JPH04207903A - Production of carbon material for sliding current collection - Google Patents

Production of carbon material for sliding current collection

Info

Publication number
JPH04207903A
JPH04207903A JP2330799A JP33079990A JPH04207903A JP H04207903 A JPH04207903 A JP H04207903A JP 2330799 A JP2330799 A JP 2330799A JP 33079990 A JP33079990 A JP 33079990A JP H04207903 A JPH04207903 A JP H04207903A
Authority
JP
Japan
Prior art keywords
current collector
sliding current
carbon
sliding
materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2330799A
Other languages
Japanese (ja)
Inventor
Kenichiro Fujimoto
健一郎 藤本
Koichiro Mukai
向井 幸一郎
Kenichi Fujimoto
研一 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOHOKU KYOWA CARBON KK
Railway Technical Research Institute
Nippon Steel Corp
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
TOHOKU KYOWA CARBON KK
Railway Technical Research Institute
Nippon Steel Corp
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOHOKU KYOWA CARBON KK, Railway Technical Research Institute, Nippon Steel Corp, Nippon Steel Chemical Co Ltd filed Critical TOHOKU KYOWA CARBON KK
Priority to JP2330799A priority Critical patent/JPH04207903A/en
Publication of JPH04207903A publication Critical patent/JPH04207903A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)

Abstract

PURPOSE:To obtain a carbon series sliding current collecting material having high strength, low electric resistance and high resistance to brittle fracture by a method wherein a carbonaceous powder material is admixed with specific quantity of metallic fibers and then it is molded and sintered and further subjected to heat treatment. CONSTITUTION:Metallic fibers are admixed by 5-60vol.%, preferably 10-45vol.%, for the total of a carbonaceous powder material and the metallic fibers. When it is lower than 5vol.% electric resistance does not decrease sufficiently whereas when it is higher than 60vol.% the carbonaceous powder material is not sintered sufficiently thus causing decrease of strength. Thus obtained mixture material is then molded or subjected to cold hydrostatic press and sintered at a temperature lower than the melting point of the metallic fiber under an environment of inert gas such as argon or nitrogen thus carbonizing the mixture material. It is further subjected to heat treatment for quenching the metallic fibers.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、炭素系摺動集電材料の製造方法に関するもの
である。更に詳しくいえば、バンタクラフ摺板、電動機
用集電材料等に適用可能な炭素系摺動集電材料の製造方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing a carbon-based sliding current collector material. More specifically, the present invention relates to a method for manufacturing a carbon-based sliding current collector material that can be applied to vantakraft sliding plates, current collecting materials for electric motors, and the like.

〔従来の技術〕[Conventional technology]

現在、摺動集電用材料としては、大きく分類して鋳造合
金、焼結合金等の金属系材料と炭素系材料の二つかある
Currently, there are two main types of sliding current collector materials: metallic materials such as cast alloys and sintered alloys, and carbon-based materials.

金属系摺動集電材料は、電気抵抗が極めて低く高強度を
有するが、炭素系摺動集電材料と比較してアーク発生量
か多く、高強度故に相手材の摩耗量が増加するという欠
点を有している。
Metal-based sliding current collector materials have extremely low electrical resistance and high strength, but the disadvantage is that they generate more arcs than carbon-based sliding current collector materials, and their high strength increases the amount of wear on the mating material. have.

従来、集電用パンククラフ摺板材料としては、主として
銅、銅−鉄合金又は銅−錫一亜鉛系合金等の鋳造合金、
銅系又は鉄系等の焼結合金等の金属系摺動集電材料か用
いられているか、近年、車両の冷房等による集電容量の
増大や車両運行速度の高速化等により、集電用パンタグ
ラフ摺板の使用環境が一段と過酷になってきている。そ
して最近は、車両の高速化に伴って離線率か増加し、機
械的摩耗量やアーク摩耗量が増大しているほか、寒冷地
におけるトロリー線の氷結がもたらす異常摩耗等の問題
や、摺動音が太きいという騒音公害等の問題も発生して
いる。そこで、これらの摩耗に対しては、摺板それ自体
だけでなく、トロリー線、起電レール等の相手材料の損
耗をも少なくする摺動特性の良好な集電材料の開発か要
望されている。また、アーク発生は、アーク摩耗のみな
らず電波障害をも引き起こすため問題視されている。
Conventionally, the materials for current collector punk rough plates have mainly been copper, cast alloys such as copper-iron alloys or copper-tin-zinc alloys,
Metal-based sliding current collector materials such as copper-based or iron-based sintered alloys are used.In recent years, due to the increase in current collection capacity due to vehicle cooling, etc., and the increase in vehicle operating speed, current collection The environment in which pantograph sliding plates are used is becoming increasingly harsh. Recently, as the speed of rolling stock has increased, the wire loss rate has increased, resulting in an increase in the amount of mechanical wear and arc wear, as well as problems such as abnormal wear caused by freezing of trolley wires in cold regions, and sliding problems. Problems such as loud noise pollution have also arisen. Therefore, in order to prevent such wear, there is a need to develop a current collecting material with good sliding properties that reduces wear not only on the sliding plate itself but also on mating materials such as trolley wires and electromotive rails. . Further, arc generation is viewed as a problem because it causes not only arc wear but also radio wave interference.

ところで、これら金属系摺動集電材料の欠点を補うこと
か可能であると期待されているものとして炭素系材料か
ある。この炭素系摺動集電材料は、良好な自己潤滑性と
比較的低い電気抵抗を有し、耐アーク性に優れており、
軽量であって摺動音も小さいという特徴を兼ね備えてお
り、上記金属系摺動集電材料の欠点をカバーすることが
できる。
By the way, carbon-based materials are expected to be able to compensate for the drawbacks of these metal-based sliding current collector materials. This carbon-based sliding current collector material has good self-lubricating properties, relatively low electrical resistance, and excellent arc resistance.
It has the characteristics of being lightweight and having low sliding noise, and can overcome the drawbacks of the above-mentioned metal-based sliding current collector materials.

しかしながら、この炭素系摺動集電材料は、金属系摺動
集電材料と比較すると電気抵抗がかなり高く、強度も極
端に低いということから、大きな力が直接作用する箇所
には使えない。また、現在、これらの炭素系摺動集電材
料はモーターブラシ等の分野で広く利用されているが、
この様な炭素系摺動集電材料を利用している分野でも、
次第にその使用条件が厳しくなってきており、その耐摩
耗性の向上や電気抵抗の低下がより一層求められている
。また、炭素系摺動集電材料は、炭素単独ではその脆性
から折損し易く、折損した場合には集電材料が飛散し危
険であるほか、最悪の場合には集電が不可能になって車
両等が停止する場合もある。
However, this carbon-based sliding current collector material has considerably higher electrical resistance and extremely low strength than metal-based sliding current collector materials, so it cannot be used in locations where large forces are directly applied. In addition, these carbon-based sliding current collector materials are currently widely used in fields such as motor brushes,
Even in fields that use carbon-based sliding current collector materials,
The conditions for their use are becoming increasingly strict, and there is an even greater demand for improved wear resistance and lower electrical resistance. In addition, carbon-based sliding current collector materials are easily broken due to their brittleness when carbon is used alone, and if they break, the current collecting material will scatter, which is dangerous, and in the worst case, current collection may become impossible. Vehicles may also stop.

そして、現在、これら炭素系摺動集電材料の欠点を解決
すべく各方面で検討が進められている。
Currently, studies are being carried out in various fields to solve the drawbacks of these carbon-based sliding current collector materials.

例えば、(1)炭素系摺動集電材料に金属を含浸させる
方法(特公昭52−822号公報)や、(2)炭素材料
の原料粉末に金属粉を添加することにより電気抵抗を下
げると共に強度の向上を図るという方法(特開昭60−
238.402号公報)が提案されており、また、(3
)炭素材料原料に金属繊維を配合して成形し焼成  ゛
する方法(特開昭62−197.352号公報)や(4
)炭素材料原料に金属繊維を配合して押出成形した後、
焼成し、金属を含浸させる方法(特開昭61−245,
957号公報)等も提案されている。
For example, (1) a method of impregnating a carbon-based sliding current collector material with metal (Japanese Patent Publication No. 52-822), and (2) adding metal powder to raw material powder of carbon material to lower electrical resistance and A method of improving strength (Japanese Patent Laid-Open No. 1983-
238.402) has been proposed, and (3
) A method of blending metal fibers with carbon material raw materials, molding and firing (Japanese Patent Application Laid-open No. 197.352/1982) and (4)
) After mixing metal fibers with carbon material raw materials and extrusion molding,
Method of firing and impregnating with metal (Japanese Patent Application Laid-Open No. 61-245,
No. 957) and the like have also been proposed.

しかしながら、上記した(])、(2)の方法は、強度
向上にはある程度の効果が期待できるものの、電気抵抗
の低下効率が低く、また脆性破壊の防止に対する効果は
あまり期待できない。また、(3)の方法では、金属繊
維を使用したことで電気抵抗の低下効率は高いものの、
電気抵抗を十分に低下させることが困難である。さらに
、(4)の方法では、押出成形により金属繊維を一方向
に配向させているが、この方法によると繊維の配向方向
に平行な方向にクラックが入り易く、特定の方向にはか
えって弱くなる傾向がある。
However, although the above-mentioned methods (]) and (2) can be expected to be effective to some extent in improving strength, they have low efficiency in lowering electrical resistance, and cannot be expected to be very effective in preventing brittle fracture. In addition, in method (3), although the efficiency of reducing electrical resistance is high due to the use of metal fibers,
It is difficult to sufficiently reduce electrical resistance. Furthermore, in method (4), the metal fibers are oriented in one direction by extrusion molding, but with this method, cracks tend to occur in the direction parallel to the direction of fiber orientation, and the metal fibers become weaker in certain directions. Tend.

・〔発明が解決しようとする課題〕 本発明の目的は、従来の炭素系摺動集電材料と比較して
低い電気抵抗を有し、かつ、脆性破壊に対して抵抗を有
する高強度の炭素系摺動集電材料を製造する方法を提供
することにある。
・[Problems to be Solved by the Invention] The purpose of the present invention is to create a high-strength carbon material that has lower electrical resistance than conventional carbon-based sliding current collector materials and is resistant to brittle fracture. An object of the present invention is to provide a method for manufacturing a sliding current collecting material.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは、炭素材料中に金属繊維を分散させること
で、電気比抵抗が著しく低下し、しかも炭素材料の欠点
である脆さや欠は易さが改善されることに着目し、更に
これを改善し、その後に熱処理を施すことにより物性の
改善が図れることを見出し、本発明を完成した。
The present inventors focused on the fact that by dispersing metal fibers in a carbon material, the electrical resistivity is significantly lowered, and the flaws of carbon materials such as brittleness and ease of chipping are improved. The present invention has been completed based on the discovery that the physical properties can be improved by improving the properties and then applying heat treatment.

本発明は、炭素質粉末原料に5volX以上60vOI
X未満の金属繊維を添加して混合した後、成形して焼成
し、更に熱処理する摺動集電用炭素材料の製造方法であ
る。
The present invention provides a carbonaceous powder raw material with an OI of 5 volX or more and 60 vOI
This is a method for producing a carbon material for a sliding current collector, in which metal fibers of less than X are added and mixed, then molded, fired, and further heat treated.

以下、本発明を更に詳述する。The present invention will be explained in further detail below.

本発明で使用する炭素質粉末原料は、ピッチコークス、
黒鉛、石炭等の炭素を主体とする粉末であり、好ましく
はピッチコークスあるいはこのピッチコークスを主体と
するものである。ピッチコークスには、石油系、石炭系
等のピッチを非酸化性雰囲気で400〜550℃で熱処
理して得られる生□コークスと、その生コークスを更に
1,000〜1,400℃でか焼して得られるか焼コー
クスとがあるが、生コークスはそれ自体がバインダー成
分を含有するため成形性に優れているだけでなく、金属
繊維を多量に含有し得る点でも優れている。生コークス
を使用する場合、焼成時の割れや膨れが発生する確率を
減らし、歩留を上げるため、揮発分量を5〜17wt%
、好ましくは8〜14wt%としたものがよい。バイン
ダー成分を含有しないか焼コークス等の炭素質粉末原料
を使用する場合には、バインダーピッチ、フェノール樹
脂等のバインダーを必要とする。
The carbonaceous powder raw materials used in the present invention include pitch coke,
It is a powder mainly composed of carbon such as graphite or coal, preferably pitch coke or a powder mainly composed of pitch coke. Pitch coke is produced by heat-treating petroleum-based, coal-based pitch, etc. at 400 to 550°C in a non-oxidizing atmosphere, and the raw coke is further calcined at 1,000 to 1,400°C. However, raw coke itself contains a binder component, so it is not only excellent in moldability, but also excellent in that it can contain a large amount of metal fibers. When using raw coke, the volatile content should be 5 to 17 wt% to reduce the probability of cracking and blistering during firing and to increase yield.
, preferably 8 to 14 wt%. When using a carbonaceous powder raw material such as calcined coke that does not contain a binder component, a binder such as binder pitch or phenolic resin is required.

そして、摺動特性を更に向上させたいときには、炭素質
粉末原料の一部として黒鉛粉を使用することか有効であ
る。黒鉛粉の添加は、生コークスを使用するときは、熱
処理する前の原料ピッチ段階で行っても、熱処理後に行
ってもよく、また、か焼コークスとバインダーピッチを
使用するときには、この三者を混練する際に行っても、
この三者を混練し粉砕した後に行ってもよい。この目的
で使用する黒鉛粉は、天然黒鉛粉、人造黒鉛粉のいずれ
でもよく、その粒径は0.5〜30 o4、好ましくは
lO〜150趨である。添加量は、黒鉛粉の添加効果を
出現させ、炭素質マトリックスの焼結を阻害させないた
めに、炭素質粉末原料中に0.3〜30wt%、好まし
くは0.5〜10wt%である。黒鉛粉を多量に添加し
たい場合には、揮発分量が多めの生コークスを使用した
り、バインダーピッチ等のバインダー成分の補充を行う
のがよい。
When it is desired to further improve the sliding properties, it is effective to use graphite powder as part of the carbonaceous powder raw material. When raw coke is used, graphite powder may be added at the raw material pitch stage before heat treatment, or after heat treatment, and when calcined coke and binder pitch are used, these three may be added. Even when kneading,
It may be carried out after kneading and pulverizing these three materials. The graphite powder used for this purpose may be either natural graphite powder or artificial graphite powder, and its particle size is in the range of 0.5 to 30°, preferably 10 to 150. The amount added is 0.3 to 30 wt%, preferably 0.5 to 10 wt%, in the carbonaceous powder raw material in order to bring out the effect of adding graphite powder and not inhibit the sintering of the carbonaceous matrix. When it is desired to add a large amount of graphite powder, it is preferable to use raw coke with a large volatile content or to replenish a binder component such as binder pitch.

炭素質粉末原料中にバインダー成分が含まれていなかっ
たりあるいは不足するときには、その成形性を高め、焼
結させるために、バインダーを添加する。このバインダ
ーとしては、バインダーピッチ、フェノール樹脂等の樹
脂かある。バインターの添加量はその種類によって異な
るが、バインダーピッチを使用する場合であって、炭素
質粉末としてか焼コークス又はか焼コークスと黒鉛粉末
のようにバインダー成分を含まないものを使用するとき
は、その添加量は炭素質粉末1.00重量部に対し、5
0〜120重量部、好ましくは70〜100重量部であ
り、また、生コークスと黒鉛粉末のようにバインダー成
分を含むか不足するものを使用するときは、その添加量
は炭素質粉末1゜0重量部に対し10〜50重量部、好
ましくは25〜35重量部程度がよい。
When the carbonaceous powder raw material does not contain a binder component or is insufficient, a binder is added in order to improve its moldability and sinter it. Examples of this binder include binder pitch and resins such as phenol resin. The amount of binder added varies depending on the type of binder, but when using binder pitch and using carbonaceous powder that does not contain a binder component such as calcined coke or calcined coke and graphite powder, The amount added is 5 parts by weight per 1.00 parts by weight of carbonaceous powder.
The amount is 0 to 120 parts by weight, preferably 70 to 100 parts by weight, and when using materials that contain or lack a binder component, such as raw coke and graphite powder, the amount added is 1.0 parts by weight of carbonaceous powder. It is preferably about 10 to 50 parts by weight, preferably about 25 to 35 parts by weight.

金属繊維としては、熱処理効果のある鉄、鉄系合金、ニ
ッケル合金、ベリリウム銅、りん青銅、洋白、又はこれ
らの混合物、あるいは銅、銅系合金等との混合物かあり
、特に限定するものではないか、強度が高(、電気比抵
抗が低い金属か望ましい。しかし、熱処理を施した際に
、その金属の特性か変化しないものや、強度や耐衝撃性
か極端に低下したり、電気比抵抗か極端に上昇する等の
摺動集電材料として好ましくない変化をするものは適さ
ない。また、摺動する相手材よりも極端に硬いものは相
手材の摩耗量を増大させるし、低融点の金属では焼成時
に金属が溶は出すために焼成温度を高く設定することが
できず、いずれも好ましくない。
Metal fibers include iron, iron-based alloys, nickel alloys, beryllium copper, phosphor bronze, nickel silver, or mixtures thereof, or mixtures with copper, copper-based alloys, etc., and are not particularly limited. Metals with high strength (or low electrical resistivity) are desirable. However, when heat treatment is applied, the properties of the metal may not change, or the strength or impact resistance may drop significantly, or the electrical resistance may change. Materials that undergo unfavorable changes such as an extreme increase in resistance are not suitable as sliding current collector materials.Also, materials that are extremely harder than the sliding material will increase the amount of wear on the material and have a low melting point. With these metals, the firing temperature cannot be set high because the metal dissolves during firing, and both are unfavorable.

金属繊維の形状は、特に限定するものではないが、炭素
質マトリックスの焼結を阻害しないこと、配合を均一か
つ容易にすること等の理由から、繊維径が1 +r+n
+以下で、繊維長が10=以下のものが好ましい。また
、断面形状が角ばった多角形となるビビリ切削法により
調製された金属繊維を用いると、圧縮成形時に良好な成
形体か得られ易い等の効果が生じる。
The shape of the metal fiber is not particularly limited, but the fiber diameter is 1 + r + n for reasons such as not inhibiting sintering of the carbonaceous matrix and making blending uniform and easy.
It is preferable that the fiber length is 10= or less. In addition, when a metal fiber prepared by the chatter cutting method, which has a square cross-sectional polygonal cross-sectional shape, is used, it is possible to easily obtain a good molded product during compression molding.

金属繊維の添加量は、炭素質粉末原料と金属繊維の合計
に対し、5vo1%以上60volX未満、好ましくは
10〜45volXの範囲である。金属繊維の添加量か
5volX未満では電気抵抗が充分に下がらず、また、
60volに以上では炭素質原料の焼結か充分に進まず
強度の低下を招く。
The amount of metal fiber added is in the range of 5 vol. or more and less than 60 vol.X, preferably 10 to 45 vol.X, based on the total of the carbonaceous powder raw material and the metal fiber. If the amount of metal fiber added is less than 5 volX, the electrical resistance will not decrease sufficiently;
If the amount exceeds 60 vol, the sintering of the carbonaceous raw material will not proceed sufficiently, resulting in a decrease in strength.

炭素質粉末原料と金属繊維との混合は、ロッキンクミキ
サー、振とう式等のほぼ均一かつランタムに分散配合で
きる方法であれは、−船釣な方法でよく、特に限定され
るものではないが、混合中に大きなシュア−が作用し、
金属繊維か折れ曲かったり、切断されるような混合方法
は好ましくない。
The carbonaceous powder raw material and the metal fibers may be mixed by a method such as a rocking mixer or a shaking method that can be dispersed almost uniformly and randomly, and there is no particular limitation. , a large shure acts during mixing,
Mixing methods that cause the metal fibers to be bent or cut are not preferred.

以上のようにして得られた混合原料を、型込め成型又は
冷間静水圧プレス(CIP)成型等の方法で成形した後
、アルゴン、窒素等の不活性ガス雰囲気下に金属繊維の
融点以下の温度、例えは、800〜1,500°Cで焼
成して炭化する。
The mixed raw material obtained as described above is molded by a method such as molding or cold isostatic pressing (CIP), and then heated to a temperature below the melting point of the metal fiber in an inert gas atmosphere such as argon or nitrogen. It is carbonized by firing at a temperature of, for example, 800 to 1,500°C.

本発明の材料を得るためには、更に、金属繊維を焼き入
れ等するための熱処理を施す。この熱処理はマトリック
スが炭素であるため、カーボンか酸化消耗する恐れがあ
る温度領域で熱処理する場合には、アルゴン、窒素等の
不活性ガス雰囲気下で行う必要があるが、それ以外は、
それぞれの金属、合金に合わせた通常の熱処理条件でよ
い。例えば鉄製の繊維を含有する場合には、オーステナ
イト化温度から急冷することにより焼き入れ処理を行っ
たり、更に焼きもどし処理を行ったりすればよく、また
、りん青銅製の繊維を含有する場合には、225〜27
5℃で低温焼どんする。鉄製の繊維を含有する材料を焼
き入れ温度に保持する際には不活性ガス雰囲気下で行い
、急冷する際には数ミリ以下に粉砕したか焼コークス粒
等を材料の周囲に充填し、材料が直接大気に触れること
がないようにし、か焼コークスごと急冷して炭素マトリ
ックスが酸化消耗じないようにするのがよい。
In order to obtain the material of the present invention, the metal fibers are further subjected to heat treatment for hardening or the like. Since the matrix of this heat treatment is carbon, if the heat treatment is carried out in a temperature range where carbon may be oxidized and consumed, it must be carried out in an inert gas atmosphere such as argon or nitrogen.
Normal heat treatment conditions suitable for each metal and alloy may be used. For example, if it contains iron fibers, it may be quenched by rapid cooling from the austenitizing temperature, or further tempered, and if it contains phosphor bronze fibers, it may be quenched or tempered. , 225-27
Bake at a low temperature of 5℃. When holding materials containing iron fibers at the quenching temperature, it is done in an inert gas atmosphere, and when rapidly cooling, the material is filled with calcined coke particles crushed into a few millimeters or less. It is best to avoid direct contact with the atmosphere and to rapidly cool the calcined coke to prevent the carbon matrix from being oxidized and consumed.

また、直接冷媒中に投入して急冷し、その後酸化消耗し
た成形体の表面を切削してもよい。
Alternatively, the molded product may be placed directly into a refrigerant to be rapidly cooled, and then the surface of the molded product that has been consumed by oxidation may be cut.

本発明の摺動集電材料は、含有された金属繊維が特定方
向に配向しているわけではなく、特に冷間静水圧プレス
成型により製造した場合はほぼ等方向であり、いかなる
方向に使用しても高強度、低電気比抵抗等の特性を発現
するという特徴を有している。また、金属繊維で補強さ
れているために脆性破壊に対して強く、折損しても金属
繊維部分でつながるために飛散することが少なく、安全
て高強度、高耐衝撃性の集電摺動材料となる。更に、本
発明による摺動集電材料は、熱処理を施しであるので、
例えば鉄繊維を添加し、焼入れ処理を施した場合、従来
の材料と比較すると強度が高いという特徴を有している
。 、 本発明による摺動集電用炭素材料は、パンタグラフ摺板
の用途以外にも、集電材料として電動機用集電ブラシ等
の用途にも適用でき、広く応用か可能である、。
In the sliding current collector material of the present invention, the metal fibers contained therein are not oriented in a specific direction, but in particular, when manufactured by cold isostatic press molding, they are almost uniformly oriented, and can be used in any direction. However, it has characteristics such as high strength and low electrical resistivity. In addition, because it is reinforced with metal fibers, it is resistant to brittle fracture, and even if it breaks, it is less likely to scatter because it is connected by the metal fibers, making it a safe, high-strength, and high-impact-resistant current collector sliding material. becomes. Furthermore, since the sliding current collector material according to the present invention is heat-treated,
For example, when iron fiber is added and quenched, it has a feature of higher strength compared to conventional materials. The carbon material for sliding current collector according to the present invention can be applied not only to pantograph sliding plates but also to current collecting brushes for electric motors as a current collecting material, and can be widely applied.

〔実施例〕〔Example〕

以下、実施例及び比較例に基づいて、本発明を具体的に
説明する。
The present invention will be specifically described below based on Examples and Comparative Examples.

実施例1 平均粒径8趨に粉砕した揮発分12wt%の生コークス
に、ビビリ切削法により得られた繊維径60IJIn、
繊維長3Mの鉄繊維を27volX添加し、2 、 0
00 kg/cnrの成形圧で幅40mmX長さ120
 mm X厚さ20mmの大きさに成形した後、窒素雰
囲気下に3°C/hrで1,000℃まで昇温し焼成し
た。次いで、アルゴン雰囲気で900℃にてlhr加熱
した後、氷水に投入し、焼き入れ処理を施し、摺動集電
材料を作製した。
Example 1 Raw coke with a volatile content of 12 wt% crushed into 8 average particle diameters was mixed with fibers having a diameter of 60 IJIn obtained by the chatter cutting method.
Added 27volX iron fiber with a fiber length of 3M, and added 2.0
Width 40mm x length 120mm with molding pressure of 00 kg/cnr
After molding into a size of 20 mm x 20 mm, the temperature was raised to 1,000° C. at 3° C./hr in a nitrogen atmosphere and fired. Next, after heating at 900° C. for 1 hour in an argon atmosphere, the material was placed in ice water and subjected to a quenching treatment to produce a sliding current collector material.

実施例2 鉄の繊維の添加量を5vo1%とした以外は、実施例1
と同様の方法で摺動集電材料を作製した。
Example 2 Example 1 except that the amount of iron fiber added was 5vol%
A sliding current collector material was prepared in the same manner as described above.

実施例3 鉄の繊維の添加量を10volXとした以外は、実施例
1と同様の方法で摺動集電材料を作製した。
Example 3 A sliding current collector material was produced in the same manner as in Example 1, except that the amount of iron fiber added was 10 volX.

実施例4 鉄の繊維の添加量を20volNとした以外は、実施例
1と同様の方法で摺動集電材料を作製した。
Example 4 A sliding current collector material was produced in the same manner as in Example 1, except that the amount of iron fiber added was 20 volN.

実施例5 鉄の繊維の添加量を40vo1%とした以外は、実施例
1と同様の方法で摺動集電材料を作製した。
Example 5 A sliding current collector material was produced in the same manner as in Example 1, except that the amount of iron fiber added was 40vol%.

実施例6 実施例1で用いた原料生コークス中に、平均粒子径10
0趨の天然黒鉛をこの生コークスに対して1 wtX添
加した炭素質粉末原料を調製し、この炭素質粉末原料を
使用した以外は、実施例1と同様の方法で摺動集電材料
を作製した。
Example 6 In the raw raw coke used in Example 1, an average particle size of 10
A sliding current collector material was prepared in the same manner as in Example 1, except that a carbonaceous powder raw material was prepared by adding 1 wtX of natural graphite to this raw coke, and this carbonaceous powder raw material was used. did.

比較例1 平均粒径8趨に粉砕した揮発分12wtXの生コークス
に、ビビリ切削法により得られた繊維径60IJIR1
繊維長3論の鉄繊維を27volN添加し、2゜000
 kg/c(の成形圧で幅40mmX長さ120m×厚
さ20mmの大きさに成形した後、窒素雰囲気下に3℃
/hrで1,000℃まで昇温し焼成し、摺動集電材料
を作製した。
Comparative Example 1 Raw coke with a volatile content of 12wtX crushed to an average particle size of 8 was mixed with fibers having a diameter of 60IJIR1 obtained by the chatter cutting method.
Add 27 volN of iron fiber with a fiber length of 3 to 2°000
After molding into a size of 40 mm width x 120 m length x 20 mm thickness at a molding pressure of kg/c, it was heated at 3°C under a nitrogen atmosphere.
The temperature was raised to 1,000° C./hr and fired to produce a sliding current collector material.

比較例2 鉄の繊維の添加量を5 volXとした以外は、比較例
1と同様の方法で摺動集電材料を作製した。
Comparative Example 2 A sliding current collector material was produced in the same manner as Comparative Example 1, except that the amount of iron fiber added was 5 volX.

比較例3 鉄の繊維の添加量をl OvolXとした以外は、比較
例1と同様の方法で摺動集電材料を作製した。
Comparative Example 3 A sliding current collector material was produced in the same manner as in Comparative Example 1, except that the amount of iron fiber added was 1 OvolX.

比較例4 鉄の繊維の添加量を20vo1%とした以外は、比較例
1と同様の方法で摺動集電材料を作製した。
Comparative Example 4 A sliding current collector material was produced in the same manner as in Comparative Example 1, except that the amount of iron fiber added was 20vol%.

比較例5 鉄の繊維の添加量を40vo1%とじた以外は、比較例
1と同様の方法で摺動集電材料を作製した。
Comparative Example 5 A sliding current collector material was produced in the same manner as Comparative Example 1, except that the amount of iron fiber added was 40vol%.

比較例6 平均粒径8趨に粉砕した生コークスを2,000 kg
 / cnfの成形圧で幅40M×長さ120mmX厚
さ20mmに成形した後、窒素雰囲気下に3°C/hr
で1,000℃まで昇温し焼成し摺動集電材料を作製し
た。
Comparative Example 6 2,000 kg of raw coke pulverized to an average particle size of 8
/cnf molding pressure to a width of 40M x length of 120mm x thickness of 20mm, and then heated at 3°C/hr under a nitrogen atmosphere.
The temperature was raised to 1,000°C and fired to produce a sliding current collector material.

以上の各実施例及び各比較例で準備した摺動集電用炭素
材料について、その嵩密度、電気比抵抗、曲げ強度、シ
ャルピー衝撃値を測定した。結果を第1表に示す。
The bulk density, electrical resistivity, bending strength, and Charpy impact value of the sliding current collector carbon materials prepared in each of the above Examples and Comparative Examples were measured. The results are shown in Table 1.

この第1表の結果から明らかなように、本発明の方法に
よって得られた摺動集電用炭素材料は、従来の炭素材料
に比べて高強度であり、かつ、低い電気抵抗を有し、し
かも、耐衝撃性も高いことが判る。
As is clear from the results in Table 1, the sliding current collector carbon material obtained by the method of the present invention has higher strength and lower electrical resistance than conventional carbon materials. Moreover, it is found that the impact resistance is also high.

第  1  表 (注)*1:g/c耐  *2:μΩ・Cm*3: k
gf/crI*4: kgf−cm/crd〔発明の効
果〕 以上のように、本発明によれは、軽量で潤滑性、耐アー
ク性、低騒音性等において優れた性能を有する炭素系摺
動集電材料の特徴をそのまま継承しつつ、同時に、優れ
た低電気抵抗を有し、しかも、耐衝撃性においても良好
な極めて有用な摺動集電用炭素材料を製造することがで
きる。
Table 1 (Note) *1: g/c resistance *2: μΩ・Cm *3: k
gf/crI*4: kgf-cm/crd [Effects of the Invention] As described above, the present invention provides a carbon-based sliding material that is lightweight and has excellent performance in terms of lubricity, arc resistance, low noise, etc. It is possible to produce an extremely useful carbon material for sliding current collectors that inherits the characteristics of current collector materials, has excellent low electrical resistance, and also has good impact resistance.

特許出願人  新日鐵化学株式会社 同 上   新日本製鐵株式會社Patent applicant: Nippon Steel Chemical Co., Ltd. Same as above Nippon Steel Corporation

Claims (1)

【特許請求の範囲】[Claims] (1)炭素質粉末原料に5vol%以上60vol%未
満の金属繊維を添加して混合した後、成形して焼成し、
更に熱処理することを特徴とする摺動集電用炭素材料の
製造方法。
(1) After adding and mixing 5 vol% or more and less than 60 vol% of metal fibers to the carbonaceous powder raw material, molding and firing,
A method for producing a carbon material for a sliding current collector, characterized by further heat treatment.
JP2330799A 1990-11-30 1990-11-30 Production of carbon material for sliding current collection Pending JPH04207903A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2330799A JPH04207903A (en) 1990-11-30 1990-11-30 Production of carbon material for sliding current collection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2330799A JPH04207903A (en) 1990-11-30 1990-11-30 Production of carbon material for sliding current collection

Publications (1)

Publication Number Publication Date
JPH04207903A true JPH04207903A (en) 1992-07-29

Family

ID=18236684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2330799A Pending JPH04207903A (en) 1990-11-30 1990-11-30 Production of carbon material for sliding current collection

Country Status (1)

Country Link
JP (1) JPH04207903A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004006589B4 (en) * 2004-02-10 2006-09-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Continuous production of carbon abrasive strips with a small amount of thin metallic conductors

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004006589B4 (en) * 2004-02-10 2006-09-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Continuous production of carbon abrasive strips with a small amount of thin metallic conductors

Similar Documents

Publication Publication Date Title
CN1127578C (en) Low resisting materials with improved wear performance for electrical current transfer and methods for preparing same
JPH10168502A (en) Composite material with high thermal conductivity
KR930009894B1 (en) Carbon/metal composite
CN109128185A (en) A kind of novel electric locomotive powder metallurgy carbon draw runner and preparation method thereof
JPH04207903A (en) Production of carbon material for sliding current collection
JPH04207902A (en) Production of carbon material for sliding current collection
CN111218581B (en) High-density high-strength silver-carbon composite electric contact material and preparation method thereof
JPH04207904A (en) Production of carbon material for sliding current collection
JPH01157464A (en) Carbon material for sliding current collection and production thereof
CN110436924B (en) Copper-impregnated carbon sliding plate material for high-speed train pantograph and preparation method thereof
JPH03252357A (en) Production of carbon material for sliding current collection
RU2150444C1 (en) Material for current-conducting contact products, method of making said material, and product
JPH01270571A (en) Production of carbon material for sliding and current collection
JP2511705B2 (en) Carbon / metal composite
JP2004076097A (en) Carbonaceous sintered contact strip material with crack resistance
KR100290315B1 (en) Composition for current collector friction plate and method of manufacturing friction plate using same
JPH03164471A (en) Carbon/metal composite and production thereof
JPS62197352A (en) Manufacture of carbon material for sliding and electric power collecting
JPH0699186B2 (en) Carbon / steel fiber composite material for pantograph sliding plate
JP2916038B2 (en) Method for producing carbon-based current collector sliding material
RU2207962C1 (en) Method of manufacture of electric vehicle current collector contact slipper
JPH0456787B2 (en)
JPH0333063A (en) Carbon/metal composite material
JPH02160662A (en) Carbon-metal composite material
JPS61245957A (en) Production of current collecting material