JPH0420760A - Refrigerant recovery device - Google Patents

Refrigerant recovery device

Info

Publication number
JPH0420760A
JPH0420760A JP12262090A JP12262090A JPH0420760A JP H0420760 A JPH0420760 A JP H0420760A JP 12262090 A JP12262090 A JP 12262090A JP 12262090 A JP12262090 A JP 12262090A JP H0420760 A JPH0420760 A JP H0420760A
Authority
JP
Japan
Prior art keywords
refrigerant
compressor
pipe passage
pipe
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12262090A
Other languages
Japanese (ja)
Inventor
Taro Mizoguchi
溝口 太郎
Takahide Goto
後藤 高秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP12262090A priority Critical patent/JPH0420760A/en
Publication of JPH0420760A publication Critical patent/JPH0420760A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2345/00Details for charging or discharging refrigerants; Service stations therefor
    • F25B2345/002Collecting refrigerant from a cycle

Abstract

PURPOSE:To perform a positive gasification of refrigerant and feed it into a compressor by a method wherein an evaporating pipe passage for gasifying refrigerant fed from a recovered machine and feeding the refrigerant into the compressor is provided and an evaporation pipe passage and a condensor pipe passage are assembled into a heat exchanger so as to perform a heat exchanging operation between the refrigerants in the evaporating pipe passage and the condensing pipe passage. CONSTITUTION:Refrigerant gas sucked from a recovered machine A is fed into an evaporating pipe passage 3 through a pressure reducing valve 1. A temperature of the refrigerant just before being fed into the evaporating pipe passage 3 is about 0 to 5 deg.C for CFC 12. The refrigerant flowing in the evaporation pipe passage 3 is heated by a fan 22, heated by a thermal conduction of the refrigerant (about 40 deg.C) flowing in a condensing pipe passage 9 through fins 21 and thus a temperature of the refrigerant passing through the evaporating pipe passage 3 can he increased up to a temperature of about 5 to 10 deg.C. Accordingly, the liquid refrigerant can be gasified, it prevents the liquid refrigerant from being fed into the compressor 6 while not being gasified, a compressor 6 can be prevented from being broken by a so-called liquid hammering action or the like.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、空気調和機械や冷凍機等の被回収機から、
冷媒を回収して、ボンベに収容する冷媒回収機に関する
[Detailed Description of the Invention] <Industrial Application Field> The present invention provides
The present invention relates to a refrigerant recovery machine that recovers refrigerant and stores it in a cylinder.

〈従来の技術〉 従来、空気調和機械や冷凍機における冷媒として用いら
れていたフロンガスの大部分は、大気中に放出されてい
た。
<Prior Art> Conventionally, most of the fluorocarbon gases used as refrigerants in air conditioners and refrigerators were released into the atmosphere.

しかし、近年の学説では、このフロンガスが、オゾン層
を破壊することにより、太陽から地球に到達する紫外線
の量か増加し、地球の温暖化が促進されるものと考えら
れている。
However, recent theories suggest that this chlorofluorocarbon gas destroys the ozone layer, increasing the amount of ultraviolet rays that reach the earth from the sun, and promoting global warming.

これに伴って、フロンを大気中に放出することを規制す
る要請か高まってきており、上記空気調和機械や冷凍機
等から、効率良く、冷媒を回収することのできる冷媒回
収機が要望されている。
Along with this, there is an increasing demand for regulating the release of fluorocarbons into the atmosphere, and there is a demand for refrigerant recovery machines that can efficiently recover refrigerants from the above-mentioned air conditioners, refrigerators, etc. There is.

上記の冷媒回収機として、第6図に示すものが提案され
ている。同図において、この冷媒回収機は、被回収機A
から減圧弁90による減圧下て導入した冷媒ガスから、
当該冷媒ガスに混入されている、液冷媒や非蒸発分(被
回収機Aに用いられていた潤滑油等)からなる液体を、
アキュムレータ91によって、分離した状態で、圧縮機
92に導入し、圧縮機92で昇圧した後、凝縮器93で
凝縮液化し、ボンベ94に収容する。
As the above-mentioned refrigerant recovery machine, one shown in FIG. 6 has been proposed. In the figure, this refrigerant recovery machine is the machine to be recovered A.
From the refrigerant gas introduced under reduced pressure by the pressure reducing valve 90,
The liquid consisting of liquid refrigerant and non-evaporated components (such as lubricating oil used in recovered machine A) mixed in the refrigerant gas,
It is introduced into a compressor 92 in a separated state by an accumulator 91 , and after being pressurized by the compressor 92 , it is condensed and liquefied in a condenser 93 and stored in a cylinder 94 .

しかし、上記の冷媒回収機においては、被回収機Aから
吸引した冷媒ガスに、多量の液冷媒が混じることがある
。この場合、アキュームレータ91での液量が増加して
、気液の分離ができなくなり、液冷媒が圧縮機92に導
入されてしまうことにより、圧縮機92に過大な負荷が
かかり(いわゆるリキッドハンマ)、圧縮機92が破壊
されてしまうという問題があった。
However, in the above refrigerant recovery machine, a large amount of liquid refrigerant may be mixed in the refrigerant gas sucked from the recovery machine A. In this case, the amount of liquid in the accumulator 91 increases, making it impossible to separate gas and liquid, and liquid refrigerant is introduced into the compressor 92, resulting in an excessive load on the compressor 92 (so-called liquid hammer). , there was a problem that the compressor 92 would be destroyed.

ところで、上記被回収機Aから、吸引された冷媒の温度
は、フロン12の場合、約0〜5℃であり、当該冷媒の
温度を、5℃程度、上昇させることにより、冷媒ガスに
混入した液冷媒を、確実にガス化させることができる。
By the way, the temperature of the refrigerant sucked from the recovery machine A is about 0 to 5 degrees Celsius in the case of Freon 12, and by increasing the temperature of the refrigerant by about 5 degrees Celsius, the temperature of the refrigerant sucked into the refrigerant gas is increased. Liquid refrigerant can be reliably gasified.

これは、もともと、冷媒として用いられるものは、沸点
が低いことによる。
This is because the boiling point of the refrigerant originally used is low.

〈発明が解決しようとする課題〉 この発明は、上記問題に鑑みてなされたものであり、被
回収機からの冷媒を確実にガス化して、圧縮機に導入す
ることができ、圧縮機の破損を防止することができる冷
媒回収機を提供することを目的とする。
<Problems to be Solved by the Invention> This invention has been made in view of the above problems, and can reliably gasify the refrigerant from the recovered machine and introduce it into the compressor, thereby preventing damage to the compressor. The purpose of the present invention is to provide a refrigerant recovery machine that can prevent this.

く課題を解決するための手段〉 上記問題を解決するため、この発明の冷媒回収機は、被
回収機から導入された冷媒を、圧縮機によって圧縮し、
凝縮管路で凝縮液化させて、ボンベ内に収容する冷媒回
収機において、上記被回収機から導入された冷媒をガス
化して圧縮機に導く蒸発管路が設けられており、この蒸
発管路と上記凝縮管路の両者が、当該両者内の冷媒どう
しを熱交換させるべく熱交換器に組み込まれていること
を特徴とするものである。
Means for Solving the Problems> In order to solve the above problems, the refrigerant recovery machine of the present invention compresses the refrigerant introduced from the machine to be recovered using a compressor,
A refrigerant recovery machine that condenses and liquefies the refrigerant in a condensing pipe and stores it in a cylinder is provided with an evaporation pipe that gasifies the refrigerant introduced from the machine to be recovered and leads it to the compressor. Both of the condensing pipes are incorporated into a heat exchanger to exchange heat between the refrigerants within the condensing pipes.

また、上記熱交換器が、並設された複数のフィンと、こ
れらのフィンに送風する送風手段とを備えていると共に
、上記複数のフィンに、凝縮管路及び蒸発管路の両者を
、当該両者のうちの何れか一方か風上側に配置された状
態で、挿通させており、上記熱交換器の前後に、凝舘管
路と蒸発管路とが選択的に風上側にくるように冷媒の流
れを切り換える一対の四方弁が設けられているものであ
れば望ましい。
Further, the heat exchanger includes a plurality of fins arranged in parallel and a blowing means for blowing air to these fins, and both the condensation pipe line and the evaporation pipe line are connected to the plurality of fins. One of the two is placed on the windward side, and the refrigerant is inserted before and after the heat exchanger so that the condenser pipe line and the evaporator pipe line are selectively placed on the windward side. It is preferable that a pair of four-way valves are provided to switch the flow of the water.

〈作 用〉 上記構成の冷媒回収機によれば、冷媒をガス化して圧縮
機に導く蒸発管路を設け、この蒸発管路と凝縮管路の両
者を、熱交換器に組み込んでいるので、蒸発管路内の冷
媒ガスに混入している低温の液冷媒を、凝縮管路内の高
温の冷媒によって温めることにより、蒸発管路内に存す
る液冷媒を確実にガス化することができる。なお、冷媒
としては、沸点が低いものが用いられるので、上記液冷
媒をガス化させるために、あまり多くの熱量は、必要で
なく、圧縮機を経由した凝縮管路内の高温の冷媒から得
られる熱量で、十分である。
<Function> According to the refrigerant recovery machine having the above configuration, an evaporation pipe line is provided to gasify the refrigerant and lead it to the compressor, and both the evaporation pipe line and the condensation pipe line are incorporated into the heat exchanger. By warming the low-temperature liquid refrigerant mixed in the refrigerant gas in the evaporation pipe with the high-temperature refrigerant in the condensation pipe, the liquid refrigerant present in the evaporation pipe can be reliably gasified. Furthermore, since a refrigerant with a low boiling point is used, a large amount of heat is not required to gasify the liquid refrigerant, and the amount of heat can be obtained from the high temperature refrigerant in the condensing pipe via the compressor. The amount of heat generated is sufficient.

また、熱交換器が、蒸発管路と凝縮管路を挿通させた複
数のフィンと、送風手段とを備えており、上記熱交換器
の前後に、一対の四方弁を設けている場合には、上記一
対の四方弁によって、気温の高い夏期と気温の低い冬期
とで、冷媒の流れを切り換えることにより、蒸発管路と
凝縮管路とを、選択的に風上側に配置させることができ
、これにより、以下の作用を奏する。すなわち、気温の
低い冬期には、風上側に凝縮管路を配置させることによ
り、ファンによる送風を、まず、高温側である凝縮管路
によって温めた後、蒸発管路に当てることができ、これ
により、効率良く、蒸発管路内の液冷媒を温めることが
できる。
Further, when the heat exchanger includes a plurality of fins through which the evaporation pipe line and the condensation pipe line are inserted, and a blowing means, and a pair of four-way valves are provided before and after the heat exchanger, By switching the flow of the refrigerant between the high temperature summer season and the low temperature winter season using the pair of four-way valves, the evaporation pipe line and the condensation pipe line can be selectively arranged on the windward side, This provides the following effects. In other words, in the winter when the temperature is low, by placing the condensing pipe on the windward side, the air blown by the fan can first be warmed by the condensing pipe on the high temperature side, and then applied to the evaporating pipe. Therefore, the liquid refrigerant in the evaporation pipe can be heated efficiently.

逆に、気温の高い夏期には、風上側に蒸発管路を配置さ
せることにより、ファンによる送風を、蒸発管路によっ
て冷やした後、凝縮管路に当てることができ、これによ
り、効率良く、凝縮管路の冷媒を冷やすことができる。
Conversely, in the summer when temperatures are high, by arranging the evaporation pipe on the windward side, the air blown by the fan can be cooled by the evaporation pipe and then applied to the condensation pipe. The refrigerant in the condensing line can be cooled.

なお、この場合、気温が高いので、上記送風により蒸発
管路の冷媒を、十分に温めることができる。
In this case, since the temperature is high, the refrigerant in the evaporation pipe can be sufficiently warmed by the air blowing.

〈実施例〉 以下、実施例を示す添付図面に基づいて説明する。<Example> Embodiments will be described below based on the accompanying drawings showing examples.

第1図は、この発明の一実施例としての冷媒回収機の概
略構成を示しており、同図を参照して、この冷媒回収機
は、減圧弁I、蒸発管路3、アキュームレータ4、吸入
圧力調整弁5、圧縮機6、油分離器7、凝縮管路9、ド
ライヤ10、及び回収ポンベ11を、冷媒経路順に備え
ており、また、上記蒸発管路3と凝縮管路9とを組み込
んだ熱交換器2を備えている。
FIG. 1 shows a schematic configuration of a refrigerant recovery machine as an embodiment of the present invention. A pressure regulating valve 5, a compressor 6, an oil separator 7, a condensing pipe line 9, a dryer 10, and a recovery pump 11 are provided in the order of the refrigerant path, and the evaporating pipe line 3 and the condensing pipe line 9 are incorporated. It is equipped with a heat exchanger 2.

上記減圧弁lは、被回収機Aから吸引したフロン等の気
液混合状態の冷媒を減圧することにより、蒸発管路3へ
の冷媒の流量を調整する定圧膨張弁からなる。
The pressure reducing valve 1 is a constant pressure expansion valve that adjusts the flow rate of the refrigerant to the evaporation pipe 3 by reducing the pressure of the gas-liquid mixed refrigerant such as fluorocarbons sucked from the recovery machine A.

蒸発管路3は、減圧弁lによって流量を調整された気液
混合の冷媒のうち、液冷媒をガス化させるコイル管から
なる。
The evaporation pipe line 3 is made of a coiled pipe that gasifies liquid refrigerant among the gas-liquid mixed refrigerant whose flow rate is adjusted by the pressure reducing valve 1.

アキュームレータ4は、蒸発管路3からの冷媒を蓄える
容器からなり、比重差により、冷媒ガスと、液冷媒や冷
凍機油(潤滑油)等の液体とを、分離することにより、
圧縮器6に、液冷媒等か導入されることを抑制している
The accumulator 4 is a container that stores the refrigerant from the evaporation pipe 3, and separates the refrigerant gas from liquids such as liquid refrigerant and refrigerating machine oil (lubricating oil) due to the difference in specific gravity.
This suppresses introduction of liquid refrigerant or the like into the compressor 6.

吸入圧力調整弁5は、アキュームレータ4から圧縮機6
に流入する冷媒ガスの量を制限することにより、突発的
な熱負荷の増大に起因した圧縮機6用の電動機の過負荷
を防ぐ弁である。
The suction pressure regulating valve 5 connects the accumulator 4 to the compressor 6.
This valve prevents the electric motor for the compressor 6 from being overloaded due to a sudden increase in heat load by limiting the amount of refrigerant gas flowing into the compressor 6.

圧縮機6は、冷媒ガスを圧縮して、凝縮管路9側へ送る
往復式、遠心式或いは回転式のポンプ装置からなる。
The compressor 6 includes a reciprocating, centrifugal, or rotary pump device that compresses refrigerant gas and sends it to the condensing pipe 9 side.

油分離器7は、圧縮機6から圧縮吐出された冷媒ガスか
ら、冷凍機油等の油を分離し、戻し路71に配したキャ
ピラリ8を介して圧縮機6側に戻す。キャピラリ8は、
膨張弁と同様の働きをする毛細管である。
The oil separator 7 separates oil such as refrigerating machine oil from the refrigerant gas compressed and discharged from the compressor 6 and returns it to the compressor 6 side via a capillary 8 disposed in a return path 71 . Capillary 8 is
It is a capillary tube that functions similar to an expansion valve.

凝縮管路9は、圧縮機6から圧縮吐出された冷媒ガスを
、凝縮液化するコイル管からなる。
The condensing pipe line 9 is made of a coiled pipe that condenses and liquefies the refrigerant gas compressed and discharged from the compressor 6.

ドライヤ10は、凝縮管路9から導入された液冷媒から
、水分を除去する乾燥装置である。
The dryer 10 is a drying device that removes moisture from the liquid refrigerant introduced from the condensing pipe line 9.

ボンベ】】は、ドライヤ10によって水分か除去された
液冷媒を収納する圧力容器である。
The cylinder] is a pressure vessel that stores liquid refrigerant from which moisture has been removed by the dryer 10.

第2図及び第3図を参照して、熱交換器2は、所定間隔
離して並設された複数のフィン21に、上記コイル管か
らなる蒸発管路3及び凝縮管路9を挿通させており、こ
のフィン21に送風するファンからなる送風手段22を
備えている。この熱交換器2は、蒸発器としての役割と
凝縮器としての役割とを兼ね備えたものである。なお、
送風手段22は、蒸発管路3から凝縮管路9へ向って送
風する。すなわち、蒸発管路3は、凝縮管路9よりも、
風上側に配置されている。
Referring to FIGS. 2 and 3, the heat exchanger 2 includes a plurality of fins 21 arranged in parallel and separated by a predetermined interval, through which the evaporating pipe line 3 and the condensing pipe line 9 made of the coiled pipes are inserted. The fin 21 is provided with an air blowing means 22 consisting of a fan that blows air onto the fins 21. This heat exchanger 2 serves as both an evaporator and a condenser. In addition,
The blowing means 22 blows air from the evaporating pipe line 3 toward the condensing pipe line 9. In other words, the evaporation pipe line 3 is more dense than the condensation pipe line 9.
It is located on the windward side.

この実施例によれば、被回収機Aから吸引された冷媒ガ
スが、減圧弁lを介して蒸発管路3に導入される。この
蒸発管路3に導入される直前の冷媒の温度は、フロン1
2の場合、約0〜5℃である。蒸発管路3を流れる冷媒
は、ファン22により送られた風によって温められると
共に、凝縮管路9を流れる冷媒(約40℃)からフィン
2Iを介した熱伝導によって温められ、蒸発管路3を通
過する冷媒の温度を、5〜10°Cの温度まで、高める
ことができる。したがって、確実に、液冷媒をガス化さ
せることができ、液冷媒が、ガス化されないままで圧縮
機6に導入されることを防止して、いわゆるリキッドハ
ンマ等によって圧縮機6か破壊されることを、防止する
ことができる。
According to this embodiment, the refrigerant gas sucked from the machine A to be recovered is introduced into the evaporation pipe line 3 via the pressure reducing valve l. The temperature of the refrigerant just before it is introduced into the evaporation pipe line 3 is 1
In case of No. 2, it is about 0 to 5°C. The refrigerant flowing through the evaporation pipe 3 is warmed by the wind sent by the fan 22, and is also heated by heat conduction from the refrigerant (approximately 40°C) flowing through the condensation pipe 9 via the fins 2I. The temperature of the passing refrigerant can be increased to a temperature of 5-10°C. Therefore, the liquid refrigerant can be reliably gasified, and the liquid refrigerant can be prevented from being introduced into the compressor 6 without being gasified, and the compressor 6 can be prevented from being destroyed by a so-called liquid hammer or the like. can be prevented.

第4図及び第5図は、他の実施例を示している。4 and 5 show other embodiments.

同図において、この実施例が、前記の実施例と異なるの
は、上記熱交換器2の前後に、凝縮管路3と蒸発管路9
とが選択的に風上側に配置されるように、冷媒の流れを
切り換える一対の四方弁12゜13を設けていることで
ある。
In the figure, this embodiment differs from the previous embodiment in that a condensing pipe line 3 and an evaporating pipe line 9 are provided before and after the heat exchanger 2.
A pair of four-way valves 12 and 13 are provided to switch the flow of the refrigerant so that the refrigerant and the refrigerant are selectively placed on the windward side.

この実施例によれば、第1図の実施例と同様の作用効果
を奏することに加えて、気温の低い冬期には、第5図に
示すように、一対の四方弁12゜13を同時に切り換え
て、風上側に凝縮管路3を配置させることにより、ファ
ン22による送風を、まず、高温側である凝縮管路9に
よって温めた後、蒸発管路3に当てることができるので
、効率良く、蒸発管路3内の冷媒を温めることができ、
冬期においても、確実に冷媒をガス化させることができ
る。
According to this embodiment, in addition to achieving the same effects as the embodiment shown in FIG. 1, in the winter when the temperature is low, the pair of four-way valves 12 and 13 can be switched simultaneously as shown in FIG. By arranging the condensing pipe line 3 on the windward side, the air blown by the fan 22 can first be warmed by the condensing pipe line 9 on the high temperature side and then applied to the evaporating pipe line 3, thereby efficiently The refrigerant in the evaporation pipe line 3 can be heated,
Even in winter, the refrigerant can be reliably gasified.

そして、気温の高い夏期には、第4図に示すように、一
対の四方弁12.13を同時に切り換えて、風上側に蒸
発管路3を配置させることにより、ファン22による送
風を、蒸発管路3によって冷やした後、凝縮管路9に当
てることができるので、効率良く、凝縮管路9の冷媒を
冷やすことができる。なお、この場合、気温が高いので
、上記送風によって、蒸発管路3の冷媒を十分に温める
ことができる。
In the summer when the temperature is high, as shown in FIG. Since the refrigerant can be applied to the condensing pipe 9 after being cooled through the condensing pipe 3, the refrigerant in the condensing pipe 9 can be efficiently cooled. Note that in this case, since the temperature is high, the refrigerant in the evaporation pipe line 3 can be sufficiently warmed by the air blowing.

なお、この発明は、上記実施例に限定されるものではな
く、例えば、上記被回収機へから導入された冷媒がガス
状態である場合に、この冷媒ガスを、蒸発管路3を介さ
ずに、直接、アキュームレータ4に導くバイパス管路(
図示せず)を設けることもできる。これは、ガス状態で
比較的高温の冷媒を、蒸発管路3を介して、圧縮機6側
に導入するとすれば、過熱化された冷媒ガスか圧縮機6
に導入されることになって、圧縮機6のオーバーヒート
を引き起こす虞かあるが、この実施例では、被回収機A
からガス状態で導入された比較的高温の冷媒を、バイパ
ス管路14により蒸発管路3を迂回させて、圧縮機6側
に導入させるので、圧縮機6のオーバーヒートを防止す
ることができる。
Note that the present invention is not limited to the above-mentioned embodiment. For example, when the refrigerant introduced into the recovery machine is in a gas state, the refrigerant gas is transferred without going through the evaporation pipe 3. , a bypass pipe line leading directly to the accumulator 4 (
(not shown) may also be provided. This means that if a relatively high temperature refrigerant in a gas state is introduced into the compressor 6 side via the evaporation pipe 3, the superheated refrigerant gas or
However, in this embodiment, the recovered machine A
Since the relatively high-temperature refrigerant introduced in a gaseous state from the compressor is introduced into the compressor 6 by bypassing the evaporation pipe 3 through the bypass pipe 14, overheating of the compressor 6 can be prevented.

その他、この発明の要旨を変更しない範囲で種々の設計
変更を施すことができる。
In addition, various design changes can be made without changing the gist of the invention.

〈発明の効果〉 この発明によれば、冷媒をガス化して圧縮機に導く蒸発
管路を設け、この蒸発管路と上記凝結管路の両者を、熱
交換器に組み込んでいるので、蒸発管路内の低温側の冷
媒を、凝縮管路内の高温側の冷媒によって温めることに
より、蒸発管路内に存する液冷媒を確実にガス化するこ
とができ、液冷媒の圧縮機への導入によるリキッドハン
マ等によって圧縮機か破損することを防止することがで
きるという特有の効果を奏する。
<Effects of the Invention> According to the present invention, an evaporation pipe is provided that gasifies the refrigerant and leads it to the compressor, and both the evaporation pipe and the condensation pipe are incorporated into a heat exchanger. By heating the refrigerant on the low-temperature side of the condensing line with the refrigerant on the high-temperature side of the condensing line, the liquid refrigerant present in the evaporation line can be reliably gasified. This has the unique effect of preventing the compressor from being damaged by a liquid hammer or the like.

また、熱交換器が、蒸発管路と凝縮管路を挿通させた複
数のフィンと、送風手段とを備えており上記熱交換器の
前後に、一対の四方弁を設けている場合には、気温の低
い冬期に、四方弁の切り換えによって風上側に凝縮管路
を配置させることにより、ファンによる送風を、まず、
高温側である凝縮管路によって温めた後、蒸発管路に当
てることができ、これにより、効率良く、蒸発管路内の
冷媒を温めることができる。逆に、気温の高い夏期に、
四方弁の切り換えによって風上側に蒸発管路を配置させ
ることにより、ファンによる送風を、蒸発管路によって
冷やした後、凝縮管路に当てることができ、これにより
、効率良く、凝縮管路の冷媒を冷やすことができる。な
お、この場合、気温が高いので、上記送風により蒸発管
路の冷媒を十分に温めることができる。
Further, when the heat exchanger includes a plurality of fins through which the evaporation pipe line and the condensation pipe line are inserted, and a blower means, and a pair of four-way valves are provided before and after the heat exchanger, During the cold winter months, by switching the four-way valve and locating the condensing pipe on the windward side, the air flow by the fan can be reduced.
After the refrigerant is heated by the condensing pipe on the high-temperature side, it can be applied to the evaporation pipe, thereby making it possible to efficiently warm the refrigerant in the evaporation pipe. On the other hand, during the hot summer months,
By placing the evaporation pipe on the windward side by switching the four-way valve, the air blown by the fan can be cooled by the evaporation pipe and then applied to the condensation pipe. can be cooled down. In this case, since the temperature is high, the refrigerant in the evaporation pipe can be sufficiently warmed by the air blowing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例としての冷媒回収機の概略
構成図、 第2図及び第3図はそれぞれ熱交換器の側面図及び斜視
図、 第4図及び第5図は他の実施例の冷媒回収機の概略構成
図、 第6は従来の冷媒回収機の概略構成図である。 A・・・被回収機、 6・・・圧縮機、9 11・・ボンベ、 21・・・フィン、 2・・・熱交換器、3・・・蒸発管路、・・・凝縮管路
、 12.13・・・四方弁、 22・・・送風手段。
FIG. 1 is a schematic configuration diagram of a refrigerant recovery machine as an embodiment of the present invention, FIGS. 2 and 3 are a side view and a perspective view of a heat exchanger, respectively, and FIGS. 4 and 5 are other embodiments. A schematic configuration diagram of an example refrigerant recovery machine. The sixth is a schematic configuration diagram of a conventional refrigerant recovery machine. A... machine to be recovered, 6... compressor, 9 11... cylinder, 21... fin, 2... heat exchanger, 3... evaporation pipe line,... condensation pipe line, 12.13... Four-way valve, 22... Air blowing means.

Claims (2)

【特許請求の範囲】[Claims] 1.被回収機(A)から導入された冷媒を、圧縮機(6
)によって圧縮し、凝縮管路(9)で凝縮液化させて、
ボンベ(11)内に収容する冷媒回収機において、上記
被回収機(A)から導入された冷媒をガス化して圧縮機
(6)に導く蒸発管路(3)か設けられており、この蒸
発管路(3)と上記凝縮管路(9)の両者が、当該両者
(3),(9)内の冷媒どうしを熱交換させるべく熱交
換器(2)に組み込まれていることを特徴とする冷媒回
収機。
1. The refrigerant introduced from the recovered machine (A) is passed through the compressor (6
), and condensed and liquefied in the condensation pipe (9),
The refrigerant recovery machine housed in the cylinder (11) is provided with an evaporation pipe (3) that gasifies the refrigerant introduced from the recovery machine (A) and leads it to the compressor (6). Both the conduit (3) and the condensing conduit (9) are incorporated into a heat exchanger (2) to exchange heat between the refrigerants in both (3) and (9). refrigerant recovery machine.
2.上記熱交換器(2)が、並設された複数のフィン(
21)と、これらのフィン(21)に送風する送風手段
(22)とを備えていると共に、上記複数のフィン(2
1)に、凝縮管路(9)及び蒸発管路(3)の両者を、
当該両者のうちの何れか一方が風上側に配置された状態
で、挿通させており、上記熱交換器(2)の前後に、凝
縮管路(9)と蒸発管路(3)とが選択的に風上側にく
るように冷媒の流れを切り換える一対の四方弁(12)
,(13)が設けられている請求項1記載の冷媒回収機
2. The heat exchanger (2) includes a plurality of fins (
21) and a blowing means (22) for blowing air to these fins (21), and
1), both the condensation pipe line (9) and the evaporation pipe line (3),
Either one of the two is placed on the windward side and inserted, and the condensing pipe (9) and the evaporating pipe (3) are selected before and after the heat exchanger (2). A pair of four-way valves (12) that switch the flow of refrigerant so that it is on the windward side.
, (13).The refrigerant recovery machine according to claim 1, further comprising: .
JP12262090A 1990-05-11 1990-05-11 Refrigerant recovery device Pending JPH0420760A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12262090A JPH0420760A (en) 1990-05-11 1990-05-11 Refrigerant recovery device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12262090A JPH0420760A (en) 1990-05-11 1990-05-11 Refrigerant recovery device

Publications (1)

Publication Number Publication Date
JPH0420760A true JPH0420760A (en) 1992-01-24

Family

ID=14840471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12262090A Pending JPH0420760A (en) 1990-05-11 1990-05-11 Refrigerant recovery device

Country Status (1)

Country Link
JP (1) JPH0420760A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994018511A1 (en) * 1993-02-03 1994-08-18 Yugen Kaisha Nakajima Jidosha Denso Chlorofluorocarbon recovery device
US6314749B1 (en) 2000-02-03 2001-11-13 Leon R. Van Steenburgh, Jr. Self-clearing vacuum pump with external cooling for evacuating refrigerant storage devices and systems
WO2013167468A1 (en) * 2012-05-08 2013-11-14 Inficon Gmbh Removal device for a fluid

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994018511A1 (en) * 1993-02-03 1994-08-18 Yugen Kaisha Nakajima Jidosha Denso Chlorofluorocarbon recovery device
US6314749B1 (en) 2000-02-03 2001-11-13 Leon R. Van Steenburgh, Jr. Self-clearing vacuum pump with external cooling for evacuating refrigerant storage devices and systems
WO2013167468A1 (en) * 2012-05-08 2013-11-14 Inficon Gmbh Removal device for a fluid
CN104302993A (en) * 2012-05-08 2015-01-21 英福康有限责任公司 Removal device for a fluid
JP2015516061A (en) * 2012-05-08 2015-06-04 インフィコン ゲゼルシャフト ミット ベシュレンクテル ハフツングInficon GmbH Fluid removal device
RU2638701C2 (en) * 2012-05-08 2017-12-15 Инфикон Гмбх Device for selecting compressed fluid from the refrigeration system
US10365024B2 (en) 2012-05-08 2019-07-30 Inficon Gmbh Removal device for a fluid

Similar Documents

Publication Publication Date Title
EP1121565B1 (en) heat exchange refrigerant subcool and/or precool system and method
JP4973872B2 (en) CO2 refrigerator
US7150160B2 (en) Building exhaust and air conditioner condensate (and/or other water source) evaporative refrigerant subcool/precool system and method therefor
JP2865844B2 (en) Refrigeration system
US6857285B2 (en) Building exhaust and air conditioner condensate (and/or other water source) evaporative refrigerant subcool/precool system and method therefor
KR20140058416A (en) Thermal energy system and method of operation
JP2003004321A (en) Refrigerating air conditioner
US5752392A (en) Air conditioner and heat exchanger therefor
US5937669A (en) Heat pump type air conditioner
JPH0420760A (en) Refrigerant recovery device
JPH0953864A (en) Engine type cooling device
CN207831735U (en) With regenerator with from the CO2 Trans-critical cycle heat pump circulating systems of cooler
KR20100103930A (en) Apparatus for drying
JPH05272837A (en) Compression absorption composite heat pump
JP2004340081A (en) Rankine cycle
KR200375016Y1 (en) Vaporizing apparatus of heat pump type air conditioning equipment
KR200257255Y1 (en) refrigerator/heat pump system
KR100291107B1 (en) Low pressure refrigerant temperature riser of air conditioner
JP2004069276A (en) Waste heat recovering cooling system
KR200357878Y1 (en) Assistanting heater of a heat pump-type heating and cooling device
JP3785743B2 (en) Absorption refrigeration system
KR100279904B1 (en) Outdoor heat exchanger with condensate storage structure
JP2000018627A (en) Cogeneration system
KR100486097B1 (en) Heat pump system
KR20050093645A (en) Heating cycle of a heat pump-type heating and cooling device