JPH04206354A - Lithium manganese composite oxide, and manufacture and use of the same - Google Patents

Lithium manganese composite oxide, and manufacture and use of the same

Info

Publication number
JPH04206354A
JPH04206354A JP2329943A JP32994390A JPH04206354A JP H04206354 A JPH04206354 A JP H04206354A JP 2329943 A JP2329943 A JP 2329943A JP 32994390 A JP32994390 A JP 32994390A JP H04206354 A JPH04206354 A JP H04206354A
Authority
JP
Japan
Prior art keywords
lithium
less
axis diameter
acicular
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2329943A
Other languages
Japanese (ja)
Other versions
JP3235098B2 (en
Inventor
Masaki Okada
昌樹 岡田
Setsuo Yoshida
節夫 吉田
Masaharu Doi
正治 土井
Takashi Mori
隆 毛利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP32994390A priority Critical patent/JP3235098B2/en
Publication of JPH04206354A publication Critical patent/JPH04206354A/en
Application granted granted Critical
Publication of JP3235098B2 publication Critical patent/JP3235098B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To constitute an nonaqueous lithium secondary battery having a large cycle discharge capacity by using, as a positive electrode, LiMn2O4 consisting of needle particles having corresponding diameters in which the short axis diameter, long axis diameter and height are specified. CONSTITUTION:LiMn2O4 consisting of needle particles having corresponding diameters of a short axis diameter not more than 5mum, a long axis diameter not more than 10mum, and a height not more than 5mum is mixed in a mortar, and the temperature is raised to bake it under air atmosphere. The obtained LiMn2O4, carbon powder of a conductive material, and polytetrafluoroethylene powder of a binder are mixed together, molded into a pellet, and used as a positive electrode. As a negative elellctrode 5, a lithium piece is used, and an electrolyte obtained by dissolving lithium perchlorate into a mixture of propylene carbonate and 1, 2-dimethoxyethane is impregnated in a separator 4 and used. Thus, a nonaqueous lithium secondary battery having a high cycle discharge capacity can be constituted.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は新規なL iM n 2O4に関するものであ
り、さらに詳しくは短軸径が5μm以下、長軸径が10
μm以下、高さが5μm以下の相当径を有する針状粒子
から成るL I M n 2O4とその製造法及びその
用途に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a novel LiM n 2O4.
The present invention relates to L I M n 2O4 consisting of acicular particles having an equivalent diameter of 5 μm or less and a height of 5 μm or less, a method for producing the same, and uses thereof.

近年L iM n 2O4は、リチウム二次電池正極材
料として注目されている。
In recent years, LiM n 2O4 has attracted attention as a positive electrode material for lithium secondary batteries.

[従来の技術] スピネル骨格構造を持つ二酸化マンガンは、八面体位置
及び四面体位置にリチウムイオンか入ることができ、ま
たリチウムイオンか移動できる通路か三次元的に連なっ
ている。従って、スピネル骨格構造を持つL iM、 
n 2O4は、リチウムイオンを結晶構造内にドープ又
は脱ドープすることか可能である。
[Prior Art] Manganese dioxide having a spinel skeleton structure has a three-dimensional series of passages through which lithium ions can enter octahedral and tetrahedral positions, and through which lithium ions can move. Therefore, LiM with a spinel skeleton structure,
n2O4 can be doped or dedoped with lithium ions into the crystal structure.

この特性から、L L M n 2O4は近年リチウム
二次電池の正極材料として注目されるようになった。
Because of this property, L L M n 2O4 has recently attracted attention as a positive electrode material for lithium secondary batteries.

L iM n 2O4をリチウム二次電池の正極に用い
た場合、電気化学的な酸化還元を行うため、その際の電
荷補償としてリチウムイオンが、結晶格子内にドープ、
脱ドープされるが、その際、結晶格子の構造破壊を伴わ
ない。従って、この反応を安定的に繰り返し実施できる
為、LiMn2O4は二次電池用正極材料として有望で
あり、実用化の検討が行なわれている。
When LiM n 2O4 is used as the positive electrode of a lithium secondary battery, electrochemical redox is performed, so lithium ions are doped into the crystal lattice to compensate for the charge at that time.
Although it is dedoped, the structure of the crystal lattice is not destroyed at that time. Therefore, since this reaction can be carried out repeatedly and stably, LiMn2O4 is promising as a positive electrode material for secondary batteries, and its practical application is being studied.

例えば、特開昭63−187569号公報ではMn2O
3とL l 2 CO3をLi:Mn=1:2(モル比
)で混合し、650℃で6時間、850℃て14時間空
気中で焼成する方法で得られたしI Ni n 2O4
を正極に用いているか、本発明者らの検討によれば、十
分な正極性能を得るに至っていない。これは、焼成を高
温で長時間行っているために粒子の焼結反応か進み、粒
子径の成長か起こり、表面積が低下し、電池エネルギー
の利用効率が低下するためである。
For example, in JP-A-63-187569, Mn2O
I Ni n 2 O4 was obtained by mixing 3 and L l 2 CO3 at a Li:Mn=1:2 (molar ratio) and calcining the mixture in air at 650°C for 6 hours and at 850°C for 14 hours.
According to the studies conducted by the present inventors, sufficient positive electrode performance has not been obtained. This is because the sintering reaction of the particles progresses as the firing is carried out at high temperatures for a long period of time, which causes the particle size to grow, resulting in a decrease in surface area and a decrease in battery energy usage efficiency.

この問題点を解決するために、幾つかの方法か提案され
ている。
Several methods have been proposed to solve this problem.

特開昭63−218156号公報では、前記特開昭63
−187569号公報の方法でL i M n2O4を
焼成終了後直ちに水中にて急速冷却を行い、結晶粒子を
微粉化することで表面積を増大させ、利用効率を向上さ
せることを提案している。
In JP-A No. 63-218156, the above-mentioned JP-A-63-218156
It is proposed that LiMn2O4 be rapidly cooled in water immediately after calcination using the method disclosed in Japanese Patent No. 187569 to pulverize the crystal particles to increase the surface area and improve utilization efficiency.

−しかし、この方法では、LL  イオンの拡散か容易
なスピネル構造が歪められ、さらに水分か混入するため
に、性能及び保存性の点て問題点かある。
- However, in this method, the spinel structure, which facilitates the diffusion of LL ions, is distorted and water is mixed in, which causes problems in terms of performance and storage stability.

一方、特開平2−139860号公報では、出発マンガ
ン種としてLl イオンか拡散しやすいγ型構造の二酸
化マンガンを用いて、’430℃から510℃の低温で
短時間で焼成する方法が提案されている。この提案は、
低温で短い時間焼成することで粒子成長を抑え、表面積
の低下の抑制を狙ったものである。しかし、本発明者ら
の検討によれば、この焼成温度で得られるLiMn2O
4は、表面積の低下は抑制されるものの、結晶格子は小
さくなり、そのためし1 イオンが拡散する3次元チャ
ンネルが狭くなる。従って電池正極に用いたときの過電
圧が上昇し、電池エネルギーの利用率が低下する問題が
ある。
On the other hand, Japanese Patent Application Laid-Open No. 2-139860 proposes a method of firing at a low temperature of 430°C to 510°C in a short time using Ll ions or easily diffusible γ-type manganese dioxide as the starting manganese species. There is. This proposal is
By firing at a low temperature for a short period of time, the aim is to suppress particle growth and suppress the decrease in surface area. However, according to the studies of the present inventors, LiMn2O obtained at this firing temperature
4, although the decrease in surface area is suppressed, the crystal lattice becomes smaller, and as a result, the three-dimensional channel through which 1 ions diffuse becomes narrower. Therefore, there is a problem that when used as a battery positive electrode, overvoltage increases and battery energy utilization rate decreases.

[発明が解決しようとする課題] これまでに提案されているL L M n 2O4では
、電気化学活性が不十分であり、これを正極に用いた場
合、サイクル特性に優れた非水リチウム二次電池を構成
することは、困難である。
[Problems to be solved by the invention] The L L M n 2O4 proposed so far has insufficient electrochemical activity, and when used as a positive electrode, a non-aqueous lithium secondary with excellent cycle characteristics Constructing batteries is difficult.

[課題を解決するための手段] 本発明者らは、上記問題点を解決するために鋭意検討を
行った結果、マンガン酸化物とリチウム材料の混合物を
焼成することでL I M n 2O4を製造する方法
において、マンガン酸化物に短軸径が1μm以下、長軸
径か5μm以下、高さが1μm以下の相当径を有する針
状水和酸化マンガン又は針状β二酸化マンガンを用いて
リチウム材料との焼成を行うことで、粒子成長か抑制さ
れた、短軸径が5μm以下、長軸径がI Q lt m
以下、高さが5μm以下の相当径を有する針状粒子から
成り、高表面積で、電気化学的に高活性なL iM n
 2O4(以下針状LIMn2O4と略記する)が合成
できることを見出した。さらに、これを負極にリチウム
またはリチウム合金を用い、電解質に非水電解質を用い
る非水リチウム二次電池の正極に用いることで高いサイ
クル放電容量を持つリチウム二次電池が構成できること
を見出し、本発明を完成するに至った。
[Means for Solving the Problems] As a result of intensive studies to solve the above-mentioned problems, the present inventors succeeded in producing L I M n 2O4 by firing a mixture of manganese oxide and lithium material. In the method, acicular hydrated manganese oxide or acicular β-manganese dioxide having an equivalent diameter of 1 μm or less in short axis diameter, 5 μm or less in major axis diameter, and 1 μm or less in height is used in manganese oxide to form a lithium material. By performing calcination, particle growth is suppressed, the minor axis diameter is 5 μm or less, and the major axis diameter is I Q lt m
Hereinafter, LiM n is composed of acicular particles with an equivalent diameter of 5 μm or less in height, has a high surface area, and has high electrochemical activity.
We have discovered that 2O4 (hereinafter abbreviated as acicular LIMn2O4) can be synthesized. Furthermore, it was discovered that a lithium secondary battery with high cycle discharge capacity could be constructed by using this as the positive electrode of a nonaqueous lithium secondary battery that uses lithium or a lithium alloy as the negative electrode and a nonaqueous electrolyte as the electrolyte, and the present invention. I was able to complete it.

尚、本発明者らがここで使用する相当径とは、1個の粒
子を水平面上に安定に静置させ、互いに直交する3方向
の軸の長さで粒子の形状を表示するH e y w o
 o dの定義(荒井康夫著、粉体の材料化学、培風館
参照)に基ずくものである。
Note that the equivalent diameter used by the present inventors here refers to the shape of a single particle that is stably placed on a horizontal surface and the shape of the particle is expressed by the length of the axes in three mutually orthogonal directions. w o
This is based on the definition of od (see Yasuo Arai, Powder Materials Chemistry, Baifukan).

以下本発明を具体的に説明する。The present invention will be specifically explained below.

[作用コ マンガン酸化物とリチウム材料との混合物を焼成するL
 1. M n 2O4の製造方法において、針状水和
酸化マンガン又は針状β二酸化マンガンを用いることで
、粒子成長が顕著に抑制される。この機構については明
らかではないが、以下のように考えられる。
[Working L to calcinate the mixture of comanganese oxide and lithium material
1. In the method for producing M n 2O4, particle growth is significantly suppressed by using acicular hydrated manganese oxide or acicular β-manganese dioxide. Although this mechanism is not clear, it is thought to be as follows.

本発明で用いる針状水和酸化マンガンは、酸素存在下で
は300℃以上の温度で容易にルチル型結晶構造のβ型
二酸化マンガンに転移する。この転移は容易にかつ速や
かに起こるため、粒子形状は針状粒子を保ったままとな
る。従って、得られる二酸化マンガンは高表面積のβ型
二酸化マンガンとなり、リチウム化合物と反応させる場
合の反応性が高くなる。さらに、β型の結晶構造を有す
る二酸化マンガンは、(IXI)のチャンネル構造を持
ち、リチウムの結晶内部への拡散通路が確保されている
ことから、リチウム化合物と反応させた場合、反応は容
易に進行し、均一組成のLiNi n 2O4が生成し
易くなる。また焼成の際に起こるマンガン酸化物の熱相
転移に関しては、ルチル構造からスピネル骨格構造への
変化が非常に速いことが、M、M、Thacke ra
yらによって報告されており(Revue  De  
Chimi e  M i n e r a l e 
 2ユ、55 (1984)参照)、このことからも焼
成反応が容易に進行すると考えられる。従って、以上述
べたことの相乗効果から二酸化マンガン粒子表面には過
剰のリチウムか残ること無く反応が進み、均一組成のL
iMn2O4が生成し、表面にはリチウムか過剰なリチ
ウムと二酸化マンガンの複合酸化物、例えばLi Mn
O3等の電池活性が低い複合酸化物が生成しない。
The acicular hydrated manganese oxide used in the present invention easily transforms into β-type manganese dioxide having a rutile crystal structure at a temperature of 300° C. or higher in the presence of oxygen. Since this transition occurs easily and quickly, the particle shape remains acicular. Therefore, the obtained manganese dioxide becomes β-type manganese dioxide with a high surface area, and the reactivity when reacting with a lithium compound becomes high. Furthermore, manganese dioxide, which has a β-type crystal structure, has an (IXI) channel structure, which ensures a diffusion path for lithium into the crystal, so when it is reacted with a lithium compound, the reaction is easy. As the process progresses, LiNi n 2O4 having a uniform composition is easily generated. Regarding the thermal phase transition of manganese oxide that occurs during firing, M. M. Thackera et al.
It has been reported by y et al.
Chimi e M i n e r a l e
2 U., 55 (1984)), and from this fact it is thought that the calcination reaction proceeds easily. Therefore, due to the synergistic effect of the above, the reaction proceeds without excess lithium remaining on the surface of the manganese dioxide particles, resulting in a uniform composition of L.
iMn2O4 is generated, and the surface contains lithium or a composite oxide of excess lithium and manganese dioxide, such as LiMn
Composite oxides with low battery activity such as O3 are not generated.

さらに、本発明のように二酸化マンガン表面と内部のリ
チウム濃度が均一になる条件では、過剰のリチウムによ
る粒子成長か抑制され、出発マンガン種の針状粒子形状
を保った高表面積で且つ電気化学的に高活性なL I 
M n 2O4が得られると考えられる。
Furthermore, under conditions where the lithium concentration on the manganese dioxide surface and inside the manganese dioxide is uniform, as in the present invention, particle growth due to excess lithium is suppressed, and the starting manganese seeds have a high surface area that maintains the acicular particle shape and are electrochemically highly active L I
It is believed that M n 2O4 is obtained.

出発マンガン種を針状β二酸化マンガンとじた場合にお
いても、上記針状水和酸化マンガンを用いた場合と同様
な効果か出現する。
Even when the starting manganese species is fused into acicular β-manganese dioxide, the same effect as in the case where the acicular hydrated manganese oxide is used appears.

本発明で用いる針状水和酸化マンガンは、例えば、Ow
en  Br1ckerか報告している方法、すなわち
水酸化マンガン(M n (OH) 2 )を過酸化水
素(H2O2)で酸化する方法(The   Amer
ican   Mineralogist  vol、
50,1296P(1965))や、K、Matsuk
iらが報告している方法、すなわち2O℃以下の温度で
、硫酸マンガン(MnS04)と過酸化水素の混合液に
アンモニア(NH40H)を加える方法(E lec 
t roch 1m1ca   Acta   vol
、  31. 13P  (1986))で得ることが
できる。
The acicular hydrated manganese oxide used in the present invention is, for example, Ow
The method reported by En Br1cker, that is, the method of oxidizing manganese hydroxide (M n (OH) 2 ) with hydrogen peroxide (H2O2) (The Amer
ican mineralogist vol.
50, 1296P (1965)) and K. Matsuk.
i et al. reported, that is, a method of adding ammonia (NH40H) to a mixture of manganese sulfate (MnS04) and hydrogen peroxide at a temperature of 20°C or less (E lec
troch 1m1ca Acta vol
, 31. 13P (1986)).

本発明で用いる針状β二酸化マンガンは、特開昭63−
30323号公報に開示されている方法を用いて製造す
ることができる。
The acicular β-manganese dioxide used in the present invention is
It can be manufactured using the method disclosed in Japanese Patent No. 30323.

本発明のL IM n 2O4の製造において用いられ
るリチウム材料は、特に限定されるものではなく、リチ
ウム金属及び/またはリチウム化合物であれば如何なる
ものを用いても良い。例えば、リチウム金属、水酸化リ
チウム、酸化リチウム、炭酸リチウム、ヨウ化リチウム
、硝酸リチウム、シュウ酸リチウム、アルキルリチウム
等が例示される。
The lithium material used in the production of L IM n 2O4 of the present invention is not particularly limited, and any lithium metal and/or lithium compound may be used. Examples include lithium metal, lithium hydroxide, lithium oxide, lithium carbonate, lithium iodide, lithium nitrate, lithium oxalate, and alkyl lithium.

リチウム材料とマンガン酸化物の混合方法は、特に制限
されるものではなく、固相及び/または液相で混合を行
えば良い。例えば、リチウム材料及びマンガン酸化物の
粉末を、乾式及び/または湿式で混合する方法や、リチ
ウム材料を溶解及び/または懸濁した溶液中にマンガン
酸化物を加えて撹拌することで混合する方法等が例示さ
れる。
The method of mixing the lithium material and manganese oxide is not particularly limited, and the mixing may be performed in a solid phase and/or liquid phase. For example, methods include dry and/or wet mixing of lithium material and manganese oxide powder, methods of mixing by adding manganese oxide to a solution in which lithium material is dissolved and/or suspended, and stirring. is exemplified.

本発明において、焼成は650℃以上の温度で行うこと
が必要である。この温度以下では、反応が十分に進行せ
ず、均一組成のL i M n 2O4を得ることがで
きない。
In the present invention, it is necessary to perform firing at a temperature of 650° C. or higher. Below this temperature, the reaction does not proceed sufficiently, making it impossible to obtain L i M n 2O4 with a uniform composition.

また、焼成において水和酸化マンガンを用いる場合は、
焼成は酸素存在下で行う必要がある。水和酸化マンガン
は、酸素存在下では300℃以上でβ型二酸化マンガン
に熱相転移するが、不活性ガス雰囲気下ではMn508
及びMn 304の低酸化状態のマンガン酸化物に転移
するために、所望のL I M n 2O4を得ること
か困難となる。
In addition, when using hydrated manganese oxide in firing,
Firing must be performed in the presence of oxygen. Hydrated manganese oxide undergoes a thermal phase transition to β-type manganese dioxide at temperatures above 300°C in the presence of oxygen, but in an inert gas atmosphere Mn508
Because of the transition of Mn and Mn 304 to manganese oxide in a low oxidation state, it becomes difficult to obtain the desired L I M n 2O4.

一方、β二酸化マンガンを用いる場合、焼成雰囲気は特
に制限されない。
On the other hand, when using β-manganese dioxide, the firing atmosphere is not particularly limited.

本発明の非水リチウム二次電池の負極としては、リチウ
ム金属、リチウム合金を用いることができる。リチウム
合金としては、例えばリチウム/スズ合金、リチウム/
鉛合金等か挙げられる。
As the negative electrode of the non-aqueous lithium secondary battery of the present invention, lithium metal or lithium alloy can be used. Examples of lithium alloys include lithium/tin alloys and lithium/tin alloys.
Examples include lead alloys.

また、本発明の非水リチウム二次電池の電解質は特に制
限されないが、例えば、カーボネート類、スルホラン類
、ラクトン類、エーテル類等の有機溶媒中にリチウム塩
を溶解したものや、リチウムイオン導電性の固体電解質
を用いることができる。
Further, the electrolyte of the non-aqueous lithium secondary battery of the present invention is not particularly limited, but examples include those in which a lithium salt is dissolved in an organic solvent such as carbonates, sulfolanes, lactones, and ethers, and electrolytes with lithium ion conductivity. solid electrolyte can be used.

本発明で得られたL I M n 2O4を用いて、第
1図に示す電池を構成した。図中に於いて、1:正極用
リード線、2:正極集電用メツシュ、3:正極4:セパ
レーター、5:負極、6:負極集電用メツシュ、7:負
極用リード線、8:容器を示す。
A battery shown in FIG. 1 was constructed using L I M n 2O4 obtained in the present invention. In the figure, 1: positive electrode lead wire, 2: positive electrode current collection mesh, 3: positive electrode 4: separator, 5: negative electrode, 6: negative electrode current collection mesh, 7: negative electrode lead wire, 8: container shows.

[実施例コ 以下実施例を述べるか、本発明はこれに限定されるもの
ではない。
[Examples] Examples will be described below, but the present invention is not limited thereto.

実施例1 [L iM n 2O4の作成] 実施例1として、L L Fvl n 2O4を次のよ
うにして製造した。
Example 1 [Preparation of L iM n 2O4] As Example 1, L L Fvl n 2O4 was manufactured as follows.

市販の短軸径か1μm以下、長軸径か5μm以下、高さ
が1μm以下の相当径を有する針状水和酸化マンガン(
東ソー株式会社製、以下束ソー+−j製針状水利酸化マ
ンガンと略記する)44gと酸化リチウム3.75gを
乳鉢で混合した後、空気雰囲気下で室温から850℃ま
で10℃/minの速度で昇温し、焼成を行った。第2
図及び表1に示した、得られた化合物のX線回折及び化
学組成分析の結果から、この化合物はL IMn 2O
4であると同定された。また第3図(A)に示すSEM
観察の結果、粒子形状は短軸径が5μm以下、長軸径が
10μm以下、高さが5μm以下の相当径を有する針状
粒子であることか分か一つだ。
Commercially available acicular hydrated manganese oxide (
After mixing 44 g (manufactured by Tosoh Co., Ltd., hereinafter abbreviated as acicular water-use manganese oxide manufactured by Bunsaw +-J) and 3.75 g of lithium oxide in a mortar, the mixture was heated from room temperature to 850°C at a rate of 10°C/min in an air atmosphere. The temperature was raised and firing was performed. Second
From the results of X-ray diffraction and chemical composition analysis of the obtained compound shown in the figure and Table 1, this compound is L IMn 2O
It was identified as 4. Also, the SEM shown in Figure 3(A)
As a result of the observation, the particle shape is likely to be acicular particles with equivalent diameters of a short axis diameter of 5 μm or less, a long axis diameter of 10 μm or less, and a height of 5 μm or less.

[電池の構成コ 得られたLIMn2o4、導電材のカーボン粉末及び結
着材のポリテトラフルオロエチレン粉末f−jl量比で
、88 : 9 : 3の割合で混合した。この混合物
75mgを5 t o n / c m 2の圧力で8
mmφのベレットに成型した。これをN1図3の正極と
して用い、第1図5の負極にはリチウム箔(厚さ0.2
mm)から切り抜いたリチウム片を用い、電解液には、
プロピレンカーボネートと1゜2ジメトキシエタンを体
積比で1:1の割合で混合した混合液に過塩素酸リチウ
ムを1mo1/dm3濃度で溶解した電解液を第1図4
のセパレータに含浸させて用い、断面積0.5cm2の
第1図に示す電池を構成した。
[Constitution of Battery] The obtained LIMn2o4, carbon powder as a conductive material, and polytetrafluoroethylene powder f-jl as a binder were mixed in a ratio of 88:9:3. 75 mg of this mixture at a pressure of 5 ton/cm2
It was molded into a mmφ pellet. This is used as the positive electrode in N1 Figure 3, and the negative electrode in Figure 1 is a lithium foil (thickness 0.2
Using a lithium piece cut out from mm), the electrolyte was
An electrolytic solution prepared by dissolving lithium perchlorate at a concentration of 1 mo1/dm3 in a mixture of propylene carbonate and 1゜2 dimethoxyethane at a volume ratio of 1:1 is used in Figure 1.4.
A battery having a cross-sectional area of 0.5 cm 2 as shown in FIG. 1 was constructed by impregnating a separator with the same.

[電池性能評価コ 上記方法で作成した電池を用いて、5mAの一定電流で
、電池電圧が2V〜4Vの範囲で充放電を繰り返した。
[Battery Performance Evaluation] Using the battery prepared by the above method, charging and discharging were repeated at a constant current of 5 mA at a battery voltage in the range of 2V to 4V.

その結果を第4図に示した。5゜サイクル目の放電容量
は、1サイクル目の放電容量に対して約90%の容量を
保持していた。
The results are shown in Figure 4. The discharge capacity at the 5th cycle was approximately 90% of the discharge capacity at the 1st cycle.

実施例2゜ 実施例2として出発マンガン種に、短軸径が1μm以下
、長軸径が5μm以下、高さが1μm以下の相当径を有
する針状β二酸化マンガン用いた。
Example 2 As the starting manganese seed in Example 2, acicular β-manganese dioxide having an equivalent diameter of 1 μm or less in minor axis diameter, 5 μm or less in major axis diameter, and 1 μm or less in height was used.

前記針状β二酸化マンガンは以下の方法で作成した。市
販の針状水和酸化マンガン(東ソー社製永和酸化マンガ
ン)100gと濃硝酸(比重1.3)10mJ!を混合
し、2O0℃の温度で8時間熱処理を行った。生成物を
乳鉢で解砕し、熱水洗した。
The acicular β-manganese dioxide was produced by the following method. 100g of commercially available acicular hydrated manganese oxide (Eiwa manganese oxide manufactured by Tosoh Corporation) and 10mJ of concentrated nitric acid (specific gravity 1.3)! were mixed and heat treated at a temperature of 200°C for 8 hours. The product was crushed in a mortar and washed with hot water.

第5図に示したX線回折から、この生成物はβ二酸化マ
ンガンであると同定された。さらに、第6図に示したS
EM観察の結果から、生成物の粒子形状は短軸径が1μ
m以下、長軸径が5μm以下高さが1μm以下の相当径
を有する針状粒子であった。
From the X-ray diffraction shown in FIG. 5, this product was identified as β-manganese dioxide. Furthermore, S shown in Figure 6
From the results of EM observation, the particle shape of the product has a minor axis diameter of 1μ.
The particles were acicular particles having an equivalent diameter of 1 μm or less, a major axis diameter of 5 μm or less, and a height of 1 μm or less.

次に、得られた針状β二酸化マンガン43.5gを用い
た以外は実施例1と同様にL h M n 2O4を作
成した。図2及び表1に示すX線回折及び化学組成分析
の結果から、得られた化合物はLIM n 2O4であ
ると同定された。また第3図(B)に示したS E M
観察の結果から、得られたLiMn2O4の粒子形状は
短軸径が5μm以下、長軸径か10μm以下、高さが5
μm以下の相当径を有する針状粒子であった。さらに、
これを第1図3の正極に用いた以外は実施例1と同様な
第1図に示す電池を作成した。第4図に示した電池特性
評価の結果、50サイクル目の放電容量は、1サイクル
目の放電容量に対して約8026の容量を維持していた
Next, L h M n 2O4 was prepared in the same manner as in Example 1 except that 43.5 g of the obtained acicular β manganese dioxide was used. From the results of X-ray diffraction and chemical composition analysis shown in FIG. 2 and Table 1, the obtained compound was identified as LIM n 2O4. In addition, S E M shown in Fig. 3 (B)
From the observation results, the particle shape of the obtained LiMn2O4 has a minor axis diameter of 5 μm or less, a major axis diameter of 10 μm or less, and a height of 5 μm.
They were acicular particles with an equivalent diameter of μm or less. moreover,
A battery shown in FIG. 1 was produced in the same manner as in Example 1 except that this was used as the positive electrode in FIG. 1. As a result of the battery characteristic evaluation shown in FIG. 4, the discharge capacity at the 50th cycle maintained a capacity of about 8026 compared to the discharge capacity at the 1st cycle.

表1.化学組成分析値 比較例1 比較例1として、二酸化マンガンに市販の電解二酸化マ
ンガン43.5g(球状粒子、γ型結晶構造)と酸化リ
チウムを3.75gを乳鉢で混合した。この混合物を酸
素雰囲気下850℃で2O時間焼成を行った。X線回折
の結果からこの化合物はL IM n 2O4であると
同定された。さらに、S E M観察から粒子形状は球
形て粒径が約50μmであることが分かった。又、これ
を第1図3の正極に用いて実施例1と同様な第1図の電
池を構成し、電池特性を評価した結果、第4図に示した
ように50サイクル目の放電容量は、1サイクル目の放
電容量に対して約30%の容量しか保持していなかった
Table 1. Chemical Composition Analysis Value Comparative Example 1 As Comparative Example 1, 43.5 g of commercially available electrolytic manganese dioxide (spherical particles, γ-type crystal structure) and 3.75 g of lithium oxide were mixed in a mortar with manganese dioxide. This mixture was fired at 850° C. for 20 hours in an oxygen atmosphere. Based on the results of X-ray diffraction, this compound was identified as L IM n 2O4. Further, SEM observation revealed that the particles were spherical in shape and had a particle size of about 50 μm. In addition, this was used as the positive electrode in Figure 1 and 3 to construct a battery in Figure 1 similar to that in Example 1, and the battery characteristics were evaluated. As a result, the discharge capacity at the 50th cycle was as shown in Figure 4. , only about 30% of the discharge capacity at the first cycle was retained.

[発明の効果〕 以上述べてきたとおり、本発明の方法により、粒子成長
が抑制され、短軸径か5μm以下、長軸径が10μm以
下、高さが5μm以下の相当径を有する針状粒子から成
る、高表面積なL I M n 2O4が製造でき、こ
れを負極にリチウムまたはリチウム合金を用い、電解質
に非水電解質を用いる、非水リチウム二次電池の正極に
用いることで、サイクル放電容量の大きい非水リチウム
二次電池が構成可能となる。
[Effects of the Invention] As described above, the method of the present invention suppresses particle growth and produces acicular particles having an equivalent diameter of 5 μm or less in short axis diameter, 10 μm or less in major axis diameter, and 5 μm or less in height. By using this as the positive electrode of a nonaqueous lithium secondary battery that uses lithium or lithium alloy for the negative electrode and a nonaqueous electrolyte for the electrolyte, the cycle discharge capacity can be increased. It becomes possible to construct a non-aqueous lithium secondary battery with a large capacity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実施例1、実施例2及び比較例1で作成した
電池の実施態様を示す断面概略図である。 図中、 1:正極用リード線、2.正極集電用メツシュ3:正極
      4:セバレーター5:負極      6
:負極集電用メツシュ7:負極用リード線 8:容器 を示す。 第2図は実施例1、実施例2において正極に用いたL 
iM n 2O4のX線回折図を示す。 第3図は、実施例1(A)及び実施例2(B)第4図は
、実施例1、実施例2及び比較例1で作成した電池の電
池特性評価結果を示す。 第5図は、実施例2で作成した針状β二酸化マンガンの
X線回折図を示す。 第6図は、実施例2で作成した針状β二酸化マンガンの
SEM観察図を示すものである。 特許出願人   東ソー株式会社 第2図 2O力eg(Cu) 第3図 (A) (B) 第4図 サイクル数 第5図 2O / deg(C:u ) 第6図 手続補正書く方式) %式% 1 事件の表示 平成2年特許願329943号 2 発明の名称 リチウムマンカン複合酸化物及びその製造法並びにその
用途3 補正をする者 事件との関係  特許出願人 〒746山ロ県新南陽市開成町4560番地4 補正命
令の日付 起案臼 平成 3年 2月25日 5 補正の8象 明細書の図面の簡単な説明の欄 6 補正の内容 (1)明細書17頁下がら2行目、rSEM観察図」を
「粒子構造、に変更する、 (2)明細書]8頁5行目、rsEMli察図」を「粒
子構造1に変更する。
FIG. 1 is a schematic cross-sectional view showing embodiments of batteries prepared in Example 1, Example 2, and Comparative Example 1. In the figure, 1: positive electrode lead wire, 2. Positive electrode current collection mesh 3: Positive electrode 4: Separator 5: Negative electrode 6
: Negative electrode current collection mesh 7: Negative electrode lead wire 8: Indicates a container. Figure 2 shows the L used for the positive electrode in Example 1 and Example 2.
An X-ray diffraction diagram of iM n 2O4 is shown. FIG. 3 shows Example 1 (A) and Example 2 (B). FIG. 4 shows the battery characteristic evaluation results of the batteries prepared in Example 1, Example 2, and Comparative Example 1. FIG. 5 shows an X-ray diffraction pattern of the acicular β-manganese dioxide prepared in Example 2. FIG. 6 shows a SEM observation diagram of the acicular β-manganese dioxide prepared in Example 2. Patent applicant: Tosoh Corporation Figure 2 2O force eg (Cu) Figure 3 (A) (B) Figure 4 Number of cycles Figure 5 2O/deg (C:u) Figure 6 Procedure correction writing method) % formula % 1 Display of the case 1990 Patent Application No. 329943 2 Name of the invention Lithium mankan complex oxide, its manufacturing method, and its uses 3 Person making the amendment Relationship to the case Patent applicant Kaisei-cho, Shinnanyo City, Yamaro Prefecture, 746 Address 4560 4 Draft date of amendment order February 25, 1991 5 Column for brief explanation of the drawings in the amended eight-part specification 6 Contents of the amendment (1) Second line from the bottom of page 17 of the specification, rSEM observation drawing (2) Specification] Page 8, line 5, change rsEMli observation diagram to "Particle structure 1."

Claims (4)

【特許請求の範囲】[Claims] (1)短軸径が5μm以下、長軸径が10μm以下、高
さ5μm以下の相当径を有する針状粒子から成るLiM
n_2O_4。
(1) LiM consisting of acicular particles with an equivalent diameter of 5 μm or less in short axis diameter, 10 μm or less in major axis diameter, and 5 μm or less in height
n_2O_4.
(2)マンガン酸化物とリチウム材料との混合物の焼成
によりLiMn_2O_4を製造する方法において、前
記マンガン酸化物に短軸径が1μm以下、長軸径が5μ
m以下、高さが1μm以下の相当径を有する針状水和酸
化マンガン(MnOOH)を用いることを特徴とする、
特許請求の範囲第1項記載のLiMn_2O_4の製造
方法。
(2) In a method for producing LiMn_2O_4 by firing a mixture of manganese oxide and lithium material, the manganese oxide has a minor axis diameter of 1 μm or less and a major axis diameter of 5 μm.
characterized by using acicular hydrated manganese oxide (MnOOH) having an equivalent diameter of 1 μm or less and a height of 1 μm or less,
A method for producing LiMn_2O_4 according to claim 1.
(3)マンガン酸化物とリチウム材料との混合物の焼成
によりLiMn_2O_4を製造する方法において、前
記マンガン酸化物に短軸径が1μm以下、長軸径が5μ
m以下、高さが1μm以下の相当径を有する針状β二酸
化マンガンを用いることを特徴とする、特許請求の範囲
第1項記載のLiMn_2O_4の製造方法。
(3) In a method for producing LiMn_2O_4 by firing a mixture of manganese oxide and lithium material, the manganese oxide has a minor axis diameter of 1 μm or less and a major axis diameter of 5 μm.
The method for producing LiMn_2O_4 according to claim 1, characterized in that acicular β-manganese dioxide having an equivalent diameter of 1 μm or less and a height of 1 μm or less is used.
(4)負極にリチウムまたはリチウム合金を用い、電解
質に非水電解質を用いる非水リチウム二次電池において
、正極に特許請求の範囲第1項記載のLiMn_2O_
4を用いることを特徴とする非水リチウム二次電池
(4) In a non-aqueous lithium secondary battery using lithium or a lithium alloy for the negative electrode and a non-aqueous electrolyte for the electrolyte, the positive electrode is LiMn_2O_ as described in claim 1.
A non-aqueous lithium secondary battery characterized by using 4.
JP32994390A 1990-11-30 1990-11-30 Lithium manganese composite oxide, method for producing the same and use thereof Expired - Fee Related JP3235098B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32994390A JP3235098B2 (en) 1990-11-30 1990-11-30 Lithium manganese composite oxide, method for producing the same and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32994390A JP3235098B2 (en) 1990-11-30 1990-11-30 Lithium manganese composite oxide, method for producing the same and use thereof

Publications (2)

Publication Number Publication Date
JPH04206354A true JPH04206354A (en) 1992-07-28
JP3235098B2 JP3235098B2 (en) 2001-12-04

Family

ID=18227002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32994390A Expired - Fee Related JP3235098B2 (en) 1990-11-30 1990-11-30 Lithium manganese composite oxide, method for producing the same and use thereof

Country Status (1)

Country Link
JP (1) JP3235098B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109216756A (en) * 2017-07-05 2019-01-15 三洋电机株式会社 Non-aqueous electrolyte secondary battery
CN113896244A (en) * 2021-09-09 2022-01-07 江苏大学 Porous disc-shaped lithium manganate electrode for extracting lithium from salt lake and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109216756A (en) * 2017-07-05 2019-01-15 三洋电机株式会社 Non-aqueous electrolyte secondary battery
CN109216756B (en) * 2017-07-05 2023-05-09 三洋电机株式会社 Nonaqueous electrolyte secondary battery
CN113896244A (en) * 2021-09-09 2022-01-07 江苏大学 Porous disc-shaped lithium manganate electrode for extracting lithium from salt lake and preparation method thereof

Also Published As

Publication number Publication date
JP3235098B2 (en) 2001-12-04

Similar Documents

Publication Publication Date Title
JP3489685B2 (en) Lithium manganate, method for producing the same, and lithium battery using the same
JP5320710B2 (en) Positive electrode active material, method for producing the same, and electrochemical device
CN107275573A (en) Positive electrode active material for nonaqueous electrolyte secondary battery
CN109786738A (en) A kind of high voltage lithium cobalt oxide anode and preparation method thereof and lithium ion battery
JP3680340B2 (en) Manganese composite oxide, method for producing the same, and use thereof
CN106505195A (en) A kind of nickelic positive electrode and preparation method thereof and lithium ion battery
JP5720899B2 (en) Manganese nickel composite oxide particle powder and method for producing the same, method for producing positive electrode active material particle powder for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP5294225B2 (en) Single crystal particles of oxide for lithium secondary battery electrode, method for producing the same, and lithium secondary battery using the same
JP4984593B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP5737513B2 (en) Positive electrode active material powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
CN111009656A (en) Preparation method of rare earth metal doped high-nickel ternary battery positive electrode material
CN103022471A (en) Method for improving electrochemical properties of nickelic ternary anode material
CN108511749A (en) Copper doped lithium nickelate positive electrode and preparation method thereof and lithium ion battery
JP2001332258A (en) Composite oxide material for electrode, its manufacturing method and cell therewith
CN103413928B (en) High-capacity high-compaction metal oxide anode material and preparation method thereof
JP3702481B2 (en) Acicular manganese complex oxide, method for producing the same, and use thereof
JP2000323122A (en) Positive electrode active material for non-aqueous electrolyte secondary battery and manufacture thereof
JP3057755B2 (en) Method for producing lithium manganese composite oxide and use thereof
JP2001114521A (en) Trimanganese tetraoxide and method for its production
JP7338133B2 (en) Positive electrode active material precursor for non-aqueous electrolyte secondary battery, method for producing positive electrode active material precursor for non-aqueous electrolyte secondary battery, method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP4055269B2 (en) Manganese oxide and method for producing the same, lithium manganese composite oxide using manganese oxide, and method for producing the same
JPH04206354A (en) Lithium manganese composite oxide, and manufacture and use of the same
US20030047717A1 (en) Multi-doped nickel oxide cathode material
JP5691159B2 (en) Manganese oxyhydroxide, process for producing the same, and lithium manganese composite oxide using the same
JPH10324522A (en) Production of lithium cobalt oxide particulate powder

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070928

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080928

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080928

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080928

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080928

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees