WO1992008560A1 - Method of making pressure-molded product from aluminum powder - Google Patents

Method of making pressure-molded product from aluminum powder Download PDF

Info

Publication number
WO1992008560A1
WO1992008560A1 PCT/JP1991/001599 JP9101599W WO9208560A1 WO 1992008560 A1 WO1992008560 A1 WO 1992008560A1 JP 9101599 W JP9101599 W JP 9101599W WO 9208560 A1 WO9208560 A1 WO 9208560A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum powder
powder
gas
film
aluminum
Prior art date
Application number
PCT/JP1991/001599
Other languages
French (fr)
Japanese (ja)
Inventor
Akira Yoshino
Haruo Senbokuya
Masaaki Tahara
Original Assignee
Daidousanso Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daidousanso Co., Ltd. filed Critical Daidousanso Co., Ltd.
Publication of WO1992008560A1 publication Critical patent/WO1992008560A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/072Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with aluminium
    • C01B21/0722Preparation by direct nitridation of aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/145Chemical treatment, e.g. passivation or decarburisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • C22C32/0068Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only nitrides

Definitions

  • the present invention relates to a method for producing an aluminum powder press molded article.
  • a thin metal container 26 having a desired shape for example, a shape of a chassis of an automobile part or the like
  • Aluminum powder 11 containing titanium powder, magnesium powder and the like is vacuum-sealed in the metal container 26.
  • an inert gas such as an argon gas is injected into the above-mentioned metal container 26 by pressing the inert gas such as argon gas at a temperature of 100 or more by the heater 25 to apply a pressure of 10 O MPa or more.
  • the internal aluminum powder 11 is pressed into the same shape as the metal container 26 to obtain an aluminum alloy product.
  • 2 2 is the upper side, and 2 3 is the lower lid.
  • the present invention has been made in consideration of the problem that aluminum alloy products are inferior in strength, toughness, etc., and is an aluminum powder press-formed product capable of obtaining an aluminum alloy product having excellent strength and toughness. Its purpose is to provide a manufacturing method.
  • a method of manufacturing an aluminum powder press-molded product of the present invention comprises contacting aluminum powder with a fluorine-based gas in a heated state, and then contacting the aluminum powder with a nitriding gas in a heated state. Then, hard nitrided ⁇ is formed on the surface layer of the aluminum powder, and the aluminum powder on which the nitrided layer is formed is directly pressed and formed into a pressed product.
  • the method for producing an aluminum powder press-molded article of the present invention comprises: before press-forming the aluminum powder, contacting the aluminum powder with a fluorine-based gas in a heated state to form fluoride on the surface thereof.
  • the upper sa-fluoride film is removed by being brought into contact with a nitriding gas in a heated state, and at the same time, the removal layer (the surface layer of the aluminum powder) is formed into a hard nitride).
  • the surface of the aluminum powder is purified and activated by performing fluoridation prior to nitriding, so that the nitriding layer can be formed evenly and deeply. This makes it possible to make the thickness of the hard honey layer rich in properties uniform and thick. In this way, since no oxide film is formed on the surface of the aluminum powder at the time of E-forming and a hard nitrided layer is formed, the obtained press-formed product has excellent toughness, particularly excellent strength. It will be worthwhile.
  • the fluorinated gas used for the fluorination treatment of the present invention is NF 3 , B F,, CF 4 , HF, SF,, Fi At least one fluorine source component selected from inert gas such as N 2 . Among these fluorine ⁇ content, reactivity, surface in NF S such as handling properties is practical and best.
  • the manufacturing method of the present invention comprises, as described above, aluminum powder (a mixture of aluminum alone or other metal powder such as titanium powder and magnesium powder) with the above-mentioned fluorine-based gas, for example, NF
  • the surface of the aluminum powder is fluorinated by contacting at a temperature of 250 to 400, and then nitriding (or nitriding) is performed using a known nitriding gas such as ammonia.
  • the concentration of a fluorine source component such as NF in such a fluorine-based gas is, for example, from 1,000 to 10,000 ppm, preferably from 20,000 to 70,000 ppm, and more preferably from 30,000 to 50,000 ppm.
  • the time of contact with such a fluorine-based gas may be selected from an appropriate time according to the type of aluminum powder, the type of powder mixed with the aluminum powder, the heating temperature, etc., and is usually several minutes. .
  • aluminum powder is introduced into, for example, a gas treatment chamber 9 provided in the heat treatment furnace 1 shown in FIG. 1 and brought into contact with a fluorine-based gas.
  • the above furnace 1 is a bit furnace in which an inner vessel 4 is placed inside a heater 3 provided in an outer shell 2, and an exhaust pipe 6 is inserted into the inner vessel 4 from outside the furnace 1, and a gas inlet pipe 5 is provided.
  • the powder outlet pipe 8 is inserted into the room from the upper side of the gas processing chamber 9 through the inner container 4, passing through the inner container 4 from the lower side of the gas processing chamber 9. Gas is supplied to the gas introduction pipe 5 from the cylinders 15 and 16 via the flowmeter 17 and the valve 18.
  • reference numeral 13 denotes a vacuum bomb and reference numeral 14 denotes an abatement system S.
  • the gas processing chamber 9 ⁇ is heated to a predetermined reaction temperature. Then, a fluorine-based gas, for example, a mixed gas of NF, and N 2 gas is blown up from the gas outlet 5a opened at the top of the gas introduction pipe 50.
  • the on-off valve (not shown) provided in the powder storage tank 7 is opened to supply the aluminum powder 11 in the powder storage tank 7 to the powder outlet pipe 8, and the powder outlet 8a at the lower end thereof is provided.
  • I5NF generates fluorine as an active group at a temperature of 250-400, and removes organic and inorganic contamination on the surface of aluminum powder 11 by collision with aluminum powder. Reacts with oxides such as Ajg 2 Oa, A £ (OH), etc. on the surface of powder 11 as shown in the following formula to form ultra-thin fluoride AjgF, on the surface of aluminum powder 11 I do.
  • the oxide film on the surface of the aluminum powder 11 is converted into a fluoride film, and the 0, adsorbed on the surface is also removed.
  • the fluorinated aluminum in the absence of 0 3 ⁇ 4 , ⁇ ,, ⁇ , 0, the fluorinated aluminum is stable at the following temperature at 600, and the aluminum powder before the subsequent nitriding treatment is 1 1 to prevent the adsorption of formation and 0 2 of the oxide film to the fabric.
  • a fluoride film is formed on the surface of the furnace material in the first stage, and the film is used to form a fluorine-based gas on the surface of the furnace material thereafter. Damage will be prevented.
  • These fluorinated aluminum powders 11 are stored in a powder storage box 10 arranged at the bottom of the gas processing chamber 9.
  • the aluminum powder 11 stored in the powder storage box 10 is nitrided using the same heat treatment furnace as the heat treatment furnace 1. Ie, heating the gas treatment chamber provided in the heat treatment furnace to nitrided temperature at 450 to 550, have a Nyuita 3 or NH S and a carbon source, in this state A mixed gas with the gas to be blown (eg, RX gas) is blown up from the gas outlet at the end of the gas inlet tube, and the aluminum powder 11 is dropped from the powder outlet tube to bring them into contact.
  • the above-mentioned fluoride film is reduced or destroyed by H or a trace amount of water, for example, as shown in the following formula, whereby the active aluminum powder 11 is exposed and formed.
  • the active aluminum powder 11 is formed into the dough, and at the same time, the active N atoms penetrate and diffuse into the aluminum powder 11 and, as a result, contain AN on the surface of the dough.
  • a compound layer (nitriding) is formed.
  • the formation of such a nitrided layer is the same in the conventional nitridation method, but in the conventional method, the oxide film formed on the surface rising from the room temperature to the honey temperature, Since the activity of the surface is reduced by the amount, the degree of surface adsorption of N atoms is low and non-uniform. Such non-uniformity is also magnified by the fact that it is practically difficult to keep the degree of decomposition of NH, uniformly in the reactor. According to the production method of the present invention, the adsorption of N atoms on the surface of the aluminum powder 11 is performed uniformly and quickly, so that the above-mentioned problem does not occur. As shown in FIG. 2, the aluminum powder 11 thus obtained has a surface layer formed of hard and uniform hard nitride A, as shown in FIG. Thereafter, the aluminum powder 11 is press-formed into an aluminum alloy product having a desired shape using a known HIP device 20.
  • the oxide film on the surface of the aluminum powder 11 is removed before being applied to the HIP device 20, it is necessary to heat the aluminum powder 11 mixed with various powders. Powder with low melting temperature as powder to be mixed with aluminum powder 1 Even when ⁇ is used, the resulting molded product has excellent mechanical properties such as strength and toughness. Moreover, since the surface calendar of the aluminum powder 11 is formed of hard nitrided shoes, it is particularly excellent in strength.
  • fluorination is performed prior to nitriding.
  • an erroneous film such as an oxide film on the surface of the aluminum powder is changed to a fluoride film, and the surface of the aluminum powder is protected. Therefore, even if there is a time passage between the formation of the fluoride film and the nitriding treatment, the fluoride film formed on the surface of the aluminum powder can protect the surface of the aluminum powder in good condition. As a result, the formation of the oxide film again on the surface of the aluminum powder is prevented. This fluoride film is decomposed and removed during the subsequent nitriding treatment, thereby exposing the surface of the aluminum powder.
  • the ⁇ atom in the nitriding treatment spreads in the surface layer of the aluminum powder, and the ⁇ atom diffuses deeply and uniformly. Thereby, the surface layer of the aluminum powder is formed into a thick and uniform hard nitrided layer. Therefore, the resulting molded product has excellent mechanical properties such as strength and toughness.
  • FIG. 1 is a cross-sectional view of a heat treatment furnace used in one embodiment of the present invention
  • FIG. 2 is a cross-sectional view showing a state of a nitride layer of aluminum powder
  • FIG. 3 is a conceptual diagram of a ⁇ . ⁇ . ⁇ . .
  • the NF 3 in the heat treatment furnace 1 as shown in FIG. 1 5 0 0 O ppm content to N 2 gas Kiri ⁇ Contact at 300 ° C for several minutes.
  • nitriding treatment was performed in the above heat treatment furnace 1 at 530 with a mixed gas of 50% NK15QHNi for several minutes, and then, the mixture was air-cooled and taken out.
  • the obtained aluminum powder had a nitride thickness of 5 to 10 m and a surface hardness of 190 to 210 OHv. This surface hardness is much higher than that obtained by nitriding by a conventionally known method.
  • an aluminum alloy product having a desired shape was obtained by using the HI device as described above. This aluminum alloy product had much higher strength and toughness than the conventional aluminum alloy product.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Powder Metallurgy (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Abstract

A method of making a pressure-molded product from aluminum powder according to this invention consists in a fluoridizing process performed prior to nitriding process. Thus, a passive film such as an oxide film on the surface of aluminum powder turns into a fluoridized film to protect the surface of aluminum powder. Therefore, even with the lapse of time between formation of the fluoridized film and nitriding process, the fluoridized film formed on the surface of aluminum powder protects said surface in satisfactory condition and prevents an oxide film form from being formed again. Since the fluoridized film is decomposed at the time of subsequent nitriding process, N atoms acting during the nitriding process are dispersed evenly and deeply into the surface layer of aluminum powder to form a uniform hard nitride layer.

Description

明 細 書  Specification
アルミニゥム粉末加 成形品の製法 技 fer 分 野  Manufacturing method of aluminum powder molded product technology fer field
この発明は、 アルミニゥム粉末加圧成形品の製法に関するもので める 0  The present invention relates to a method for producing an aluminum powder press molded article.
if 景  if view
最近、 自動車部品のシャーシ等には、 その強度, 靱性等を高める ため、 アルミユウム粉末を熱間静水圧成形法により成形したものが 用いられている。 この熱簡静水圧成形法は、 第 3図に概念図として 示されるヒップ (H. I. P. ) 装置 2 0を用いて行われる。 すなわち、 その炉本体 2 1内に所望の形状,(例えば、 自勖車部品のシャーシ等 の形状) をした薄い金厲容器 2 6を配装する。 上記金属容器 2 6に は、 チタン粉末, マグネシウム粉末等を港合したアルミニウム粉末 1 1が真空封入されている。 ついで、 上記金厲容器 2 6に対して、 ヒータ 2 5による 1 0 0 0で以上の温度下で、 アルゴンガス等の不 活性ガスを圧入することにより 1 0 O MP a以上の圧力をかけ、 内 部のアルミニウム粉末 1 1を金属容器 2 6と同形状に加圧成形し、 アルミニウム合金製品を得ることが行われている。 2 2は上側羞、 2 3は下側蓋である。  Recently, in order to increase the strength, toughness, etc. of the chassis of automobile parts, aluminum powder formed by hot isostatic pressing has been used. This thermal isostatic pressing method is performed using a hip (HIP) device 20 shown as a conceptual diagram in FIG. That is, a thin metal container 26 having a desired shape (for example, a shape of a chassis of an automobile part or the like) is arranged in the furnace body 21. Aluminum powder 11 containing titanium powder, magnesium powder and the like is vacuum-sealed in the metal container 26. Then, an inert gas such as an argon gas is injected into the above-mentioned metal container 26 by pressing the inert gas such as argon gas at a temperature of 100 or more by the heater 25 to apply a pressure of 10 O MPa or more. The internal aluminum powder 11 is pressed into the same shape as the metal container 26 to obtain an aluminum alloy product. 2 2 is the upper side, and 2 3 is the lower lid.
しかしながら、 上記金属容器 2 6に、 各種粉末を混合したアルミ ニゥム粉末 1 1を真空封入する前に、 アルミニウム粉末 1 1の表面 に生成された酸化皮膜を除去する必要があり、 このため各種粉末を 混合したアルミニウム粉末 1 1を加熱することが行われている。 と ころが、 上記アルミニウム粉末 1 1に混合する粉末として、 溶融温 度の低い粉末を用いる場合には、 上記加熱により溶融温度の低い粉 末が溶融して、 アルミニウム粉末 1 1の表面に付着し、 酸化皮膜を 除去することができなくなり、 上記 H. I. P.装爨 2 0にかけて得られ たアルミニウム合金製品は強度, 靱性等において劣るという問題が この発明は、 このような事情に鑑みなされたもので、 強度, 靱性 に優れたアルミユウム合金製品を得ることができるアルミユウム粉 末加圧成形品の製法の提供をその目的とする。 However, it is necessary to remove the oxide film formed on the surface of the aluminum powder 11 before vacuum-sealing the aluminum powder 11 mixed with various powders in the metal container 26. Heating of the mixed aluminum powder 11 has been performed. However, when a powder having a low melting temperature is used as the powder to be mixed with the aluminum powder 11, the powder having a low melting temperature is melted by the above heating and adheres to the surface of the aluminum powder 11. However, the oxide film cannot be removed, and the HIP equipment In view of such circumstances, the present invention has been made in consideration of the problem that aluminum alloy products are inferior in strength, toughness, etc., and is an aluminum powder press-formed product capable of obtaining an aluminum alloy product having excellent strength and toughness. Its purpose is to provide a manufacturing method.
発 明 の 開 示  Disclosure of the invention
上記の目的を達成するため、 この発明のアルミニウム粉末加圧成 形品の製法は、 アルミユウム粉末をフッ素系ガスに加熱伏態で接触 させ、 つぎに、 このアルミニウム粉末を窒化ガスに加熱状態で接触 させてアルミニウム粉末の表面層に硬質の窒化 βを形成し、 この窒 化層を形成したァルミユウム粉末を直接加圧成形して加圧成形品に するという構成をとる。  In order to achieve the above object, a method of manufacturing an aluminum powder press-molded product of the present invention comprises contacting aluminum powder with a fluorine-based gas in a heated state, and then contacting the aluminum powder with a nitriding gas in a heated state. Then, hard nitrided β is formed on the surface layer of the aluminum powder, and the aluminum powder on which the nitrided layer is formed is directly pressed and formed into a pressed product.
すなわち、 この発明のアルミニウム粉末加圧成形品の製法は、 ァ ルミニゥム粉末を加圧成形する前に、 アルミニゥム粉末をフッ素系 ガスに加熱伏態で接触させてその表面にフッ化腠を生成した後、 窒 化ガスに加熱状態で接触させて上 saフッ化膜を除去すると同時に、 その除去坊(アルミニウム粉末の表面層) を硬質の窒化) iに形成す るようにしている。 この方法は、 窒化処理に先立ってフッ化処理を することにより、 アルミニゥム粉末の表面を淸浄化すると同時に活 性化するため、 窒化雇を均一にかっかなり深ぐ迄形成することがで き、 耐久性に富む硬質蜜化層の層厚を均一にかつ厚くできるように なる。 このようにすると、 加 E成形時にはアルミニウム粉末の表面 には酸化皮膜が形成されておらず、 しかも、 硬質窒化層が形成され ていることから、 得られる加圧成形品は靱性、 特に強度に優れたも のになる。  That is, the method for producing an aluminum powder press-molded article of the present invention comprises: before press-forming the aluminum powder, contacting the aluminum powder with a fluorine-based gas in a heated state to form fluoride on the surface thereof. At the same time, the upper sa-fluoride film is removed by being brought into contact with a nitriding gas in a heated state, and at the same time, the removal layer (the surface layer of the aluminum powder) is formed into a hard nitride). According to this method, the surface of the aluminum powder is purified and activated by performing fluoridation prior to nitriding, so that the nitriding layer can be formed evenly and deeply. This makes it possible to make the thickness of the hard honey layer rich in properties uniform and thick. In this way, since no oxide film is formed on the surface of the aluminum powder at the time of E-forming and a hard nitrided layer is formed, the obtained press-formed product has excellent toughness, particularly excellent strength. It will be worthwhile.
つぎに、 この発明について詳しく説明する。  Next, the present invention will be described in detail.
この発明のフッ化処理に使用するフッ素系ガスとは、 N F 3, B F, , CF4 , HF, SF, , Fi から選ばれた少なくとも一つの フッ素源成分を N2 等の不活性ガス中に含有させたもののことをい う。 これらフッ素瀛成分の中でも、 反応性, 取扱い性等の面で NFS が最も優れており実用的である。 The fluorinated gas used for the fluorination treatment of the present invention is NF 3 , B F,, CF 4 , HF, SF,, Fi At least one fluorine source component selected from inert gas such as N 2 . Among these fluorine瀛成content, reactivity, surface in NF S such as handling properties is practical and best.
この発明の製法は、 先に述べたように、 上記フッ素系ガスに、 ァ ルミニゥム粉末(アルミニウム単独もしく これにチタン粉末, マ グネシゥム粉末等の他の金属粉末を混合したもの) を、 例えば NFS の場合、 250〜400での温度で接触させてアルミニウム粉末の 表面をフッ化処理した後、 公知の窒化用ガス例えばアンモニアを用 いて窒化処理(または浸 窒化処理) を行う。 このようなフッ素系 ガスにおける NF, 等のフッ素源成分の濃度は、 例えば 1 000〜 1 0000 O ppmであり、好ましくは 2000 0〜70000 p pm、 より好ましいのは 30000〜50000 ppmである。 こ のようなフッ素系ガスとの接触時面は、 アルミニゥム粉末の種類、 アルミニウム粉末に混合される粉末の種類、 加熱温度等に応じて適 当な時間を選べばよく、 通常は数分である。 As described above, the manufacturing method of the present invention comprises, as described above, aluminum powder (a mixture of aluminum alone or other metal powder such as titanium powder and magnesium powder) with the above-mentioned fluorine-based gas, for example, NF In the case of S , the surface of the aluminum powder is fluorinated by contacting at a temperature of 250 to 400, and then nitriding (or nitriding) is performed using a known nitriding gas such as ammonia. The concentration of a fluorine source component such as NF in such a fluorine-based gas is, for example, from 1,000 to 10,000 ppm, preferably from 20,000 to 70,000 ppm, and more preferably from 30,000 to 50,000 ppm. The time of contact with such a fluorine-based gas may be selected from an appropriate time according to the type of aluminum powder, the type of powder mixed with the aluminum powder, the heating temperature, etc., and is usually several minutes. .
この発明の製法をより具体的に説明すると、 アルミニゥム粉末を 、 例えば第 1図に示す熱処理炉 1内に設けたガス処理室 9内に導入 して、 フッ素系ガスに接触させる。上記炉 1は、 外殻 2内に設けた ヒータ 3の内側に内容器 4を入れたビット炉で、 炉 1外から排気管 6が内容器 4内に挿入されるとともに、 ガス等入管 5が内容器 4内 を通ってガス処理室 9の下側から室内に、 粉末出口管 8が内容器 4 内を通ってガス処理室 9の上側から室内にそれぞれ挿入されている 。 また、 上記ガス導入管 5にはボンべ 1 5, 1 6から流量計 1 7, バルブ 1 8等を経由してガスが供耠される。 図中、 1 3は真空ボン ブ、 1 4は除害装 Sである。  To explain the production method of the present invention more specifically, aluminum powder is introduced into, for example, a gas treatment chamber 9 provided in the heat treatment furnace 1 shown in FIG. 1 and brought into contact with a fluorine-based gas. The above furnace 1 is a bit furnace in which an inner vessel 4 is placed inside a heater 3 provided in an outer shell 2, and an exhaust pipe 6 is inserted into the inner vessel 4 from outside the furnace 1, and a gas inlet pipe 5 is provided. The powder outlet pipe 8 is inserted into the room from the upper side of the gas processing chamber 9 through the inner container 4, passing through the inner container 4 from the lower side of the gas processing chamber 9. Gas is supplied to the gas introduction pipe 5 from the cylinders 15 and 16 via the flowmeter 17 and the valve 18. In the figure, reference numeral 13 denotes a vacuum bomb and reference numeral 14 denotes an abatement system S.
この構成において、 上記ガス処理室 9內を所定の反応温度に加熱 し、 上記ガス導入管 50先 ¾にあけたガス出口 5 aからフッ素系ガ ス、 例えば NF, と N2 ガスの混合ガスを吹き上げる。 また、 粉末 貯槽 7に設けた開閉弁(図示せず) を開弁して、 粉末貯槽 7内のァ ルミニゥム粉末 1 1を粉末出口管 8に供耠して、 その下端の粉末出 口 8 aからガス処理室 9内に落下させる。 上 I5NF, は 250〜4 00での温度で活性基のフッ素を発生し、 アルミニウム粉末との衡 突でアルミニウム粉末 1 1の表面の有機, 無機系の汚染を除去する と同時に、 このフッ素がアルミニウム粉末 1 1の表面の Ajg2 Oa , A£ (OH) , 等の酸化物と次式に示すように反応し、 アルミ二 ゥム粉末 1 1の表面に、 ごく薄いフッ化胰 AjgF, を形成する。 In this configuration, the gas processing chamber 9 內 is heated to a predetermined reaction temperature. Then, a fluorine-based gas, for example, a mixed gas of NF, and N 2 gas is blown up from the gas outlet 5a opened at the top of the gas introduction pipe 50. In addition, the on-off valve (not shown) provided in the powder storage tank 7 is opened to supply the aluminum powder 11 in the powder storage tank 7 to the powder outlet pipe 8, and the powder outlet 8a at the lower end thereof is provided. From the gas treatment chamber 9. Above I5NF, generates fluorine as an active group at a temperature of 250-400, and removes organic and inorganic contamination on the surface of aluminum powder 11 by collision with aluminum powder. Reacts with oxides such as Ajg 2 Oa, A £ (OH), etc. on the surface of powder 11 as shown in the following formula to form ultra-thin fluoride AjgF, on the surface of aluminum powder 11 I do.
Α£ι 0, + 6 F→2 A Fa +3/20t Α £ ι 0, + 6 F → 2 A Fa +3/20 t
A£ (OH) t +3F-»AjeFa +3/2H, 0 A £ (OH) t + 3F- »AjeF a + 3 / 2H, 0
この反応により、 アルミニウム粉末 1 1の表面の酸化皮膜はフッ 化膜に変換され、 表面に吸着されていた 0, も除去される。 そして 、 :のようなフッ化腠は、 0¾ , Η, , Η, 0が存在しない場合、 600で以下の温度で安定であって、 後続の窒化処理までの間にお けるアルミニウム粉末 1 1の生地への酸化皮膜の形成や 02 の吸着 を防止する。 また、 このようなフッ化処理では、 その第 1段陏で炉 材表面に対してフッ化膜が形成されることとなることから、 その膜 によって、 以後の炉材表面に対するフッ素系ガスに基づく損傷が防 止されるようになる。 これらフッ化処理されたアルミニウム粉末 1 1は上記ガス処理室 9の底部に配置された粉末収容箱 1 0に溜めら れる。 By this reaction, the oxide film on the surface of the aluminum powder 11 is converted into a fluoride film, and the 0, adsorbed on the surface is also removed. And, in the absence of 0 ¾ , Η,, Η, 0, the fluorinated aluminum is stable at the following temperature at 600, and the aluminum powder before the subsequent nitriding treatment is 1 1 to prevent the adsorption of formation and 0 2 of the oxide film to the fabric. In such a fluoridation treatment, a fluoride film is formed on the surface of the furnace material in the first stage, and the film is used to form a fluorine-based gas on the surface of the furnace material thereafter. Damage will be prevented. These fluorinated aluminum powders 11 are stored in a powder storage box 10 arranged at the bottom of the gas processing chamber 9.
そののち、 上記粉末収容箱 10に溜められアルミニウム粉末 1 1 を、 上記熱処理炉 1と同様の熱処理炉を用いて、 窒化処理する。 す なわち、 熱処理炉内に設けたガス処理室中を 450〜550での窒 化温度に加熱し、 その状態で ΝΗ3 、 あるいは NHS と炭素源を有 するガス (例えば R Xガス) との混合ガスをガス導入管の先端のガ ス出口から吹き上げるとともに、 粉末出口管からアルミニウム粉末 1 1を落下させて、 両者を接触させる。 これにより、 上記フッ化膜 が、 H, または微量の水分によって例えば次式のように還元あるい は破壞され、 それによつて活性なアルミニウム粉末 1 1の生地が露 呈形成される。After that, the aluminum powder 11 stored in the powder storage box 10 is nitrided using the same heat treatment furnace as the heat treatment furnace 1. Ie, heating the gas treatment chamber provided in the heat treatment furnace to nitrided temperature at 450 to 550, have a Nyuita 3 or NH S and a carbon source, in this state A mixed gas with the gas to be blown (eg, RX gas) is blown up from the gas outlet at the end of the gas inlet tube, and the aluminum powder 11 is dropped from the powder outlet tube to bring them into contact. As a result, the above-mentioned fluoride film is reduced or destroyed by H or a trace amount of water, for example, as shown in the following formula, whereby the active aluminum powder 11 is exposed and formed.
Figure imgf000007_0001
Figure imgf000007_0001
このようにして、 活性なアルミニウム粉末 1 1の生地が形成され ると同時に、 活性な N原子がアルミニウム粉末 1 1内に侵入、 拡散 してゆき、 その結果、 上記生地の表面に A Nを含有する化合物層 (窒化履) が形成される。  In this way, the active aluminum powder 11 is formed into the dough, and at the same time, the active N atoms penetrate and diffuse into the aluminum powder 11 and, as a result, contain AN on the surface of the dough. A compound layer (nitriding) is formed.
このような窒化層が形成されるのは、 従来の窒化法でも同様であ るが、 従来法では、 常温より蜜化温度まで上昇する面に形成される 酸化皮膜や、 このとき吸着される 0 , 分によって表面の活性度が低 下しているので、 N原子の表面吸着の度合いが低く、 不均一である 。 また、 このような不均一性は、 NH, の分解の度合いを炉內で均 —に保つことが実際上困難であることによつても拡大される。 この 発明の製法では、 アルミニウム粉末 1 1の表面における N原子の吸 着が均一かつ迅速に行われるので、 上記のような問題は生じない。 このようにして得られたアルミニウム粉末 1 1は、 第 2図に示す ように、 その表面層が檄密で均一な硬質窒化曆 Aで形成されている。 そののち、 上記アルミニウム粉末 1 1を、 公知の H. I. P.装彘 2 0 を用いて、 所望形状のアルミニウム合金製品に加圧成形する。  The formation of such a nitrided layer is the same in the conventional nitridation method, but in the conventional method, the oxide film formed on the surface rising from the room temperature to the honey temperature, Since the activity of the surface is reduced by the amount, the degree of surface adsorption of N atoms is low and non-uniform. Such non-uniformity is also magnified by the fact that it is practically difficult to keep the degree of decomposition of NH, uniformly in the reactor. According to the production method of the present invention, the adsorption of N atoms on the surface of the aluminum powder 11 is performed uniformly and quickly, so that the above-mentioned problem does not occur. As shown in FIG. 2, the aluminum powder 11 thus obtained has a surface layer formed of hard and uniform hard nitride A, as shown in FIG. Thereafter, the aluminum powder 11 is press-formed into an aluminum alloy product having a desired shape using a known HIP device 20.
このように、 この発明の製法は、 H. I. P.装置 2 0にかける前に、 アルミニウム粉末 1 1の表面の酸化皮膜を除去していることから、 各種粉末を混合したアルミニゥム粉末 1 1を加熱する必要がなく、 アルミニウム粉末 1 1に混合する粉末として溶融温度の低い粉末を β 用いる場合にも、 得られる加工成形品は強度, 靱性等の機械的性質 に優れたものになる。 しかも、 アルミニウム粉末 1 1の表面暦が硬 質窒化履で形成されていることから、 特に強度に優れている。 As described above, in the manufacturing method of the present invention, since the oxide film on the surface of the aluminum powder 11 is removed before being applied to the HIP device 20, it is necessary to heat the aluminum powder 11 mixed with various powders. Powder with low melting temperature as powder to be mixed with aluminum powder 1 Even when β is used, the resulting molded product has excellent mechanical properties such as strength and toughness. Moreover, since the surface calendar of the aluminum powder 11 is formed of hard nitrided shoes, it is particularly excellent in strength.
以上のように、 この発明のアルミニゥム粉末加圧成形品の製法は 、 窒化処理に先立って、 フッ化処理を行う。 これにより、 アルミ二 ゥム粉末の表面の酸化皮膜等の不艤 皮膜がフッ化膜に変化し、 ァ ルミニゥム粉末の表面の保護が行われる。 したがって、 フッ化膜の 形成から窒化処理の間に時間的な経通があっても、 アルミ二ゥム粉 末の表面に形成されたフッ化膜は良好な伏態でアルミニゥム粉末の 表面の保護を行う結果、 アルミニウム粉末の表面に対する再度の酸 化皮膜の形成が防止される。 このフッ化膜は後挠の窒化処理時に分 解除去され、 それによつてアルミニゥム粉末の表面が露呈するよう になる。 この露呈されたアルミニウム粉末の表面は活性な状態とな つていることから、 窒化処理における Ν原子はアルミニゥム粉末の 表面層内に拡教しゃすくなっており、 上記 Ν原子は深く均一に拡散 する。 これにより、 アルミニウム粉末の表面層が、 厚みが厚く、 か つ均一な硬質窒化層に形成される。 したがって、 得られる加工成形 品は強度, 靱性等の機械的性質に優れたものになる。  As described above, in the method for producing an aluminum powder press-formed product of the present invention, fluorination is performed prior to nitriding. As a result, an erroneous film such as an oxide film on the surface of the aluminum powder is changed to a fluoride film, and the surface of the aluminum powder is protected. Therefore, even if there is a time passage between the formation of the fluoride film and the nitriding treatment, the fluoride film formed on the surface of the aluminum powder can protect the surface of the aluminum powder in good condition. As a result, the formation of the oxide film again on the surface of the aluminum powder is prevented. This fluoride film is decomposed and removed during the subsequent nitriding treatment, thereby exposing the surface of the aluminum powder. Since the surface of the exposed aluminum powder is in an active state, the Ν atom in the nitriding treatment spreads in the surface layer of the aluminum powder, and the Ν atom diffuses deeply and uniformly. Thereby, the surface layer of the aluminum powder is formed into a thick and uniform hard nitrided layer. Therefore, the resulting molded product has excellent mechanical properties such as strength and toughness.
図面の簡単な説明  BRIEF DESCRIPTION OF THE FIGURES
第 1図はこの発明の一実施例に用いる熱処理炉の断面図、 第 2図 はアルミニゥム粉末の窒化層の状態を示す断面図、 第 3図は Η. Ι. Ρ. 装置の概念図である。  FIG. 1 is a cross-sectional view of a heat treatment furnace used in one embodiment of the present invention, FIG. 2 is a cross-sectional view showing a state of a nitride layer of aluminum powder, and FIG. 3 is a conceptual diagram of a Η.Ι.Ρ. .
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
つぎに、 この発明を実施例にもとづいて説明する。  Next, the present invention will be described based on embodiments.
〔実施例〕  〔Example〕
アルミニゥム粉末をトリクロ πエタン洗浄した後、 第 1図に示す ような熱処理炉 1で N F 3 を 5 0 0 O p p m含有する N2 ガス雰囲 気で 30 0でで数分間接触させる。 その後、 上記熱処理炉 1で 53 0でで、 50 %NK 十 5 Q HNi の混合ガスで数分間窒化処理を 行い、 しかるのち空冷して取り出した。 得られたアルミニウム粉末 の窒化曆の厚みは 5〜1 0〃mであり、 その表面硬度は 1 90 0〜 2 1 0 OHvであった。 この表面硬度は、 従来知られた方法で窒化 処理したものと比べて、 はるかに大きくなつている。 そののち、 上 記のようにして H. I . 装置を用 、て所望形状のァルミニゥム合金製 品にした。 このアルミニウム合金製品は従来例のアルミニウム合金 製品よりもはるかに強度、 靭性に優れていた。 After the trichloroethane π ethane washed Aruminiumu powder, the NF 3 in the heat treatment furnace 1 as shown in FIG. 1 5 0 0 O ppm content to N 2 gas Kiri囲 Contact at 300 ° C for several minutes. Thereafter, nitriding treatment was performed in the above heat treatment furnace 1 at 530 with a mixed gas of 50% NK15QHNi for several minutes, and then, the mixture was air-cooled and taken out. The obtained aluminum powder had a nitride thickness of 5 to 10 m and a surface hardness of 190 to 210 OHv. This surface hardness is much higher than that obtained by nitriding by a conventionally known method. After that, an aluminum alloy product having a desired shape was obtained by using the HI device as described above. This aluminum alloy product had much higher strength and toughness than the conventional aluminum alloy product.

Claims

請 求 の 範 囲 The scope of the claims
1. アルミニウム粉末をフッ素系ガスに加熱伏態で接 «させ、 つぎ に、 このアルミニウム粉末を窒化ガスに加熱伏 3¾で接賊させてアル ミニゥム粉末の表面層に硬質の窒化曆を形成し、 この窒化層を形成 したアルミニゥム粉末を直接加圧成形して加圧成形品にすることを 特徴とするアルミニウム粉末加圧成形品の製法。 1. The aluminum powder is brought into contact with the fluorine-based gas in a heated state, and then the aluminum powder is brought into contact with the nitriding gas in a heated state to form a hard nitride on the surface layer of the aluminum powder. A method for producing an aluminum powder press-formed product, wherein the aluminum powder having the nitrided layer formed thereon is directly press-formed into a press-formed product.
PCT/JP1991/001599 1990-11-20 1991-11-20 Method of making pressure-molded product from aluminum powder WO1992008560A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2/316563 1990-11-20
JP2316563A JP2868889B2 (en) 1990-11-20 1990-11-20 Manufacturing method of aluminum powder press molded product

Publications (1)

Publication Number Publication Date
WO1992008560A1 true WO1992008560A1 (en) 1992-05-29

Family

ID=18078491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1991/001599 WO1992008560A1 (en) 1990-11-20 1991-11-20 Method of making pressure-molded product from aluminum powder

Country Status (2)

Country Link
JP (1) JP2868889B2 (en)
WO (1) WO1992008560A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0577436A1 (en) * 1992-07-02 1994-01-05 Sumitomo Electric Industries, Limited Nitrogen-combined aluminum sintered alloys and method of producing the same
EP2905096B1 (en) * 2014-04-07 2018-11-28 Thierry Präzisionslackiertechnik GmbH Method of making surface energy modified particles and apparatus therefor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0413135D0 (en) * 2004-06-12 2004-07-14 Rolls Royce Plc A method of manufacturing a component by consolidating a metal powder
KR100721780B1 (en) * 2005-05-30 2007-05-25 주식회사 다이너머트리얼스 Method for manufacturing high strength ultra-fine/nano-structured Al/AlN or Al alloy/AlN composite materials

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5022707A (en) * 1973-07-02 1975-03-11
JPS5773103A (en) * 1980-10-27 1982-05-07 Res Dev Corp Of Japan Production of high strength heat resistant metallic material
JPS621836A (en) * 1985-06-28 1987-01-07 Komatsu Ltd Manufacture of tough sintered hard material
JPS6283404A (en) * 1985-10-04 1987-04-16 Furukawa Electric Co Ltd:The Production of composite metallic powder
JPS62199703A (en) * 1986-02-26 1987-09-03 Sumitomo Light Metal Ind Ltd Hot hydrostatic compression molding method for al-si powder alloy

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5022707A (en) * 1973-07-02 1975-03-11
JPS5773103A (en) * 1980-10-27 1982-05-07 Res Dev Corp Of Japan Production of high strength heat resistant metallic material
JPS621836A (en) * 1985-06-28 1987-01-07 Komatsu Ltd Manufacture of tough sintered hard material
JPS6283404A (en) * 1985-10-04 1987-04-16 Furukawa Electric Co Ltd:The Production of composite metallic powder
JPS62199703A (en) * 1986-02-26 1987-09-03 Sumitomo Light Metal Ind Ltd Hot hydrostatic compression molding method for al-si powder alloy

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0577436A1 (en) * 1992-07-02 1994-01-05 Sumitomo Electric Industries, Limited Nitrogen-combined aluminum sintered alloys and method of producing the same
US5460775A (en) * 1992-07-02 1995-10-24 Sumitomo Electric Industries, Ltd. Nitrogen-combined aluminum sintered alloys and method of producing the same
EP2905096B1 (en) * 2014-04-07 2018-11-28 Thierry Präzisionslackiertechnik GmbH Method of making surface energy modified particles and apparatus therefor

Also Published As

Publication number Publication date
JP2868889B2 (en) 1999-03-10
JPH04187704A (en) 1992-07-06

Similar Documents

Publication Publication Date Title
EP3175012B1 (en) Enhanced activation of self-passivating metals
JPH05195193A (en) Nitriding method of nickel alloy
US5252145A (en) Method of nitriding nickel alloy
WO1992008560A1 (en) Method of making pressure-molded product from aluminum powder
EP0481136B1 (en) Method of nitriding steel
SG177725A1 (en) Expanded graphite sheet
US3972838A (en) Composition for diffusing phosphorus
Hong et al. Efficacy of acid cleaning on the deoxidation of titanium powder using calcium
JP2868890B2 (en) Manufacturing method of aluminum powder press molded product
US3931039A (en) Composition for diffusing phosphorus
JPS62270761A (en) Nitriding method for steel
JPS60165370A (en) Nitriding treatment of stainless steel
US4025464A (en) Composition for diffusing phosphorus
US5194097A (en) Method of nitriding steel and heat treat furnaces used therein
JPH02118059A (en) Method for nitriding hardly nitridable metallic material with gaseous ammonia
EP1179609A1 (en) A process for nitriding an aluminum-containing substrate
JP3286610B2 (en) Gas sulfuritriding method
CN1032411C (en) Process for manufacturing compacted articles of aluminium powder
EP1179610A1 (en) A process and an apparatus for nitriding an aluminium-containing substrate
JPH09157830A (en) Method for nitriding metallic material with gas and device therefor
JPS60177174A (en) Surface treatment of iron-base sintered parts
JPS6168310A (en) Production of silicon nitride having high purity using silicon chip as raw material
JPH0383861A (en) Production of sic-coated sic ceramic product
JPH10317008A (en) Production of metallic powder sintered compact
JPS61232208A (en) Production of metallic nitride powder or metallic carbon nitride powder

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU NL SE