
た第一の基準電位を発生する第一の基準電位発生部と、
前記各感温抵抗体群の電位と前記第一の基準電位とを比
較してオン、オフの出力信号を出す各感温抵抗体に対応
した複数個の電圧比較器から構成され前記電圧比較器の
出力側はまとめて1つの信号線に接続した比較部と、前
記信号線に一定の第二の基準電位を与える第二の基準電
位発生部と、前記電圧比較器のオンオフの数に応じて前
記信号線から比較部へ流れ込む電流値を検出する電流検
出部と、この電流検出部からの出力を表示することで燃
料残量の表示を行う表示部とからなることを特徴とする
ものである。 [00111 【作用]本発明によれば、各電圧比較器は互いに独立し
ているので、燃料中に浸漬することで万一どれか一つの
電圧比較器が故障してもわずかな誤差を生じるだけで、
従来のようにエンコーダICが故障した場合のように大
幅に検出が狂う、或は検出不能になることはない。また
比較部からの出力信号もアナログ信号であり、信号線は
1本であり、またこの信号線と電流検出部、電流検出部
と表示部との間の信号線の数も1本であり、信号線の数
をかなり減らすことができる。よってノイズの影響を激
減することができる。従って自動車等の燃料残量を無接
点で信頼性良く、高精度に残量検出することができるの
である。 [0012] 【実施例】以下、本発明の一実施例を図面を用いて説明
する。 [0013]図1は本発明の一実施例による燃料残量検
出器の回路図である。液位検出部は、通電発熱される抵
抗温度係数の大きい感温抵抗素子1 (抵抗値100Ω
)に抵抗温度係数の小さいチップ抵抗器2(抵抗値60
Ω)が直列接続された抵抗体群3が並列に16個接続さ
れ構成されている。 [0014]さらに第一の基準電位発生部6は、抵抗体
群3の最下部に位置し、通常は燃料液中に浸漬される。 そして温度補償素子4とこれに直列に接続される温度係
数の小さいチップ抵抗器5とからなり、前記抵抗体群3
に並列接続されている。なお、温度補償素子4は、感温
抵抗素子1とほぼ同一の抵抗温度係数をもつものである
。また抵抗値は2にΩで、感温抵抗素子1の20倍ある
ため、自己発熱が無視でき、燃料タンク内の雰囲気温度
に応じた基準電位Voを発生するものである。 [0015]電圧比較器17は各抵抗体群3に対応して
16個設けられており、それぞれプラス(非反転入力)
側に各感温抵抗素子1の電位、マイナス(反転入力)側
に温度補償部の基準電位Vo (第1の基準電位)が入
力され、これらを電圧比較して液位検出を行うものであ
る。そしてこのように構成された液位検出部と比較部(
図中8で示す部分)は、燃料液中に浸漬される。 (0016]液面に対する感温抵抗群の出力特性は図2
(a)、  (b)に示すようになる。16個の抵抗体
群3のうち完全に燃料液体に浸漬されている部位は自己
発熱した熱が液体に奪われるので、電位は基準電位Vo
より大きくならない(図2(a)参照)。従って電圧比
較器7の出力はロー(ON)になる。一方、液面から完
全に露出した抵抗体群3は通電による自己発熱により、
電位が上昇し基準電位Voより大きくなり、電圧比較器
7の出力は、ハイ(OFF)になる(図2(b)参照)
。 [0017]このような原理でそれぞれの電圧比較器7
から出力信号が発生するが、各電圧比較器7の出力側に
は制限抵抗器7a(抵抗値はR1)が接続され、さらに
この制限抵抗器7aの他端は1つの信号線9にまとめて
接続された構成である。そしてこの信号線9には、オペ
アンプ10を介して第二の基準電位発生部11 (電位
V、)と同電位V、がかかる。ここで電圧比較器6の出
力がハイの場合は信号線9から制限抵抗器7へ流れ込む
電流が0になり、ローの場合は、 (V、−V、) /
R+に相当する電流が流れ込む。但しこの■oは電圧比
較器6のON抵抗によるドロップアウト電圧であり、通
常vo=0.2±041vとばらつくが、第2の基準電
位V、を大きくすることにより、誤差を小さくでき、実
用上無視できる。このように、出力がロー(ON)であ
る電圧比較器6の個数(燃料液体に浸かっている感温抵
抗素子1の個数)に応じて信号線9から比較部へ流れ込
む電流IOU丁が変化するものである。そして、これに
伴いオペアンプ10の出力側に接続したトランジスタの
コレクタと、前記信号線9との間に設けた抵抗に流れる
電流値を電流検出部12で検知する。そして電流検出部
12からの出力を表示部13へ導き表示する。 [0018]なお、本実施例では制限抵抗器7のR1の
値がすべて同一抵抗値であるため、燃料タンクが直方体
でなければ出力データは、図3(b)に示すようにリニ
ア出力となるが、R1の値を変化させ電圧比較器6に流
れる吸い込み電流値を変化させることで重み付けを行い
、異形の燃料タンクに対しても、出力特性(液位と残量
の関係ンをリニアライズすることが可能である(図3(
a)参照)。 [001,9]ところで本実施例ではレベル検出用の感
温抵抗素子1の抵抗値はすべて100Ωのものを用いた
が、特にすべて同一抵抗値である必要はない。また抵抗
体群3の感温抵抗素子1の数も特に16個に限定する意
味はなく必要に応じて何個の組合せで回路構成しても構
わない。 [00201また、燃料残量検出器全体を燃料中に浸漬
するものであるが、従来のフロート式燃料残量検出器に
おいて燃料タンク中で浸漬して用いていた実績のある酸
化ルテニウム等を主成分とする抵抗体に緻密なガラスオ
ーバーコートを形成した固定抵抗器を用いており、燃料
中の硫化物等から抵抗体が保護されるため、信頼性上全
く問題のないものとなっており、エンコーダICに比べ
格段に信頼性を高めることができる。さらに万一どれか
一つの電圧比較器6が故障してもオつずかな誤差を生じ
るだけで、エンコーダICl3が故障した場合のように
大幅に検出が狂う、或は検出不能になることはない。ま
た本発明による検出回路の出力信号はアナログ電流出力
であるため、出力信号線の数も1本でよい。よって、自
動車等の燃料残量を無接点で信頼性良く、高精度残量検
出することができるのである。 [00211 【発明の効果]以上のように本発明によれば、出力信号
は経済性に優れたアナログ電流出力であるため信号線は
1本で済み、ノイズに強く、かつこの出力信号は極めて
簡単にリニアライズできるという効果も同時に有する。 従って自動車等の燃料残量を無接点で信頼性良く、高精
度に残量検出することができる。
[Means for Solving the Problem] In order to achieve the above object, the present invention separates a plurality of self-heating temperature-sensitive resistors having a large resistance temperature coefficient on a support substrate in multiple stages. The liquid level detection section is constructed by connecting a resistor with a small resistance temperature coefficient in series to each temperature-sensitive resistor to form a resistor group, and connecting these resistor groups in parallel. and a first reference potential generation section that is connected in parallel with the detection section and generates a temperature-compensated first reference potential;
The voltage comparator is comprised of a plurality of voltage comparators corresponding to each temperature-sensitive resistor group and outputs an on/off output signal by comparing the potential of each temperature-sensitive resistor group with the first reference potential. The output side of the voltage comparator includes a comparator connected to one signal line, a second reference potential generator that applies a constant second reference potential to the signal line, and The present invention is characterized by comprising a current detection section that detects a current value flowing from the signal line to the comparison section, and a display section that displays the remaining amount of fuel by displaying the output from the current detection section. . [00111] [Operation] According to the present invention, since each voltage comparator is independent of each other, even if one voltage comparator fails due to being immersed in fuel, only a slight error will occur. in,
Unlike the conventional case where the encoder IC malfunctions, detection will not be significantly distorted or detection will not be possible. Further, the output signal from the comparison section is also an analog signal, and there is one signal line, and the number of signal lines between this signal line and the current detection section, and between the current detection section and the display section is also one, The number of signal lines can be significantly reduced. Therefore, the influence of noise can be drastically reduced. Therefore, the remaining amount of fuel in an automobile, etc. can be detected with high reliability and accuracy without contact. [0012] [0012] Hereinafter, one embodiment of the present invention will be described with reference to the drawings. [0013] FIG. 1 is a circuit diagram of a remaining fuel amount detector according to an embodiment of the present invention. The liquid level detection part is a temperature-sensitive resistance element 1 (resistance value 100Ω) that generates heat when energized and has a large resistance temperature coefficient.
) with a small resistance temperature coefficient chip resistor 2 (resistance value 60
Ω) are connected in series, and 16 resistor groups 3 are connected in parallel. [0014] Furthermore, the first reference potential generating section 6 is located at the lowest part of the resistor group 3, and is normally immersed in the fuel liquid. The resistor group 3 is composed of a temperature compensating element 4 and a chip resistor 5 having a small temperature coefficient connected in series with the temperature compensating element 4.
are connected in parallel. Note that the temperature compensation element 4 has almost the same resistance temperature coefficient as the temperature sensitive resistance element 1. Further, since the resistance value is 2Ω, which is 20 times that of the temperature-sensitive resistance element 1, self-heating can be ignored, and a reference potential Vo is generated according to the atmospheric temperature inside the fuel tank. [0015] Sixteen voltage comparators 17 are provided corresponding to each resistor group 3, each with a positive (non-inverting input)
The potential of each temperature-sensitive resistance element 1 is input to the side, and the reference potential Vo (first reference potential) of the temperature compensator is input to the negative (inverted input) side, and the liquid level is detected by comparing these voltages. . The liquid level detection section and the comparison section (
The portion indicated by 8 in the figure) is immersed in the fuel liquid. (0016) The output characteristics of the temperature-sensitive resistor group with respect to the liquid level are shown in Figure 2.
As shown in (a) and (b). Among the 16 resistor groups 3, the portion completely immersed in the fuel liquid loses the self-generated heat to the liquid, so the potential is equal to the reference potential Vo.
(See FIG. 2(a)). Therefore, the output of voltage comparator 7 becomes low (ON). On the other hand, resistor group 3, which is completely exposed from the liquid surface, generates heat due to self-heating due to energization.
The potential rises and becomes larger than the reference potential Vo, and the output of the voltage comparator 7 becomes high (OFF) (see FIG. 2(b)).
. [0017] Based on this principle, each voltage comparator 7
A limiting resistor 7a (resistance value is R1) is connected to the output side of each voltage comparator 7, and the other end of this limiting resistor 7a is connected to one signal line 9. This is a connected configuration. The signal line 9 is applied with the same potential V as the second reference potential generating section 11 (potential V,) via the operational amplifier 10. Here, when the output of the voltage comparator 6 is high, the current flowing from the signal line 9 to the limiting resistor 7 becomes 0, and when it is low, (V, -V,) /
A current corresponding to R+ flows. However, this o is a dropout voltage due to the ON resistance of the voltage comparator 6, and normally varies as vo = 0.2 ± 041V, but by increasing the second reference potential V, the error can be reduced and it is suitable for practical use. Can be ignored. In this way, the current IOU flowing from the signal line 9 to the comparison section changes depending on the number of voltage comparators 6 whose output is low (ON) (the number of temperature-sensitive resistance elements 1 immersed in the fuel liquid). It is something. Then, in conjunction with this, the current value flowing through the resistor provided between the collector of the transistor connected to the output side of the operational amplifier 10 and the signal line 9 is detected by the current detection section 12. Then, the output from the current detection section 12 is guided to the display section 13 and displayed. [0018] In this embodiment, the values of R1 of the limiting resistor 7 are all the same resistance value, so unless the fuel tank is a rectangular parallelepiped, the output data will be a linear output as shown in FIG. 3(b). However, weighting is performed by changing the value of R1 and the value of the suction current flowing to the voltage comparator 6, and the output characteristics (relationship between liquid level and remaining amount) can be linearized even for irregularly shaped fuel tanks. It is possible (Figure 3 (
a)). [001,9] By the way, in this embodiment, the resistance values of the temperature sensitive resistance elements 1 for level detection are all 100Ω, but it is not necessary that they all have the same resistance value. Further, the number of temperature-sensitive resistance elements 1 in the resistor group 3 is not particularly limited to 16, and the circuit may be configured by combining any number of resistance elements as necessary. [00201Also, although the entire remaining fuel amount detector is immersed in fuel, the main component is ruthenium oxide, which has been used in conventional float-type remaining fuel amount detectors by being immersed in the fuel tank. A fixed resistor with a dense glass overcoat is used for the resistor, which protects the resistor from sulfides in the fuel, so there is no problem with reliability. Reliability can be significantly improved compared to IC. Furthermore, even if one of the voltage comparators 6 were to fail, it would only cause a small error, but the detection would not be significantly erroneous or become undetectable, as would be the case if the encoder ICl3 were to fail. . Furthermore, since the output signal of the detection circuit according to the present invention is an analog current output, only one output signal line is required. Therefore, the remaining amount of fuel in an automobile, etc. can be detected with high reliability and accuracy without contact. [00211] [Effects of the Invention] As described above, according to the present invention, the output signal is an economical analog current output, so only one signal line is required, it is resistant to noise, and the output signal is extremely simple. At the same time, it also has the effect of being able to be linearized. Therefore, the remaining amount of fuel in an automobile or the like can be detected with high reliability and accuracy without contact.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例における自動車用燃料残量検
出器の回路図
FIG. 1 is a circuit diagram of a fuel level detector for an automobile according to an embodiment of the present invention.

【図21  (a)は同実施例において完全に燃料に浸
っている液位検出部の出力特性図(b)は同実施例にお
いて全く燃料に浸っていない液位検出部の出力特性図【
図31  (a)は同実施例においてリニアライズされ
た燃料残量を示す出力特性図(b)は同実施例において
リニアライズされていない燃料残量を示す出力特性図【
図4】従来の燃料残量検出器の液位検出部を示す平面図
[Figure 21 (a) is an output characteristic diagram of the liquid level detection section that is completely immersed in fuel in the same embodiment. (b) is an output characteristic diagram of the liquid level detection section that is not completely immersed in fuel in the same embodiment [
FIG. 31 (a) is an output characteristic diagram showing the linearized remaining amount of fuel in the same example. (b) is an output characteristic diagram showing the remaining fuel amount that is not linearized in the same example.
Figure 4: A plan view showing the liquid level detection part of a conventional fuel level detector

【図5】同検出器の回路図[Figure 5] Circuit diagram of the detector

【符号の説明】[Explanation of symbols]

1 感温抵抗素子 2 チップ抵抗器 3 抵抗体群 4 温度補償素子 5 チップ抵抗器 6 第一の基準電位発生部 7 電圧比較器 7a 制限抵抗器 8 液位検出部と比較部 9 信号線 10 オペアンプ 11 第二の基準電位発生部 12 電流検出部 13 表示部 1 Temperature-sensitive resistance element 2 Chip resistor 3 Resistor group 4 Temperature compensation element 5 Chip resistor 6 First reference potential generation section 7 Voltage comparator 7a Limiting resistor 8 Liquid level detection part and comparison part 9 Signal line 10 Operational amplifier 11 Second reference potential generation section 12 Current detection section 13 Display section

【図4】[Figure 4]

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】支持基板上に通電発熱される複数個の抵抗
温度係数の大きい自己発熱用の感温抵抗体を多段にわた
り分離して配置し、抵抗温度係数の小さい抵抗体を各感
温抵抗体に直列に接続して抵抗体群を構成し、これらの
抵抗体群を並列に接続することにより構成された液位検
出部と、この検出部と並列に接続され温度補償された第
一の基準電位を発生する第一の基準電位発生部と、前記
各感温抵抗体群の電位と前記第一の基準電位とを比較し
てオン、オフの出力信号を出す各感温抵抗体に対応した
複数個の電圧比較器から構成され前記電圧比較器の出力
側はまとめて1つの信号線に接続した比較部と、前記信
号線に一定の第二の基準電位を与える第二の基準電位発
生部と、前記電圧比較器のオンオフの数に応じて前記信
号線から比較部へ流れ込む電流値を検出する電流検出部
と、この電流検出部からの出力を表示することで燃料残
量の表示を行う表示部とからなることを特徴とする自動
車用燃料残量検出器。
1. A plurality of self-heating temperature-sensitive resistors with large resistance temperature coefficients that generate heat when energized are arranged separately in multiple stages on a support substrate, and each temperature-sensitive resistor has a small resistance temperature coefficient. A liquid level detecting section is connected in series to the body to form a resistor group, and a liquid level detecting section is constructed by connecting these resistor groups in parallel. A first reference potential generating section that generates a reference potential, and a corresponding to each temperature-sensitive resistor that compares the potential of each temperature-sensitive resistor group with the first reference potential and outputs an on/off output signal. The output side of the voltage comparators is composed of a plurality of voltage comparators connected together to one signal line, and a second reference potential generator that applies a constant second reference potential to the signal line. a current detection unit that detects a current value flowing from the signal line to the comparison unit according to the number of on/off states of the voltage comparator; and a current detection unit that displays the output from the current detection unit to display the remaining amount of fuel. 1. A fuel remaining amount detector for an automobile, comprising a display section that performs the following actions.
JP40044890A 1990-12-05 1990-12-05 Residual fuel amount detector for vehicle Pending JPH04208817A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP40044890A JPH04208817A (en) 1990-12-05 1990-12-05 Residual fuel amount detector for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP40044890A JPH04208817A (en) 1990-12-05 1990-12-05 Residual fuel amount detector for vehicle

Publications (1)

Publication Number Publication Date
JPH04208817A true JPH04208817A (en) 1992-07-30

Family

ID=18510355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP40044890A Pending JPH04208817A (en) 1990-12-05 1990-12-05 Residual fuel amount detector for vehicle

Country Status (1)

Country Link
JP (1) JPH04208817A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020038638A (en) * 2001-04-11 2002-05-23 이창환 Apparatus for sensing fuel level with the compensation for temperature variation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020038638A (en) * 2001-04-11 2002-05-23 이창환 Apparatus for sensing fuel level with the compensation for temperature variation

Similar Documents

Publication Publication Date Title
CN1224826C (en) Liquid level sensor
US4916948A (en) Thermal flow sensor
JPH0697169B2 (en) Sensor signal temperature compensation method
CN110595524B (en) Sensor saturation fault detection
US5024083A (en) Terminal flow sensor
JPH11337382A (en) Heat generating resistor type air flow rate measuring apparatus
US3952593A (en) Liquid level gauge
JPH04208817A (en) Residual fuel amount detector for vehicle
JP4379993B2 (en) Pressure sensor
CN106840287B (en) Flow sensor, flowmeter and flow detection method
JP4487416B2 (en) Physical quantity detection device
EP0430651B1 (en) Level sensor
US10718795B2 (en) Detecting device
JP4352555B2 (en) Pressure sensor
KR100219762B1 (en) Fuel quanity measure gauge
JPH046417A (en) Heat-sensitive type remaining-fuel-amount detector
JP4345207B2 (en) Mechanical quantity detection sensor
JP2002084151A (en) Physical quantity detector
US20230258742A1 (en) Method for detecting and compensating a stray magnetic field when determining a rotation angle of a rotatable element by means of a magneto-resistive sensor system and magneto-resistive sensor system
JPS62229041A (en) Semiconductor type pressure detector
JPH04307331A (en) Complex sensor
Ferrari et al. Oscillator-based signal conditioning for resistive sensors
JPH0454421A (en) Temperature converting circuit for three-wire type resistance temperature detector
JPH0241541Y2 (en)
JPS63134967A (en) Disconnection detecting circuit