JPH04208397A - Heat exchanger and manufacture thereof - Google Patents

Heat exchanger and manufacture thereof

Info

Publication number
JPH04208397A
JPH04208397A JP33966390A JP33966390A JPH04208397A JP H04208397 A JPH04208397 A JP H04208397A JP 33966390 A JP33966390 A JP 33966390A JP 33966390 A JP33966390 A JP 33966390A JP H04208397 A JPH04208397 A JP H04208397A
Authority
JP
Japan
Prior art keywords
heat exchanger
layer
nitriding
aluminum plate
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33966390A
Other languages
Japanese (ja)
Other versions
JP2966519B2 (en
Inventor
Akira Yoshino
明 吉野
Haruo Senbokutani
仙北谷 春男
Masaaki Tawara
正昭 田原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Sanso Co Ltd
Original Assignee
Daido Sanso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Sanso Co Ltd filed Critical Daido Sanso Co Ltd
Priority to JP2339663A priority Critical patent/JP2966519B2/en
Publication of JPH04208397A publication Critical patent/JPH04208397A/en
Application granted granted Critical
Publication of JP2966519B2 publication Critical patent/JP2966519B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/025Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements
    • F28F3/027Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements with openings, e.g. louvered corrugated fins; Assemblies of corrugated strips

Abstract

PURPOSE:To form the surface layer of an aluminum sheet with a hard nitriding layer and make compact the whole size by holding the surface layer of an aluminum sheet for heat exchange to be installed in a fluid passage of a heat exchanger under a heating condition in a fluorine gas environment, then generating a fluoride film on the surface, holding the heating condition in a nitriding environment and forming a hard nitriding layer. CONSTITUTION:A heat exchange aluminum sheet to be installed in a fluid passage of a heat exchanger is degrease-cleaned, for example and then inserted into a heat treatment furnace 1 where a fluorine gas is introduced into this furnace and heated up to specified reaction temperature. This removes the contamination on the surface of a flat bar 22 and corrugated fins 23. The fluorine reacts with the oxide on the surface of the flat bar 22 and the corrugated fins 23 where a very thin fluoride film AlF3 on the surface of the flat bar 22 and the corrugated fins 23. They are continuously heated up to a nitriding temperature and then a mixed gas with a gas having NH3 or NH3 and a carbon source is added thereto, which forms a more active metal basis. At the same time, active N atoms enter the metal layer where they are dispersed in the layer, thereby forming a nitriding layer which contains AlN on the surface of the metal basis.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は、流体通路に設けるアルミニウム板の表面層が
硬質窒化層に形成されている熱交換器およびその製法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a heat exchanger in which the surface layer of an aluminum plate provided in a fluid passage is formed of a hard nitride layer, and a method for manufacturing the same.

〔従来の技術] 一般に、熱交換器の高温流体の通路および低温流体の通
路を構成する部材、例えば第4図に示すプレートフィン
形熱交換器21の平板22および波形フィン23には、
アルミニウム合金が用いられている。24は横枠である
。このようなアルミニウム合金製波形フィンを用いた熱
交換器はその良好な性能より広く用いられている。
[Prior Art] In general, members constituting the high-temperature fluid passage and the low-temperature fluid passage of a heat exchanger, for example, the flat plate 22 and corrugated fins 23 of the plate-fin type heat exchanger 21 shown in FIG.
Aluminum alloy is used. 24 is a horizontal frame. Heat exchangers using such aluminum alloy corrugated fins are widely used due to their good performance.

[発明が解決しようとする課題] しかしながら、上記アルミニウム合金製波形フィン自体
の熱伝導率を向上させると同時に、強度を大きくするこ
とができれば、熱交換器全体の小形化を実現することが
できる。
[Problems to be Solved by the Invention] However, if the thermal conductivity of the aluminum alloy corrugated fin itself can be improved and the strength can be increased at the same time, the entire heat exchanger can be made smaller.

本発明は、このような事情に鑑みなされたもので、熱交
換器の小形化をその目的とする。
The present invention was made in view of the above circumstances, and an object thereof is to downsize a heat exchanger.

〔課題を解決するための手段] 上記の目的を達成するため、本発明は、熱交換器の流体
通路に設ける熱交換用のアルミニウム板の表面層が、硬
質窒化層に形成されている熱交換器を第1の要旨とし、
熱交換器の流体通路に設ける熱交換用のアルミニウム板
をフッ素系ガス雰囲気下で加熱状態で保持してその表面
にフッ化膜を生成した後、窒化雰囲気下で加熱状態で保
持して上記アルミニウム板の表面層に硬質窒化層を形成
する熱交換器の製法を第2の要旨とする。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides a heat exchanger in which the surface layer of an aluminum plate for heat exchange provided in a fluid passage of a heat exchanger is formed of a hard nitrided layer. With the vessel as the first gist,
An aluminum plate for heat exchange provided in a fluid passage of a heat exchanger is held in a heated state in a fluorine-based gas atmosphere to generate a fluoride film on its surface, and then held in a heated state in a nitriding atmosphere to heat the aluminum plate. The second gist is a method for manufacturing a heat exchanger that forms a hard nitrided layer on the surface layer of a plate.

〔作用〕[Effect]

すなわち、本発明の熱交換器は、その流体通路に設ける
熱交換用のアルミニウム板の表面層が硬質窒化層に形成
されていることから、板目体の強度が向上すると同時に
熱伝導度も向上し、それによって小形化を実現できる。
That is, in the heat exchanger of the present invention, the surface layer of the aluminum plate for heat exchange provided in the fluid passage is formed of a hard nitride layer, so that the strength of the plate body is improved and at the same time the thermal conductivity is also improved. As a result, miniaturization can be realized.

また、本発明の方法は、熱交換器の流体通路に設ける熱
交換用のアルミニウム板をフッ素系ガス雰囲気下で加熱
状態で保持してその表面にフッ化膜を生成した後、窒化
雰囲気下で加熱状態で保持して上記フッ化膜を除去する
と同時に、その除去跡(上記アルミニウム板の表面)を
硬質の窒化層に形成するようにしている。この方法は、
窒化処理に先立ってフッ化処理をすることにより、上記
アルミニウム板の表面を清浄化すると同時に活性化する
ため、窒化層を均一にかつかなり深く迄形成することが
できる。
Furthermore, in the method of the present invention, an aluminum plate for heat exchange provided in a fluid passage of a heat exchanger is held in a heated state in a fluorine-based gas atmosphere to form a fluoride film on its surface, and then a fluoride film is formed on the surface of the aluminum plate, which is then heated in a nitriding atmosphere. While the fluoride film is removed by keeping it in a heated state, a trace of the removal (on the surface of the aluminum plate) is formed in a hard nitride layer. This method is
By performing the fluoridation treatment prior to the nitriding treatment, the surface of the aluminum plate is cleaned and activated at the same time, so that the nitrided layer can be formed uniformly and considerably deep.

つぎに、本発明について詳しく説明する。Next, the present invention will be explained in detail.

本発明のフッ化処理に使用するフッ素系ガスとは、NF
、、BF、、CF、、HF、SF、、F。
The fluorine gas used in the fluorination treatment of the present invention is NF
,,BF,,CF,,HF,SF,,F.

から選ばれた少なくとも一つのフッ素源成分をN2等の
不活性ガス中に含有させたもののことをいう。これらフ
ッ素源成分の中でも、反応性、取扱い性等の面でNF、
が最も優れており実用的である。
It refers to a product in which at least one fluorine source component selected from the following is contained in an inert gas such as N2. Among these fluorine source components, NF,
is the best and most practical.

本発明の窒化処理方法は、先に述べたように、上記フッ
素系ガス雰囲気下で、熱交換器の流体通路に設けるアル
ミニウム板を、例えばNF3の場合、250〜400°
Cの温度に加熱保持し上記アルミニウム板の表面を処理
した後、公知の窒化用ガス例えばアンモニアを用いて窒
化処理(または浸炭窒化処理)を行う。このようなフッ
素系ガスにおけるN F 3等のフッ素源成分の濃度は
、例えば1000〜1100000ppであり、好まし
くは20000〜70000ppm、より好ましいのは
30000〜50000ppmである。このようなフッ
素系ガス雰囲気中での保持時間は、アルミニウム合金の
種類、アルミニウム板の形状寸法、加熱温度等に応して
適当な時間を選べばよく、通常は数分ないし数十分であ
る。
As mentioned above, in the nitriding method of the present invention, the aluminum plate provided in the fluid passage of the heat exchanger is heated at 250 to 400° in the fluorine-based gas atmosphere.
After treating the surface of the aluminum plate by heating and maintaining the aluminum plate at a temperature of C, nitriding treatment (or carbonitriding treatment) is performed using a known nitriding gas such as ammonia. The concentration of the fluorine source component such as NF3 in such a fluorine-based gas is, for example, 1,000 to 1,100,000 ppm, preferably 20,000 to 70,000 ppm, and more preferably 30,000 to 50,000 ppm. The holding time in such a fluorine-based gas atmosphere can be selected appropriately depending on the type of aluminum alloy, the shape and dimensions of the aluminum plate, the heating temperature, etc., and is usually several minutes to several tens of minutes. .

本発明あ方法をより具体的に説明するさ、熱交換器の流
体通路に設ける熱交換用のアルミニウム板(例えば、プ
レートフィン形熱交換器21のアルミニウム製の平板2
2および波形フィン23)を例えば脱脂洗浄し、第1図
に示す熱処理炉1に装入する。この炉1は、外殻2内に
設けたヒータ3の内側に内容器4を入れたピット炉で、
ガス導入管5と排気管6が挿入されている。ガス導入管
5にはボンベ15.16から流量計17.パルプ18等
を経由してガスが供給される。内部の雰囲気はモータ7
で回転するファン8によって撹拌される。上記平板22
および波形フィン23は金属製のコンテナ11に入れて
炉内に装入される。図中、13は真空ポンプ、14は除
害装置、27は台座である。この炉中にフッ素系ガス、
例えばNF、とN2の混合ガスを導入し、所定の反応温
度に加熱する。NF3は250〜400°Cの温度で活
性基のフッ素を発生し、これにより上記平板22および
波形フィン23の表面の有機、無機系の汚染を除去する
と同時に、このフッ素が上記平板22および波形フィン
23の表面のA2□O1゜Al(OH)3等の酸化物と
次式に示すように反応し、平板22および波形フィン2
3の表面にごく薄いフッ化膜AlF、を形成する。
The method of the present invention will be described in more detail.
2 and the corrugated fins 23), for example, are degreased and cleaned, and placed in the heat treatment furnace 1 shown in FIG. This furnace 1 is a pit furnace in which an inner container 4 is placed inside a heater 3 provided in an outer shell 2.
A gas introduction pipe 5 and an exhaust pipe 6 are inserted. The gas introduction pipe 5 has a flowmeter 17. from the cylinder 15.16. Gas is supplied via the pulp 18 and the like. The atmosphere inside is motor 7.
The mixture is stirred by a fan 8 that rotates at . The flat plate 22
The corrugated fins 23 are placed in a metal container 11 and loaded into a furnace. In the figure, 13 is a vacuum pump, 14 is an abatement device, and 27 is a pedestal. In this furnace, fluorine gas,
For example, a mixed gas of NF and N2 is introduced and heated to a predetermined reaction temperature. NF3 generates active group fluorine at a temperature of 250 to 400°C, thereby removing organic and inorganic contamination from the surfaces of the flat plate 22 and the corrugated fins 23, and at the same time, this fluorine 23 reacts with oxides such as A2□O1゜Al(OH)3 as shown in the following formula, and the flat plate 22 and the corrugated fins 2
A very thin fluoride film AlF is formed on the surface of 3.

Aj2□O,+5F→2AI!、F、+3/202Ai
 (OH)3+3F−+ANF、+3/2H! 0この
反応により、上記平板22および波形フィン23の表面
の酸化皮膜はフッ化膜に変換され、表面に吸着されてい
た0□も除去される。そして、このようなフッ化膜は、
0□、Hz 、Hz Oが存在しない場合、600°C
以下の温度で安定であって、後続の窒化処理までの間に
おける金属素地への酸化皮膜の形成や02の吸着を防止
する。また、このようなフッ化処理では、その第1段階
で炉材表面に対してフッ化膜が形成されることとなるこ
とから、その膜によって、以後の炉材表面に対するフッ
素系ガスに基づく損傷が防止されるようになる。
Aj2□O, +5F→2AI! , F, +3/202Ai
(OH) 3+3F-+ANF, +3/2H! By this reaction, the oxide film on the surface of the flat plate 22 and the corrugated fin 23 is converted into a fluoride film, and the 0□ adsorbed on the surface is also removed. And, such a fluoride film is
0□, Hz, 600°C in the absence of Hz O
It is stable at the following temperatures and prevents the formation of an oxide film on the metal substrate and the adsorption of 02 until the subsequent nitriding treatment. In addition, in such fluoridation treatment, a fluoride film is formed on the surface of the furnace material in the first step, so this film prevents damage caused by fluorine gas to the surface of the furnace material thereafter. will be prevented.

このように、フッ素系ガスで処理された上記平板22お
よび波形フィン23を引き続き450〜550°Cの窒
化温度に加熱し、その状態でNH。
The flat plate 22 and the corrugated fins 23 treated with the fluorine-based gas in this manner are subsequently heated to a nitriding temperature of 450 to 550°C, and in that state, NH is applied.

、あるいはNH,と炭素源を有するガス(例えばRXガ
ス)との混合ガスを添加する。これにより、上記フッ化
膜がN2または微量の水分によって例えば次式のように
還元あるいは破壊され、それによって活性な金属素地が
露呈形成される。
, or NH, and a gas containing a carbon source (for example, RX gas). As a result, the fluoride film is reduced or destroyed by N2 or a small amount of moisture, for example, as shown in the following equation, thereby exposing and forming an active metal matrix.

AlF3 +3/2H2→A1+3HFこのようにして
、活性な金属素地が形成されると同時に、活性なN原子
が金属内に侵入、拡散してゆき、その結果、金属素地表
面にAINを含有する化合物層(窒化層)が形成される
AlF3 +3/2H2→A1+3HF In this way, an active metal base is formed, and at the same time active N atoms penetrate and diffuse into the metal, resulting in a compound layer containing AIN on the surface of the metal base. (nitride layer) is formed.

このような窒化層が形成されるのは、従来の窒化法でも
同様であるか、従来法では、常温より窒化温度まで上昇
する間に形成される酸化皮膜や、このとき吸着されるO
x分番こよって表面の活性度が低下しているので、N原
子の表面吸着の度合いが低く、不均一である。また、こ
のような不均一性は、NH,の分解の度合いを炉内で均
一に保つことが実際上困難であることによっても拡大さ
れる。本発明の方法では、上記平板22および波形フィ
ン23の表面におけるN原子の吸着が均一か1つ迅速に
行われるので、上記のような問題は生じない。
This kind of nitrided layer is formed in the same way in the conventional nitriding method, or in the conventional method, an oxide film is formed during the rise from room temperature to the nitriding temperature, and O adsorbed at this time.
Since the activity of the surface is reduced by the number x, the degree of adsorption of N atoms on the surface is low and non-uniform. Furthermore, such non-uniformity is amplified by the fact that it is practically difficult to maintain a uniform degree of decomposition of NH within the furnace. In the method of the present invention, the N atoms are adsorbed uniformly or quickly on the surfaces of the flat plate 22 and the corrugated fins 23, so that the above-mentioned problem does not occur.

このようにして得られた平板22および波形フィン23
は、第2図に示すように、その表面層が硬質窒化層Aで
形成されていることから、強度および熱伝導が大幅に向
上している。
The flat plate 22 and corrugated fins 23 thus obtained
As shown in FIG. 2, since its surface layer is formed of a hard nitride layer A, its strength and heat conduction are significantly improved.

第3図に示したプレートフィン形熱交換器の波形フィン
23には、その一部を切り起こして突起25としたもの
が多数形成されており、突起25が波形フィン23を通
る流体に対し上流側に、切り起こしによりあいた開口2
6が下流側になっている。それ以外の部分は第4図と実
質的に同じである。この場合には、波形フィン23に沿
って流れる流体が上記突起25に衝突して乱流になり、
また、この衝突後に乱流となった流体の一部が上記突起
後方の開口26から裏側に流入し、裏側の流体をも乱流
にする。このように流体を乱流とすることで熱伝導性の
一層の向上効果が得られる。
The corrugated fins 23 of the plate-fin type heat exchanger shown in FIG. Opening 2 on the side by cutting and raising
6 is on the downstream side. The other parts are substantially the same as FIG. 4. In this case, the fluid flowing along the corrugated fins 23 collides with the projections 25 and becomes turbulent.
Further, a part of the fluid that has become turbulent after this collision flows into the back side from the opening 26 at the rear of the projection, making the fluid on the back side also turbulent. By making the fluid turbulent in this way, the effect of further improving thermal conductivity can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明の熱交換器は、その流体通路に設
ける熱交換用のアルミニウム板として、表面層が硬質窒
化層で形成されていて、強度および熱伝導度に優れたア
ルミニウム板を用いていることから、全体を小形化でき
るようになる。また、本発明の方法は、窒化処理に先立
って、フッ化処理を行う。これにより、上記アルミニウ
ム板の表面の酸化皮膜等の不働態皮膜がフッ化膜に変化
し、上記アルミニウム板の表面の保護が行われる。した
がって、フッ化膜の形成から窒化処理の間に時間的な経
過があっても、上記アルミニウム板の表面に形成された
フッ化膜は良好な状態で上記アルミニウム板の表面の保
護を行う結果、上記アルミニウム板の表面に対する再度
の酸化皮膜の形成が防止される。このフッ化膜は後続の
窒化処理時に分解除去され、それによって上記アルミニ
ウム板の表面が露呈するようになる。この露呈された金
属表面は活性な状態となっていることから、窒化処理に
おけるN原子は上記アルミニウム板の表面内に拡散しや
すくなっており、上記N原子は深く均一に拡散する。こ
れにより、アルミニウム板の表面層が、厚みが厚(、か
つ均一な硬質窒化層に形成される。
As described above, the heat exchanger of the present invention uses an aluminum plate whose surface layer is formed of a hard nitride layer and which has excellent strength and thermal conductivity as the aluminum plate for heat exchange provided in the fluid passage. This makes it possible to downsize the entire device. Further, in the method of the present invention, fluoridation treatment is performed prior to nitridation treatment. As a result, a passive film such as an oxide film on the surface of the aluminum plate is changed into a fluoride film, and the surface of the aluminum plate is protected. Therefore, even if there is a lapse of time between the formation of the fluoride film and the nitriding process, the fluoride film formed on the surface of the aluminum plate protects the surface of the aluminum plate in good condition. This prevents the formation of an oxide film on the surface of the aluminum plate again. This fluoride film is decomposed and removed during the subsequent nitriding process, thereby exposing the surface of the aluminum plate. Since this exposed metal surface is in an active state, the N atoms in the nitriding process easily diffuse into the surface of the aluminum plate, and the N atoms diffuse deeply and uniformly. As a result, the surface layer of the aluminum plate is formed into a thick (and uniform) hard nitride layer.

C実施例〕 プレートフィン形熱交換器のアルミニウム合金製の平板
(150X25■)および波形フィン(130X25■
)をトリクロロエタン洗浄した後、第1図に示すような
熱処理炉lに入れ、NF。
Example C] Aluminum alloy flat plate (150 x 25 cm) and corrugated fin (130 x 25 cm) of plate fin type heat exchanger
) was washed with trichloroethane, placed in a heat treatment furnace as shown in Figure 1, and subjected to NF.

を5000ppm含有するN2ガス雰囲気で300°C
で15分間保持した。その後530°Cに加熱し、50
%NH,+50%N2の混合ガスを炉内に導入して3時
間窒化処理を行い、しかるのち空冷して取り出した。
300°C in a N2 gas atmosphere containing 5000 ppm of
It was held for 15 minutes. Then heat to 530°C and
A mixed gas of %NH and +50%N2 was introduced into the furnace to carry out nitriding treatment for 3 hours, and then it was air cooled and taken out.

得られた平板および波形フィンの窒化層の厚みは5〜1
0μmであり、その表面硬度は1900〜2100Hv
であった。この表面硬度は、従来知られた方法で窒化処
理したものと比べて、はるかに大きくなっている。
The thickness of the nitrided layer of the obtained flat plate and corrugated fin is 5 to 1
0μm, and its surface hardness is 1900~2100Hv
Met. This surface hardness is much higher than that of a material nitrided by a conventionally known method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に用いる熱処理炉の断面図、
第2図はプレートフィン形熱交換器の波形フィンの窒化
層の状態を示す断面図、第3図は他の実施例の波形フィ
ンの一部斜視図、第4図はプレートフィン形熱交換器の
斜視図である。 1・・・熱処理炉 21・・・プレートフィン形熱交換
器 22・・・平板 23・・・波形フィン特許出願人
   大同酸素株式会社 代理人   弁理士 西 藤 征 彦 第3図 第4図
FIG. 1 is a sectional view of a heat treatment furnace used in an embodiment of the present invention;
Fig. 2 is a cross-sectional view showing the state of the nitrided layer of the corrugated fin of the plate-fin type heat exchanger, Fig. 3 is a partial perspective view of the corrugated fin of another embodiment, and Fig. 4 is the plate-fin type heat exchanger. FIG. 1... Heat treatment furnace 21... Plate fin type heat exchanger 22... Flat plate 23... Corrugated fin patent applicant Daido Oxygen Co., Ltd. Representative Patent attorney Yukihiko Nishifuji Figure 3 Figure 4

Claims (4)

【特許請求の範囲】[Claims] (1)熱交換器の流体通路に設ける熱交換用のアルミニ
ウム板の表面層が、硬質窒化層に形成されていることを
特徴とする熱交換器。
(1) A heat exchanger characterized in that the surface layer of an aluminum plate for heat exchange provided in a fluid passage of the heat exchanger is formed as a hard nitrided layer.
(2)上記アルミニウム板がプレートフィン形熱交換器
の平板と波形フィンの少なくとも一方である請求項(1
)記載の熱交換器。
(2) Claim (1) wherein the aluminum plate is at least one of a flat plate and a corrugated fin of a plate-fin type heat exchanger.
) listed heat exchanger.
(3)熱交換器の流体通路に設ける熱交換用のアルミニ
ウム板をフッ素系ガス雰囲気下で加熱状態で保持してそ
の表面にフッ化膜を生成した後、窒化雰囲気下で加熱状
態で保持して上記アルミニウム板の表面層に硬質窒化層
を形成することを特徴とする熱交換器の製法。
(3) After heating an aluminum plate for heat exchange provided in a fluid passage of a heat exchanger in a fluorine-based gas atmosphere to generate a fluoride film on its surface, the aluminum plate is held in a heated state in a nitriding atmosphere. A method for manufacturing a heat exchanger, characterized in that a hard nitrided layer is formed on the surface layer of the aluminum plate.
(4)上記アルミニウム板がプレートフィン形熱交換器
の平板と波形フィンの少なくとも一方である請求項(3
)記載の熱交換器の製法。
(4) Claim (3) wherein the aluminum plate is at least one of a flat plate and a corrugated fin of a plate-fin type heat exchanger.
) The manufacturing method of the heat exchanger described in ).
JP2339663A 1990-11-30 1990-11-30 Heat exchanger manufacturing method Expired - Fee Related JP2966519B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2339663A JP2966519B2 (en) 1990-11-30 1990-11-30 Heat exchanger manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2339663A JP2966519B2 (en) 1990-11-30 1990-11-30 Heat exchanger manufacturing method

Publications (2)

Publication Number Publication Date
JPH04208397A true JPH04208397A (en) 1992-07-30
JP2966519B2 JP2966519B2 (en) 1999-10-25

Family

ID=18329630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2339663A Expired - Fee Related JP2966519B2 (en) 1990-11-30 1990-11-30 Heat exchanger manufacturing method

Country Status (1)

Country Link
JP (1) JP2966519B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1439368A4 (en) * 2001-10-25 2006-05-03 Showa Denko Kk Heat exchanger,method for fluorination of the heat exchanger or component members thereof,and method of manufacturing the heat exchanger

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1439368A4 (en) * 2001-10-25 2006-05-03 Showa Denko Kk Heat exchanger,method for fluorination of the heat exchanger or component members thereof,and method of manufacturing the heat exchanger

Also Published As

Publication number Publication date
JP2966519B2 (en) 1999-10-25

Similar Documents

Publication Publication Date Title
JPH0344457A (en) Method for nitriding steel
JP3161644B2 (en) Method of nitriding austenitic stainless steel products
JP4669605B2 (en) Cleaning method for semiconductor manufacturing equipment
US4159917A (en) Method for use in the manufacture of semiconductor devices
JPH0791628B2 (en) Nitriding furnace equipment
JP2007115797A5 (en)
JPH05195193A (en) Nitriding method of nickel alloy
EP0481136B1 (en) Method of nitriding steel
JPH04208397A (en) Heat exchanger and manufacture thereof
JPH04187755A (en) Crankshaft and its production
JP3026595B2 (en) Motor rotary shaft and its manufacturing method
JP2005503488A (en) Heat treatment method for workpieces made of steel that is stable against temperature changes
JP2881111B2 (en) Steel nitriding method
JP3428847B2 (en) Nitriding method and apparatus used therefor
JP2506227B2 (en) Steel nitriding method and heat treatment furnace used therefor
JP2918716B2 (en) Method of nitriding steel
JPH09157830A (en) Method for nitriding metallic material with gas and device therefor
WO1992008560A1 (en) Method of making pressure-molded product from aluminum powder
JP3354947B2 (en) Semiconductor substrate manufacturing method
CN1032263C (en) Motor rotary shaft and manufacturing method thereof
JP3005953B2 (en) Steel nitriding method
US6020025A (en) Method of manufacturing a crank shaft
JP3396336B2 (en) Method of nitriding steel
US5426998A (en) Crank shaft and method of manufacturing the same
JP2010040550A (en) Method for cleaning silicon wafer and/or silicon-based member

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees