JPH04206474A - Alkaline storage battery - Google Patents

Alkaline storage battery

Info

Publication number
JPH04206474A
JPH04206474A JP2338989A JP33898990A JPH04206474A JP H04206474 A JPH04206474 A JP H04206474A JP 2338989 A JP2338989 A JP 2338989A JP 33898990 A JP33898990 A JP 33898990A JP H04206474 A JPH04206474 A JP H04206474A
Authority
JP
Japan
Prior art keywords
negative electrode
thickness
spiral
electrode body
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2338989A
Other languages
Japanese (ja)
Other versions
JP3056521B2 (en
Inventor
Hiroshi Fukunaga
浩 福永
Hiroshi Horiie
堀家 浩
Tatsu Nagai
龍 長井
Akira Kawakami
章 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2338989A priority Critical patent/JP3056521B2/en
Publication of JPH04206474A publication Critical patent/JPH04206474A/en
Application granted granted Critical
Publication of JP3056521B2 publication Critical patent/JP3056521B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To increase capacity and facilitate storage by making the thickness of a negative electrode at the outermost periphery of a spiral electrode body thinner than the thickness of the negative electrode at the other portion. CONSTITUTION:A separator 3 is made of a polyamide nonwoven fabric, a positive electrode 1 and a negative electrode 2 are stacked via the separator 3, they are wound into a spiral shape to obtain a spiral electrode body 11. The outermost periphery of the spiral electrode body 11 is constituted with the negative electrode 2, and the thickness of the negative electrode 2 at the portion corresponding to the outermost periphery of the spiral electrode body 11 is made thinner than the thickness at the other portion. The thickness d1 at the portion A is made thinner than the thickness d2 at the other portion B. The volume efficiency is improved, and a high-capacity alkaline storage battery, in which the spiral electrode body 11 can be easily housed into a metal outer can, is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、渦巻状電極体を用いるアルカリ蓄電池に係り
、さらに詳しくはその渦巻状電極体の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an alkaline storage battery using a spiral electrode body, and more particularly to an improvement of the spiral electrode body.

[従来の技術] アルカリ蓄電池においては、反応面積を広くするため、
正極と負極とをセパレータを介して重ね合わせ、渦巻状
に巻回して渦巻状電極体にし、二の渦巻状電極体を金属
外装缶内に収納している(例えば、特開平1−1320
66号公報)。
[Prior art] In alkaline storage batteries, in order to widen the reaction area,
A positive electrode and a negative electrode are overlapped with a separator interposed therebetween and spirally wound to form a spiral electrode body, and the second spiral electrode body is housed in a metal exterior can (for example, as disclosed in Japanese Patent Application Laid-Open No. 1-1320
Publication No. 66).

そして、この渦巻状電極体を用いるアルカリ蓄電池では
、負極の容量を正極の容量より大きくしている。これは
、放電時の分極を減少させて放電電圧の平坦性を向上さ
せ、かつ過充電時の正極からの酸素を負極表面上で還元
して、水に戻し、電池の内部圧力の上昇を防止するため
である。
In an alkaline storage battery using this spiral electrode body, the capacity of the negative electrode is made larger than the capacity of the positive electrode. This reduces polarization during discharge and improves the flatness of the discharge voltage, and also reduces oxygen from the positive electrode on the negative electrode surface during overcharging, returning it to water and preventing the internal pressure of the battery from increasing. This is to do so.

このように、負極の容量を正極の容量より大きくする関
係で、渦巻状電極体の最外周部は負極で構成されること
になる。
In this way, since the capacity of the negative electrode is made larger than the capacity of the positive electrode, the outermost periphery of the spiral electrode body is constituted by the negative electrode.

また、正極、負極を渦巻状電極体にした場合、電池反応
は、本来、正極、負極とも、両面で進行するが、渦巻状
電極体の最外周部では、片面でしか反応できないので、
負極全体の10%程度が片面でのみ正極と反応するため
、負極全体を均一な厚みで形成していると、体積効率を
低下させ、電池の容量を低下させることになる。
In addition, when the positive and negative electrodes are spiral electrode bodies, the battery reaction normally proceeds on both sides of both the positive and negative electrodes, but at the outermost periphery of the spiral electrode body, the reaction can only occur on one side.
Since about 10% of the entire negative electrode reacts with the positive electrode only on one side, if the entire negative electrode is formed to have a uniform thickness, the volumetric efficiency will be reduced and the capacity of the battery will be reduced.

さらに、渦巻状電極体は、その横断面形状が真円ではな
く、最外周部の端部が径方向外方側に突出しているため
、渦巻状電極体を金属外装缶内に収納する際に、その突
出部分が金属外装缶の開口端に引っかかってスムーズな
収納ができず、また、それが短絡発生を引き起こす原因
乙こなる。
Furthermore, the cross-sectional shape of the spiral electrode body is not a perfect circle, and the outermost end protrudes radially outward, so when the spiral electrode body is housed in a metal exterior can, The protruding part gets caught on the open end of the metal exterior can, making it impossible to store it smoothly, and also causing a short circuit.

(発明が解決しようとする課題〕 本発明は、上記のように従来の渦巻状電極体を用いるア
ルカリ蓄電池では、体積効率が悪く、しかも渦巻状電極
体を金属外装缶内に収納する際に最外周部の端部が金属
外装缶の開口端に引っかかってスムーズな収納ができな
かったという問題点を解決し、体積効率が良く、したが
って高容量で、しかも渦巻状電極体の金属外装缶内への
収納が容易なアルカリ蓄電池を提供することを目的とす
る。
(Problems to be Solved by the Invention) As described above, the conventional alkaline storage battery using a spiral electrode body has poor volumetric efficiency, and furthermore, when the spiral electrode body is housed in a metal outer can, the present invention solves the problem. This solves the problem of the outer peripheral edge getting caught on the open end of the metal exterior can, making it impossible to store it smoothly.It has good volumetric efficiency, therefore high capacity, and has a spiral electrode body inside the metal exterior can. The purpose is to provide an alkaline storage battery that is easy to store.

〔課題を解決するための手段: 本発明は、渦巻状の電極体の最外周部の負極の厚み(d
l)をそれ以外の部分の負極の厚み(dl)より薄く、
つまり、0.5≦(dl)/(dl)< 1にして、」
こ舵口的を達成したものである。
[Means for Solving the Problems: The present invention provides a method for reducing the thickness (d
l) is thinner than the thickness (dl) of the negative electrode in other parts,
In other words, 0.5≦(dl)/(dl)<1,
This goal has been achieved.

すなわち、渦巻状電極体の最外周部の負極の厚み(d1
)をそれ以外の負極の厚み(dl)より薄くすることに
よって、負極を同し体積で長くすることが可能になり、
それによって反応面積を広くすることができるので、体
積効率を向上させることができ、放電容量を高めること
ができる。
That is, the thickness of the negative electrode at the outermost circumference of the spiral electrode body (d1
) by making it thinner than the other thickness (dl) of the negative electrode, it becomes possible to make the negative electrode longer with the same volume,
As a result, the reaction area can be widened, thereby improving the volumetric efficiency and increasing the discharge capacity.

また、渦巻状電極体の最外周部の負極の厚みを薄くする
ことによって、渦巻状電極体の最外周部の端部における
突出が少なくなるので、渦巻状電極体の金属外装缶内へ
の収納も容易になる。
In addition, by reducing the thickness of the negative electrode at the outermost periphery of the spiral electrode body, the protrusion at the end of the outermost periphery of the spiral electrode body is reduced, making it easier to store the spiral electrode body in a metal exterior can. It also becomes easier.

また、負極の厚みを変える部分に傾斜を持たせることに
よって、最外周部の突出がより少なくなり、金属外装缶
内への収納時に渦巻状電極体が金属外装缶の開口端に引
っかかることがより少なくなって、金属外装缶内への収
納がさらに容易にな本発明において、渦巻状電極体の最
外周部の負極の厚み(dt)をそれ以外の部分の負極の
厚み(dl)より薄くする程度としては、0.5≦(a
+)/(dz)<1にするのが適切である。その理由に
ついては、次の実施例の項で詳しく説明するが、(d1
)/(dZ)が0.5より小さくなると最外周部の負極
とそれに対向する正極との容量バランスが崩れることに
なり、また(dl)/(aZ)が1以上になると体積効
率を向上させることができず、むしろ体積効率を低下さ
せることになるからである。そして、この(d1)/(
dl)としては、0.5≦(d1)/(dl)≦0.9
ノ範囲が特に好ましい。
In addition, by creating a slope in the part where the thickness of the negative electrode is changed, the protrusion of the outermost part is reduced, and the spiral electrode body is less likely to get caught on the open end of the metal can when stored in the metal can. In the present invention, the thickness (dt) of the negative electrode at the outermost periphery of the spiral electrode body is made thinner than the thickness (dl) of the negative electrode at other parts. The degree is 0.5≦(a
+)/(dz)<1. The reason for this will be explained in detail in the next example section, but (d1
)/(dZ) is smaller than 0.5, the capacity balance between the outermost negative electrode and the opposing positive electrode will be disrupted, and if (dl)/(aZ) is 1 or more, the volumetric efficiency will be improved. This is because it is not possible to do so, and rather reduces volumetric efficiency. And this (d1)/(
dl) is 0.5≦(d1)/(dl)≦0.9
Particularly preferred are the ranges below.

また、負極の厚みを変える部分に持たせる傾斜の程度と
しては、10°≦θ〈90°の範囲にするのが好ましい
。その理由およびθの取り方については次の実施例の項
において図面を参照しつつ説明するが、θが10°より
小さい場合は、傾斜が小さすぎるため、厚みの薄くなる
部分が少なくなって体積効率が悪くなり、またθが90
’より太きくなると、傾斜をつけない場合(θ=90°
)より強度が低下し、活物質の基体からの剥落が生しる
からである。そして、このθとしては、10°≦θ≦6
0゜の範囲が特に好ましい。
Further, the degree of inclination given to the portion where the thickness of the negative electrode is changed is preferably in the range of 10°≦θ<90°. The reason for this and how to take θ will be explained in the next example section with reference to the drawings, but if θ is smaller than 10°, the slope is too small, and the thinner part becomes smaller, resulting in a smaller volume. The efficiency becomes worse and θ is 90
If it becomes thicker than ', if there is no slope (θ=90°
), the strength decreases and the active material peels off from the base. And this θ is 10°≦θ≦6
A range of 0° is particularly preferred.

本発明において、正極には金属酸化物または金属水酸化
物を含むシート状の成形体が用いられるが、この金属酸
化物としては、例えば二酸化マンガン、酸化銀などが挙
げられ、また、金属水酸化物としては、例えば水酸化ニ
ッケルなどが挙げられる。
In the present invention, a sheet-like molded body containing a metal oxide or metal hydroxide is used for the positive electrode. Examples of the metal oxide include manganese dioxide, silver oxide, etc. Examples of the material include nickel hydroxide.

また、負極には水酸化カドミウムまたは金属水素化物を
含む成形体が用いられるが、この金属水素化物としては
、LaNi5系、MmNi5系、T1Ni系などの水素
貯蔵合金などが挙げられる。
Further, a molded body containing cadmium hydroxide or a metal hydride is used for the negative electrode, and examples of the metal hydride include hydrogen storage alloys such as LaNi5 series, MmNi5 series, and T1Ni series.

[実施例] 第1図は渦巻状電極体の横断面図であり、第2図は第1
図に示す渦巻状電極体に用いられた負極を渦巻状に巻回
する前の状態で示す斜視図である。
[Example] Fig. 1 is a cross-sectional view of the spiral electrode body, and Fig. 2 is a cross-sectional view of the spiral electrode body.
FIG. 3 is a perspective view showing the negative electrode used in the spiral electrode body shown in the figure before being spirally wound.

第3図は負極の厚みを変化させる部分に傾斜を持たせた
状態で示す負極の要部拡大横断面図であり、第4図はア
ルカリ蓄電池の一例を示す継断面図である。
FIG. 3 is an enlarged cross-sectional view of the main part of the negative electrode, with the part where the thickness of the negative electrode is changed inclined, and FIG. 4 is a cross-sectional view showing an example of an alkaline storage battery.

まず、第1図に基づき渦巻状電極体について説明すると
、(1)は正極、(2)は負極、(3)はセパレータで
ある。正極(1)は、一般にニッケル電極と呼ばれてい
るものであり、水酸化ニッケルを活物質として含むノー
ト状の成形体からなり、負極(2)は、−般にカドミウ
ム電極と呼ばれているものであって、水酸化カドミウム
を活物質として含むソート状の成形体からなるものであ
る。そして、セパレータ(3)はポリアミド不織布製で
、上記正極(1)と負極(2)とはセパレータ(3)を
介して重ね合わせ、渦巻状に巻回されて、渦巻状電極体
(11)にされている。
First, the spiral electrode body will be explained based on FIG. 1. (1) is a positive electrode, (2) is a negative electrode, and (3) is a separator. The positive electrode (1) is generally called a nickel electrode and consists of a notebook-shaped molded body containing nickel hydroxide as an active material, and the negative electrode (2) is generally called a cadmium electrode. It consists of a sorted molded body containing cadmium hydroxide as an active material. The separator (3) is made of polyamide nonwoven fabric, and the positive electrode (1) and negative electrode (2) are stacked on top of each other with the separator (3) in between, and are wound into a spiral shape to form a spiral electrode body (11). has been done.

上記渦巻状電極体(11)の最外周部は、負極(2)に
よって構成されているが、この負極(2)の渦巻状電極
体(11)の最外周部に当たる部分の厚みは、それ以外
の部分の厚みより薄くしている。
The outermost peripheral part of the spiral electrode body (11) is constituted by the negative electrode (2), but the thickness of the part of the negative electrode (2) corresponding to the outermost peripheral part of the spiral electrode body (11) is different from that of the negative electrode (2). It is thinner than the thickness of the part.

これを第2〜3図を用いて説明すると、第2〜3図はい
ずれも負極(2)を渦巻状に巻回する前の状態で示すも
のであるが、第2〜3V中のA部は、負極(2)を正極
(1)、セパレータ(3)なとと共に渦巻状に巻回して
渦巻状電極体(11)とLだ時に、該渦巻状電極体(1
1)の最外周部になる部分であり、このA部の厚み(d
i)はそれ以外の部分Bの厚み(d2)より薄くしてい
る。
To explain this using Figures 2 and 3, Figures 2 and 3 show the state before the negative electrode (2) is spirally wound. When the negative electrode (2) is spirally wound together with the positive electrode (1), the separator (3), etc., and the spiral electrode body (11) is connected to the spiral electrode body (11), the spiral electrode body (1
This is the outermost part of 1), and the thickness of this part A (d
i) is made thinner than the thickness of the other portion B (d2).

この(d1)を(d2)より薄くする程度としては、(
dl)を(d2)に対して、05≦(di)/(d2)
< 1にしている。これは、(dl)/(d2)が0,
5より小さい場合は最外周部の負極(2)とそれに対向
する正極(1)との容量バランスが崩れるからであり、
また、(di ) /(d2)が1以上になると体積効
率を向上することができず、むしろ体積効率を低下させ
ることになるからである。
The extent to which (d1) is made thinner than (d2) is (
dl) to (d2), 05≦(di)/(d2)
< 1. This means that (dl)/(d2) is 0,
If it is smaller than 5, the capacity balance between the outermost negative electrode (2) and the opposing positive electrode (1) will be disrupted.
Further, if (di)/(d2) is 1 or more, the volumetric efficiency cannot be improved, but rather the volumetric efficiency will be reduced.

(d1)/(d2)= 0.5にし、第4図に示す構造
で単2形電池にした場合の発明品と従来品との放電容量
を比較して示すと第1表の通りである。
Table 1 shows a comparison of the discharge capacity of the invented product and the conventional product when (d1)/(d2) = 0.5 and an AA battery is made with the structure shown in Figure 4. .

第  1  表 第1表に示すように、発明品の放電容量は、従来品に比
べて、0.3A h、百分率にして12.5%大きく、
体積効率が向上したことを示していた。
Table 1 As shown in Table 1, the discharge capacity of the invented product is 0.3A h, or 12.5% larger in percentage, than the conventional product.
This indicates that the volumetric efficiency has improved.

第4図に示す電池について説明すると、渦巻状電極体(
11)は金属外装缶(4)内に収納され、正極(1)は
リード体(5)によって封口板(6)の下側部分(6b
)に接続され、負極(2)はリード体(7)によって金
属外装缶(4)に接続されている。なお、負極(2)と
リード体(7)との接触は負極(2)の基体のはみ出し
部分(2a) (はみ出し部分とは、活物質である水酸
化カドミウムが付着していない部分をいう)によって行
われている。
To explain the battery shown in Fig. 4, the spiral electrode body (
11) is housed in a metal exterior can (4), and the positive electrode (1) is connected to the lower part (6b) of the sealing plate (6) by the lead body (5).
), and the negative electrode (2) is connected to the metal exterior can (4) via a lead body (7). Note that the contact between the negative electrode (2) and the lead body (7) is at the protruding part (2a) of the base of the negative electrode (2) (the protruding part refers to the part to which the active material cadmium hydroxide is not attached). It is carried out by

封口板(6)は、上側部分(6a)と下側部分(6b)
とからなり、下側部分(6b)にはガス検知孔(6c)
が設けられ、上側部分(6a)にはガス排出孔(6cl
)が設けられ、かつ上側部分(6a)と下側部分(6b
)との間には金属ハネ(8)と閉塞部材(9)とが配設
されていて、電池内部にガスが発生し、電池の内部圧力
が異常に上昇したときは、金属ハネ(8)が収縮し閉塞
部材(9)が上昇して下側部分(6b)との間に隙間を
つくり、電池内部のガスを電池外部に排出して、電池の
高圧下での破裂を防止できるようになっている。
The sealing plate (6) has an upper part (6a) and a lower part (6b).
The lower part (6b) has a gas detection hole (6c).
is provided, and the upper part (6a) is provided with a gas exhaust hole (6cl
), and an upper part (6a) and a lower part (6b
), a metal spring (8) and a closing member (9) are arranged between the metal springs (8) and a closing member (9). is contracted and the closing member (9) rises to create a gap between it and the lower part (6b), allowing gas inside the battery to be discharged to the outside of the battery to prevent the battery from bursting under high pressure. It has become.

金属外装缶(4)と封口板(6)との間には絶縁バッキ
ング00)が配設され、金属外装缶(4)の開[1部は
、該金属外装缶(4)の開口端部の内方への締め付けに
より、上記絶縁バッキング00)と封口板(6)とで封
口されている。また、この電池には30%水酸化カリウ
ム水溶液が電解液として注入されている。
An insulating backing 00) is disposed between the metal exterior can (4) and the sealing plate (6), and one part is the open end of the metal exterior can (4). By tightening inward, the insulation backing 00) and the sealing plate (6) are sealed. Additionally, a 30% potassium hydroxide aqueous solution is injected into this battery as an electrolyte.

上記第1表に示す発明品とは、渦巻状電極体(11)の
最外周部の負極(2)の厚み(d1)をそれ以外の部分
の負極(2)の厚み(d2)に対して(dl)/(d2
) −□、5にしたものであり、従来品とは負極全体を
同じ厚みにしたものである。なお、発明品では、負極(
2)の厚みを変える部分にθ(第3回参照)−45°の
傾斜を持たせている。
The inventions shown in Table 1 above mean that the thickness (d1) of the negative electrode (2) at the outermost portion of the spiral electrode body (11) is relative to the thickness (d2) of the negative electrode (2) at the other portion. (dl)/(d2
) -□, 5, and the entire negative electrode has the same thickness as the conventional product. In addition, in the invented product, the negative electrode (
2) The part where the thickness is changed has an inclination of θ (see Part 3) -45°.

実施例2 負極(2)の厚みを変える部分の傾斜角度θを10’、
30’ 、45°、60°、80°、90°と変えて負
極(カドミウム電極)を作製し、第4図に示す構造のニ
ッケルーカドミウム系のアルカリ蓄電池を製造し、それ
らの短絡発生率を調べた結果を第2表に示す。
Example 2 The inclination angle θ of the part where the thickness of the negative electrode (2) is changed is 10',
By changing the angles of 30', 45°, 60°, 80°, and 90°, negative electrodes (cadmium electrodes) were fabricated to produce nickel-cadmium alkaline storage batteries with the structure shown in Figure 4, and the short-circuit occurrence rate was evaluated. The results of the investigation are shown in Table 2.

試験に供した電池個数は各電池とも100個ずつである
。各電池の(d1)/(d2)は0.5である。
The number of batteries tested was 100 for each battery. (d1)/(d2) of each battery is 0.5.

第  2  表 第2表に示すように、従来品、つまり、渦巻状電極体の
最外周部の負極の厚みをそれ以外の部分の厚みより薄く
せず、負極全体を同じ厚みにしている場合には、短絡発
生率は15%であったが、渦巻状電極体の最外周部の負
極の厚みをそれ以外の部分の負極の厚みより薄くした場
合には、傾斜角度θのいかんにかかわらず、従来品より
、短絡発生率が少なかった。特にθが10°〜60°の
範囲、とりわけθがlO°〜45°の範囲では短絡発生
率が少なかった。この結果は、渦巻状電極体の最外周部
の負極の厚み(dl)をそれ以外の部分の厚み(d2)
より薄くすることによって、渦巻状電極体の金属外装缶
内への収納が容易になり、良品数の歩留りの向上が達成
されることを示している。
Table 2 As shown in Table 2, in the case of conventional products, that is, the thickness of the negative electrode at the outermost part of the spiral electrode body is not made thinner than the thickness of the other parts, and the entire negative electrode has the same thickness. The short circuit occurrence rate was 15%, but if the thickness of the negative electrode at the outermost part of the spiral electrode body was made thinner than the thickness of the negative electrode at other parts, regardless of the inclination angle θ, The incidence of short circuits was lower than that of conventional products. In particular, when θ was in the range of 10° to 60°, especially in the range of 10° to 45°, the short circuit occurrence rate was low. This result shows that the thickness of the negative electrode at the outermost part of the spiral electrode body (dl) is the thickness of the other part (d2).
This shows that by making the spiral electrode body thinner, it becomes easier to store the spiral electrode body in the metal exterior can, and the yield of non-defective products can be improved.

以上の実施例では、ニッケルーカドミウム系で水酸化カ
リウム水溶液を電解液として用いたアルカリ蓄電池につ
いて説明したが、電池系としてはこれに限定されるもの
ではなく、例えば、負極としては、LaNi、系、Mm
Ni、系、T1Ni系などの水素貯蔵合金電極などを用
いることができる。また、電極の製造方法も、プレス成
形方式、焼結方式、ペースト方式など、各種の方法が採
用できる。
In the above embodiments, a nickel-cadmium-based alkaline storage battery using a potassium hydroxide aqueous solution as an electrolyte was described, but the battery system is not limited to this. For example, as a negative electrode, LaNi, , Mm
Hydrogen storage alloy electrodes such as Ni, T1Ni, etc. can be used. Furthermore, various methods can be used to manufacture the electrodes, such as a press molding method, a sintering method, and a paste method.

C発明の効果〕 以上説明したように、本発明では、渦巻状電極体(11
)の最外周部の負極(2)の厚み(dl)をそれ以外の
部分の負極(2)の厚み(d2)より薄くすることによ
り、体積効率を高めて高容量化を達成し、また、渦巻状
電極体(11)の金属外装缶(4)内への収納を容易に
して、短絡の発生を防止し、歩留りを同上させることが
できた。
C Effects of the Invention] As explained above, in the present invention, the spiral electrode body (11
) by making the thickness (dl) of the negative electrode (2) at the outermost periphery thinner than the thickness (d2) of the negative electrode (2) at the other parts, the volumetric efficiency is increased and high capacity is achieved, and It was possible to easily store the spiral electrode body (11) in the metal exterior can (4), prevent the occurrence of short circuits, and improve the yield.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は渦巻状電極体の横断面図で、第2図は渦巻状電
極体に用いられた負極を渦巻状に巻回する前の状態で示
す斜視図である。第3図は負極の厚みを変化させる部分
に傾斜を持たせた状態で示す負極の要部拡大横断面図で
ある。第4図はアルカリ蓄電池の一例を示す細断面図で
ある。 (1)・・・正極、 (2)・・・負極、 (3)・・
・セパレータ、(4)・・・金属外装缶、 (11)・
・・渦巻状電極体、(d1)・・・渦巻状電極体の最外
周部の負極の厚み、(d2)・・・それ以外の部分の負
極の厚み括4図 ノ\、・′ 7   2a
FIG. 1 is a cross-sectional view of the spiral electrode body, and FIG. 2 is a perspective view showing the negative electrode used in the spiral electrode body before it is spirally wound. FIG. 3 is an enlarged cross-sectional view of the main part of the negative electrode, with the part where the thickness of the negative electrode is changed inclined. FIG. 4 is a thin sectional view showing an example of an alkaline storage battery. (1)...Positive electrode, (2)...Negative electrode, (3)...
・Separator, (4)...Metal outer can, (11)・
... Spiral electrode body, (d1)...Thickness of the negative electrode at the outermost circumference of the spiral electrode body, (d2)...Thickness of the negative electrode in other parts

Claims (1)

【特許請求の範囲】 1、金属酸化物または金属水酸化物を含むシート状の成
形体からなる正極(1)と、水酸化カドミウムまたは金
属水素化物を含むシート状の成形体からなる負極(2)
とを、セパレータ(3)を介して重ね合わせ、渦巻状に
巻回して作製した渦巻状電極体(11)を金属外装缶(
4)内に収納してなるアルカリ蓄電池において、 上記渦巻状電極体(11)の最外周部の負極(2)の厚
み(d_1)がそれ以外の部分の負極(2)の厚み(d
_2)に対して0.5≦(d_1)/(d_2)<1で
あることを特徴とするアルカリ蓄電池。 (2)負極(2)の厚みを変えた部分に10°≦θ<9
0°の傾斜を持たせたことを特徴とする請求項1記載の
アルカリ蓄電池。
[Claims] 1. A positive electrode (1) made of a sheet-like molded body containing a metal oxide or metal hydroxide, and a negative electrode (2) made of a sheet-like molded body containing cadmium hydroxide or a metal hydride. )
The spiral electrode body (11), which was produced by overlapping the two electrodes with a separator (3) in between and spirally winding them, is placed in a metal exterior can (
4) In the alkaline storage battery housed in
An alkaline storage battery characterized in that 0.5≦(d_1)/(d_2)<1 for _2). (2) At the part where the thickness of the negative electrode (2) is changed, 10°≦θ<9
The alkaline storage battery according to claim 1, characterized in that the alkaline storage battery has an inclination of 0°.
JP2338989A 1990-11-30 1990-11-30 Alkaline storage battery Expired - Fee Related JP3056521B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2338989A JP3056521B2 (en) 1990-11-30 1990-11-30 Alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2338989A JP3056521B2 (en) 1990-11-30 1990-11-30 Alkaline storage battery

Publications (2)

Publication Number Publication Date
JPH04206474A true JPH04206474A (en) 1992-07-28
JP3056521B2 JP3056521B2 (en) 2000-06-26

Family

ID=18323220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2338989A Expired - Fee Related JP3056521B2 (en) 1990-11-30 1990-11-30 Alkaline storage battery

Country Status (1)

Country Link
JP (1) JP3056521B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1298072C (en) * 2003-08-04 2007-01-31 三洋电机株式会社 Cylinder shape alkali accumulator
US7432018B2 (en) 2003-08-04 2008-10-07 Sanyo Electric Co., Ltd. Cylindrical alkaline storage battery
JP5096745B2 (en) * 2005-01-06 2012-12-12 パナソニック株式会社 Method for producing negative electrode for nickel metal hydride storage battery
US8389159B2 (en) 2004-11-26 2013-03-05 Panasonic Corporation Nickel metal hydride rechargeable battery and method for manufacturing negative electrode thereof
EP2541662A3 (en) * 2011-06-30 2013-12-25 FDK Twicell Co., Ltd. Negative-electrode plate and cylindrical cell including same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4439220B2 (en) * 2003-08-04 2010-03-24 三洋電機株式会社 Cylindrical alkaline storage battery and cylindrical nickel metal hydride secondary battery
CN101459261A (en) * 2005-01-06 2009-06-17 松下电器产业株式会社 Nickel hydrogen storage battery and production method for its cathode

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1298072C (en) * 2003-08-04 2007-01-31 三洋电机株式会社 Cylinder shape alkali accumulator
US7432018B2 (en) 2003-08-04 2008-10-07 Sanyo Electric Co., Ltd. Cylindrical alkaline storage battery
US8389159B2 (en) 2004-11-26 2013-03-05 Panasonic Corporation Nickel metal hydride rechargeable battery and method for manufacturing negative electrode thereof
JP5096745B2 (en) * 2005-01-06 2012-12-12 パナソニック株式会社 Method for producing negative electrode for nickel metal hydride storage battery
US8475958B2 (en) 2005-01-06 2013-07-02 Panasonic Corporation Nickel hydrogen storage battery and method for manufacturing negative electrode thereof
EP2541662A3 (en) * 2011-06-30 2013-12-25 FDK Twicell Co., Ltd. Negative-electrode plate and cylindrical cell including same
US8815451B2 (en) 2011-06-30 2014-08-26 Fdk Twicell Co., Ltd. Negative-electrode plate and cylindrical cell including same

Also Published As

Publication number Publication date
JP3056521B2 (en) 2000-06-26

Similar Documents

Publication Publication Date Title
US6387567B1 (en) Secondary battery
WO2006035980A1 (en) Enclosed battery, enclosed battery-use lead, and assembled battery formed by a plurality of enclosed batteries
JP2002164023A (en) Square battery
JPH04206474A (en) Alkaline storage battery
JP3387188B2 (en) Coin-shaped lithium battery
EP1312125B1 (en) Battery and method for manufacturing the same
US6268083B1 (en) Alkaline storage battery
JP3324662B2 (en) Spiral battery
JP3695868B2 (en) Square alkaline storage battery
JP4017212B2 (en) Alkaline secondary battery having a wound structure electrode body
JP3056520B2 (en) Alkaline storage battery
JP3706166B2 (en) Manufacturing method of nickel metal hydride secondary battery
JP3395942B2 (en) Battery having wound electrode body
JP2002203592A (en) Cylindrical secondary battery
JP2002175785A (en) Cylindrical secondary battery
JP2002025548A (en) Square alkaline storage battery
JP2594147B2 (en) Metal-hydrogen alkaline storage battery
JP2002203591A (en) Cylindrical secondary battery
JP2006032304A (en) Storage battery equipped with winding electrode plate group
JPH05217579A (en) Hydride secondary battery
JPH05217600A (en) Cylindrical nickel-hydrogen storage alloy secondary battery
JPH07254416A (en) Coiled lithium battery
JP2007115711A (en) Battery
JPH05258749A (en) Hydride secondary battery
JP4783980B2 (en) Cylindrical secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080414

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090414

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees