JP3235098B2 - Lithium manganese composite oxide, method for producing the same and use thereof - Google Patents

Lithium manganese composite oxide, method for producing the same and use thereof

Info

Publication number
JP3235098B2
JP3235098B2 JP32994390A JP32994390A JP3235098B2 JP 3235098 B2 JP3235098 B2 JP 3235098B2 JP 32994390 A JP32994390 A JP 32994390A JP 32994390 A JP32994390 A JP 32994390A JP 3235098 B2 JP3235098 B2 JP 3235098B2
Authority
JP
Japan
Prior art keywords
lithium
limn
less
axis diameter
manganese oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32994390A
Other languages
Japanese (ja)
Other versions
JPH04206354A (en
Inventor
昌樹 岡田
節夫 吉田
正治 土井
隆 毛利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP32994390A priority Critical patent/JP3235098B2/en
Publication of JPH04206354A publication Critical patent/JPH04206354A/en
Application granted granted Critical
Publication of JP3235098B2 publication Critical patent/JP3235098B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は新規なLiMn2O4に関するものであり、さらに
詳しくは短軸径が5μm以下、長軸径が10μm以下、高
さが5μm以下の相当径を有する針状結晶から成り、且
つβ−MnO2及びLi2CO3を含まないLiMn2O4とその製造法
及びその用途に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a novel LiMn 2 O 4 , and more specifically, a minor axis diameter of 5 μm or less, a major axis diameter of 10 μm or less, and a height of 5 μm or less. The present invention relates to a LiMn 2 O 4 made of needle-like crystals having an equivalent diameter and containing no β-MnO 2 and Li 2 CO 3 , a method for producing the same, and its use.

近年LiMn2O4は、リチウム二次電池正極材料として注
目されている。
In recent years, LiMn 2 O 4 has attracted attention as a positive electrode material for a lithium secondary battery.

[従来の技術] スピネル骨格構造を持つ二酸化マンガンは、八面体位
置及び四面体位置にリチウムイオンが入ることができ、
またリチウムイオンが移動できる通路が三次元的に連な
っている。従って、スピネル骨格構造を持つLiMn2O
4は、リチウムイオンを結晶構造内にドープ又は脱ドー
プすることが可能である。
[Prior art] Manganese dioxide having a spinel skeleton structure allows lithium ions to enter octahedral and tetrahedral positions,
In addition, passages through which lithium ions can move are three-dimensionally connected. Therefore, LiMn 2 O having a spinel skeleton structure
4 is capable of doping or undoping lithium ions into the crystal structure.

この特性から、LiMn2O4は近年リチウム二次電池の正
極材料として注目されるようになった。
Due to this characteristic, LiMn 2 O 4 has recently attracted attention as a positive electrode material for lithium secondary batteries.

LiMn2O4をリチウム二次電池の正極に用いた場合、電
気化学的な酸化還元を行うため、その際の電荷補償とし
てリチウムイオンが、結晶格子内にドープ、脱ドープさ
れるが、その際、結晶格子の構造破壊を伴わない。従っ
て、この反応を安定的に繰り返し実施できる為、LiMn2O
4は二次電池用正極材料として有望であり、実用化の検
討が行なわれている。
When LiMn 2 O 4 is used for the positive electrode of a lithium secondary battery, lithium ions are doped and de-doped in the crystal lattice as charge compensation at the time of performing electrochemical oxidation-reduction. It does not involve structural destruction of the crystal lattice. Therefore, since this reaction can be stably repeated, LiMn 2 O
No. 4 is promising as a positive electrode material for secondary batteries, and its practical application is being studied.

例えば、特開昭63−187569号公報ではMn2O3とLi2CO3
をLi:Mn=1:2(モル比)で混合し、650℃で6時間,850
℃で14時間空気中で焼成する方法で得られたLiMn2O4
正極に用いているが、本発明者らの検討によれば、十分
な正極性能を得るに至っていない。これは、焼成を高温
で長時間行っているために粒子の焼結反応が進み、粒子
径の成長が起こり、表面積が低下し、電池エネルギーの
利用効率が低下するためである。
For example, JP-A-63-187569 discloses that Mn 2 O 3 and Li 2 CO 3
Are mixed at a molar ratio of Li: Mn = 1: 2, and heated at 650 ° C. for 6 hours for 850 hours.
LiMn 2 O 4 obtained by calcination in air at 14 ° C. for 14 hours is used for the positive electrode. However, according to the studies by the present inventors, sufficient positive electrode performance has not been obtained. This is because the sintering reaction of the particles proceeds because the firing is performed at a high temperature for a long time, the particle diameter grows, the surface area decreases, and the efficiency of using battery energy decreases.

この問題点を解決するために、幾つかの方法が提案さ
れている。
Several methods have been proposed to solve this problem.

特開昭63−218156号公報では、前記特開昭63−187569
号公報の方法でLiMn2O4を焼成終了後直ちに水中にて急
速冷却を行い、結晶粒子を微粉化することで表面積を増
大させ、利用効率を向上させることを提案している。し
かし、この方法では、Li+イオンの拡散が容易なスピネ
ル構造が歪められ、さらに水分が混入するために、性能
及び保存性の点で問題点がある。
In JP-A-63-218156, the aforementioned JP-A-63-187569 is described.
It is proposed that the LiMn 2 O 4 be rapidly cooled in water immediately after the completion of calcination by the method disclosed in Japanese Patent Application Laid-Open Publication No. H11-27139 to increase the surface area by pulverizing the crystal particles, thereby improving the utilization efficiency. However, in this method, the spinel structure in which Li + ions are easily diffused is distorted, and water is mixed therein, so that there is a problem in performance and storage stability.

一方、特開平2−139860号公報では、出発マンガン種
としてLi+イオンが拡散しやすいγ型構造の二酸化マン
ガンを用いて、430℃から510℃の低温で短時間で焼成す
る方法が提案されている。この提案は、低温で低い時間
焼成することで粒子成長を抑え、表面積の低下の抑制を
狙ったものである。しかし、本発明者らの検討によれ
ば、この焼成温度で得られるLiMn2O4は、表面積の低下
は抑制されるものの、結晶格子は小さくなり、そのため
Li+イオンが拡散する3次元チャンネルが狭くなる。従
って電池正極に用いたときの過電圧が上昇し、電池エネ
ルギーの利用率が低下する問題がある。
On the other hand, Japanese Patent Application Laid-Open No. 2-139860 proposes a method in which manganese dioxide having a γ-type structure in which Li + ions are easily diffused is used as a starting manganese species and calcined at a low temperature of 430 ° C. to 510 ° C. in a short time. I have. This proposal aims at suppressing particle growth by firing at a low temperature for a short period of time and suppressing a decrease in surface area. However, according to the study of the present inventors, LiMn 2 O 4 obtained at this firing temperature, although a decrease in surface area is suppressed, the crystal lattice is reduced, and
The three-dimensional channel in which Li + ions diffuse is narrowed. Therefore, there is a problem that the overvoltage when used for the battery positive electrode increases and the utilization rate of the battery energy decreases.

[発明が解決しようとする課題] これまでに提案されているLiMn2O4では、電気化学活
性が不十分であり、これを正極に用いた場合、サイクル
特性に優れた非水リチウム二次電池を構成することは、
困難である。
[Problem to be Solved by the Invention] LiMn 2 O 4 proposed so far has insufficient electrochemical activity, and when this is used for a positive electrode, a non-aqueous lithium secondary battery having excellent cycle characteristics. Constructing
Have difficulty.

[課題を解決するための手段] 本発明者らは、上記問題点を解決するために鋭意検討
を行った結果、マンガン酸化物とリチウム材料の混合物
を焼成することでLiMn2O4を製造する方法において、マ
ンガン酸化物に短軸径が1μm以下、長軸径が5μm以
下、高さが1μm以下の相当径を有する針状水和酸化マ
ンガン又は針状β二酸化マンガンを用いてリチウム材料
との焼成を行うことで、粒子成長が抑制された、短軸径
が5μm以下、長軸径が10μm以下、高さが5μm以下
の相当径を有する針状粒子から成り、高表面積で、電気
化学的に高活性なLiMn2O4(以下針状LiMn2O4と略記す
る)が合成できることを見出した。さらに、これを負極
にリチウムまたはリチウム合金を用い、電解質に非水電
解質を用いる非水リチウム二次電池の正極に用いること
で高いサイクル放電容量を持つリチウム二次電池が構成
できることを見出し、本発明を完成するに至った。
Means for Solving the Problems The present inventors have conducted intensive studies to solve the above problems, and as a result, produced LiMn 2 O 4 by firing a mixture of a manganese oxide and a lithium material. In the method, the manganese oxide has a minor axis diameter of 1 μm or less, a major axis diameter of 5 μm or less, and a height of 1 μm or less. By baking, the particle growth is suppressed, consisting of needle-like particles having a minor axis diameter of 5 μm or less, a major axis diameter of 10 μm or less, and an equivalent diameter of 5 μm or less, high surface area, electrochemical It has been found that highly active LiMn 2 O 4 (hereinafter abbreviated as needle-like LiMn 2 O 4 ) can be synthesized. Further, they have found that a lithium secondary battery having a high cycle discharge capacity can be constructed by using this as a positive electrode of a non-aqueous lithium secondary battery using lithium or a lithium alloy as a negative electrode and a non-aqueous electrolyte as an electrolyte. Was completed.

尚、本発明者らがここで使用する相当径とは、1個の
粒子を水平面上に安定に静置させ、互いに直交する3方
向の軸の長さで粒子の形状を表示するHeywoodの定義
(荒井康夫著、粉体の材料化学、培風館参照)に基ずく
ものである。
The equivalent diameter used by the present inventors is the definition of Heywood, in which one particle is stably stood on a horizontal plane, and the shape of the particle is indicated by the lengths of axes in three directions orthogonal to each other. (See Yasuo Arai, Material Chemistry of Powder, Baifukan).

以下本発明を具体的に説明する。 Hereinafter, the present invention will be described specifically.

[作用] マンガン酸化物とリチウム材料との混合物を焼成する
LiMn2O4の製造方法において、針状水和酸化マンガン又
は針状β二酸化マンガンを用いることで、粒子成長が顕
著に抑制される。この機構については明らかではない
が、以下のように考えられる。
[Action] Firing a mixture of manganese oxide and lithium material
In the method for producing LiMn 2 O 4, the use of acicular hydrated manganese oxide or acicular β-manganese dioxide significantly suppresses particle growth. Although the mechanism is not clear, it is considered as follows.

本発明で用いる針状水和酸化マンガンは、酸素存在下
では300℃以上の温度で容易にルチル型結晶構造のβ型
二酸化マンガンに転移する。この転移は容易にかつ速や
かに起こるため、粒子形状は針状粒子を保ったままとな
る。従って、得られる二酸化マンガンは高表面積のβ型
二酸化マンガンとなり、リチウム化合物と反応させる場
合の反応性が高くなる。さらに、β型の結晶構造を有す
る二酸化マンガンは、(1×1)のチャンネル構造を持
ち、リチウムの結晶内部への拡散通路が確保されている
ことから、リチウム化合物と反応させた場合、反応は容
易に進行し、均一組成のLiMn2O4が生成し易くなる。ま
た焼成の際に起こるマンガン酸化物の熱相転移に関して
は、ルチル構造からスピネル骨格構造への変化が非常に
速いことが、M.M.Thackerayらによって報告されており
(Revue De Chimie Minerale 21,55(1984)参
照)、このことからも焼成反応が容易に進行すると考え
られる。従って、以上述べたことの相乗効果から二酸化
マンガン粒子表面には過剰のリチウムが残ること無く反
応が進み、均一組成のLiMn2O4が生成し、表面にはリチ
ウムが過剰なリチウムと二酸化マンガンの複合酸化物、
例えばLi2MnO3等の電池活性が低い複合酸化物が生成し
ない。
The needle-shaped hydrated manganese oxide used in the present invention easily transforms to β-type manganese dioxide having a rutile crystal structure at a temperature of 300 ° C. or more in the presence of oxygen. Since this transition occurs easily and quickly, the particle shape keeps acicular particles. Therefore, the obtained manganese dioxide becomes β-type manganese dioxide having a high surface area, and the reactivity when reacting with a lithium compound is increased. Further, manganese dioxide having a β-type crystal structure has a (1 × 1) channel structure and a diffusion path for lithium into the crystal is secured. It proceeds easily, and LiMn 2 O 4 having a uniform composition is easily generated. Regarding the thermal phase transition of manganese oxide during firing, MMThackeray et al. Reported that the transition from the rutile structure to the spinel skeleton structure was very rapid (Revue De Chimie Minerale 21 , 55 (1984)). This indicates that the firing reaction proceeds easily. Therefore, from the synergistic effect described above, the reaction proceeds without excess lithium remaining on the surface of the manganese dioxide particles, LiMn 2 O 4 having a uniform composition is generated, and the surface of the lithium and manganese dioxide containing excessive lithium is formed on the surface. Composite oxide,
For example, a composite oxide having low battery activity such as Li 2 MnO 3 is not generated.

さらに、本発明のように二酸化マンガン表面と内部の
リチウム濃度が均一になる条件では、過剰のリチウムに
よる粒子成長が抑制され、出発マンガン種の針状粒子形
状を保った高表面積で且つ電気化学的に高活性なLiMn2O
4が得られると考えられる。
Furthermore, under the condition that the lithium concentration on the surface of manganese dioxide and the inside thereof is uniform as in the present invention, the particle growth due to excessive lithium is suppressed, and the surface area and the electrochemical surface of the starting manganese species are kept high while maintaining the acicular particle shape. Highly active LiMn 2 O
It is thought that 4 is obtained.

出発マンガン種を針状β二酸化マンガンとした場合に
おいても、上記針状水和酸化マンガンを用いた場合と同
様な効果が出現する。
Even when the starting manganese species is acicular β-manganese dioxide, the same effect as when the acicular hydrated manganese oxide is used appears.

本発明で用いる針状水和酸化マンガンは、例えば、Ow
en Brickerが報告している方法、すなわち水酸化マン
ガン(Mn(OH))を過酸化水素(H2O2)で酸化する方
法(The American Mineralogist vol.50,1296P(196
5))や、K.Matsukiらが報告している方法、すなわち20
℃以下の温度で、硫酸マンガン(MnSO4)と過酸化水素
の混合液にアンモニア(NH4OH)を加える方法(Electro
chimica Acta vol.31,13P(1986))で得ることがで
きる。
Acicular hydrated manganese oxide used in the present invention is, for example, Ow
en Bricker reported a method of oxidizing manganese hydroxide (Mn (OH) 2 ) with hydrogen peroxide (H 2 O 2 ) (The American Mineralogist vol. 50, 1296P (196
5)) and the method reported by K. Matsuki et al.
A method of adding ammonia (NH 4 OH) to a mixed solution of manganese sulfate (MnSO 4 ) and hydrogen peroxide at a temperature of less than ℃ (Electro
chimica Acta vol. 31, 13P (1986)).

本発明で用いる針状β二酸化マンガンは、特開昭63−
30323号公報に開示されている方法を用いて製造するこ
とができる。
The acicular β-manganese dioxide used in the present invention is disclosed in
It can be produced using the method disclosed in Japanese Patent No. 30323.

本発明のLiMn2O4の製造において用いられるリチウム
材料は、特に限定されるものではなく、リチウム金属及
び/またはリチウム化合物であれば如何なるものを用い
ても良い。例えば、リチウム金属、水酸化リチウム、酸
化リチウム、炭酸リチウム、ヨウ化リチウム、硝酸リチ
ウム、シュウ酸リチウム、アルキルリチウム等が例示さ
れる。
The lithium material used in the production of LiMn 2 O 4 of the present invention is not particularly limited, and any lithium metal and / or lithium compound may be used. Examples thereof include lithium metal, lithium hydroxide, lithium oxide, lithium carbonate, lithium iodide, lithium nitrate, lithium oxalate, and lithium alkyl.

リチウム材料とマンガン酸化物の混合方法は、特に制
限されるものではなく、固相及び/または液相で混合を
行えば良い。例えば、リチウム材料及びマンガン酸化物
の粉末を、乾式及び/または湿式で混合する方法や、リ
チウム材料を溶解及び/または懸濁した溶液中にマンガ
ン酸化物を加えて撹拌することで混合する方法等が例示
される。
The method of mixing the lithium material and the manganese oxide is not particularly limited, and the mixing may be performed in a solid phase and / or a liquid phase. For example, a method of mixing a lithium material and a powder of manganese oxide in a dry and / or wet manner, a method of adding a manganese oxide to a solution in which a lithium material is dissolved and / or suspended, and mixing the mixture by stirring. Is exemplified.

本発明において、焼成は650℃以上の温度で行うこと
が必要である。この温度以下では、反応が十分に進行せ
ず、均一組成のLiMn2O4を得ることができない。
In the present invention, the firing needs to be performed at a temperature of 650 ° C. or higher. Below this temperature, the reaction does not proceed sufficiently, and LiMn 2 O 4 having a uniform composition cannot be obtained.

また、焼成において水和酸化マンガンを用いる場合
は、焼成は酸素存在下で行う必要がある。水和酸化マン
ガンは、酸素存在下では300℃以上でβ型二酸化マンガ
ンに熱相転移するが、不活性ガス雰囲気下ではMn5O8
びMn3O4の低酸化状態のマンガン酸化物に転移するため
に、所望のLiMn2O4を得ることが困難となる。
Further, when hydrated manganese oxide is used in the firing, the firing needs to be performed in the presence of oxygen. Hydrated manganese oxide is in the presence of oxygen to thermal phase transition to β-type manganese dioxide at 300 ° C. or higher, transition manganese oxide of lower oxidation state of Mn 5 O 8 and Mn 3 O 4 under an inert gas atmosphere Therefore, it is difficult to obtain desired LiMn 2 O 4 .

一方、β二酸化マンガンを用いる場合、焼成雰囲気は
特に制限されない。
On the other hand, when β manganese dioxide is used, the firing atmosphere is not particularly limited.

本発明の非水リチウム二次電池の負極としては、リチ
ウム金属、リチウム合金を用いることができる。リチウ
ム合金としては、例えばリチウム/スズ合金、リチウム
/鉛合金等が挙げられる。
As the negative electrode of the nonaqueous lithium secondary battery of the present invention, lithium metal or lithium alloy can be used. Examples of the lithium alloy include a lithium / tin alloy and a lithium / lead alloy.

また、本発明の非水リチウム二次電池の電解質は特に
制限されないが、例えば、カーボネート類、スルホラン
類、ラクトン類、エーテル類等の有機溶媒中にリチウム
塩を溶解したものや、リチウムイオン導電性の固体電解
質を用いることができる。
Further, the electrolyte of the non-aqueous lithium secondary battery of the present invention is not particularly limited. For example, carbonates, sulfolane, lactones, those obtained by dissolving a lithium salt in an organic solvent such as ethers, and lithium ion conductive Solid electrolyte can be used.

本発明で得られたLiMn2O4を用いて、第1図に示す電
池を構成した。図中に於いて、1:正極用リード線,2:正
極集電用メッシュ,3:正極4:セパレーター,5:負極,6:負
極集電用メッシュ,7:負極用リード線,8:容器を示す。
Using the LiMn 2 O 4 obtained in the present invention, a battery shown in FIG. 1 was constructed. In the figure, 1: Lead wire for positive electrode, 2: Mesh for positive electrode current collector, 3: Positive electrode 4: Separator, 5: Negative electrode, 6: Mesh for negative electrode current collector, 7: Lead wire for negative electrode, 8: Container Is shown.

[実施例] 以下実施例を述べるが、本発明はこれに限定されるも
のではない。
[Examples] Examples will be described below, but the present invention is not limited thereto.

実施例1 [LiMn2O4の作成] 実施例1として、LiMn2O4を次のようにして製造し
た。
Example 1 [Preparation of LiMn 2 O 4 ] As Example 1, LiMn 2 O 4 was produced as follows.

市販の短軸径が1μm以下、長軸径が5μm以下、高
さが1μm以下の相当径を有する針状水和酸化マンガン
(東ソー株式会社製、以下東ソー社製針状水和酸化マン
ガンと略記する)44gと酸化リチウム3.75gを乳鉢で混合
した後、空気雰囲気下で室温から850℃まで10℃/minの
速度で昇温し、焼成を行った。第2図及び表1に示し
た、得られた化合物のX線回折及び化学組成分析の結果
から、この化合物はLiMn2O4であると同定された。また
第3図(A)に示すSEM観察の結果、粒子形状は短軸径
が5μm以下、長軸径が10μm以下、高さが5μm以下
の相当径を有する針状粒子であることが分かった。
Commercially available acicular hydrated manganese oxide having an equivalent diameter of 1 μm or less, a major axis diameter of 5 μm or less, and a height of 1 μm or less (manufactured by Tosoh Corporation; After 44 g of lithium oxide and 3.75 g of lithium oxide were mixed in a mortar, the temperature was raised from room temperature to 850 ° C. at a rate of 10 ° C./min in an air atmosphere, followed by firing. From the results of X-ray diffraction and chemical composition analysis of the obtained compound shown in FIG. 2 and Table 1, this compound was identified to be LiMn 2 O 4 . Further, as a result of SEM observation shown in FIG. 3 (A), it was found that the particle shape was a needle-like particle having an equivalent diameter of 5 μm or less in major axis, 10 μm or less in major axis, and 5 μm or less in height. .

[電池の構成] 得られたLiMn2O4、導電材のカーボン粉末及び結着材
のポリテトラフルオロエチレン粉末を重量比で、88:9:3
の割合で混合した。この混合物75mgを5ton/cm2の圧力で
8mmφのペレットに成型した。これを第1図3の正極と
して用い、第1図5の負極にはリチウム箔(厚さ0.2m
m)から切り抜いたリチウム片を用い、電解液には、プ
ロピレンカーボネートと1,2ジメトキシエタンを体積比
で1:1の割合で混合した混合液に過塩素酸リチウムを1mo
l/dm3濃度で溶解した電解液を第1図4のセパレータに
含浸させて用い、断面積0.5cm2の第1図に示す電池を構
成した。
[Configuration of Battery] The obtained LiMn 2 O 4 , carbon powder of a conductive material and polytetrafluoroethylene powder of a binder were mixed at a weight ratio of 88: 9: 3.
At a rate of 75 mg of this mixture at a pressure of 5 ton / cm 2
It was molded into 8 mmφ pellets. This was used as the positive electrode in FIG. 3, and the negative electrode in FIG.
m), lithium electrolyte was mixed with propylene carbonate and 1,2-dimethoxyethane at a volume ratio of 1: 1 by mixing lithium perchlorate with 1 mol
The electrolytic solution dissolved at a l / dm 3 concentration was impregnated into the separator shown in FIG. 4 to use the battery shown in FIG. 1 having a cross-sectional area of 0.5 cm 2 .

[電池性能評価] 上記方法で作成した電池を用いて、5mAの一定電流
で、電池電圧が2V〜4Vの範囲で充放電を繰り返した。そ
の結果を第4図に示した。50サイクル目の放電容量は、
1サイクル目の放電容量に対して約90%の容量を保持し
ていた。
[Evaluation of Battery Performance] Using the battery prepared by the above method, charging and discharging were repeated at a constant current of 5 mA and a battery voltage in a range of 2 V to 4 V. The results are shown in FIG. The discharge capacity at the 50th cycle is
About 90% of the discharge capacity in the first cycle was maintained.

実施例2. 実施例2として出発マンガン種に、短軸径が1μm以
下、長軸径が5μm以下、高さが1μm以下の相当径を
有する針状β二酸化マンガン用いた。前記針状β二酸化
マンガンは以下の方法で作成した。市販の針状水和酸化
マンガン(東ソー社製水和酸化マンガン)100gと濃硝酸
(比重1.3)10mlを混合し、200℃の温度で8時間熱処理
を行った。生成物を乳鉢で解砕し、熱水洗した。第5図
に示したX線回折から、この生成物はβ二酸化マンガン
であると同定された。さらに、第6図に示したSEM観察
の結果から、生成物の粒子形状は短軸径が1μm以下、
長軸径が5μm以下、高さが1μm以下の相当径を有す
る針状粒子であった。
Example 2 In Example 2, an acicular β-manganese dioxide having a minor axis diameter of 1 μm or less, a major axis diameter of 5 μm or less, and an equivalent diameter of 1 μm or less was used as a starting manganese species. The acicular β-manganese dioxide was prepared by the following method. 100 g of commercially available acicular hydrated manganese oxide (manufactured by Tosoh Corporation, hydrated manganese oxide) and 10 ml of concentrated nitric acid (specific gravity: 1.3) were mixed and heat-treated at a temperature of 200 ° C. for 8 hours. The product was crushed in a mortar and washed with hot water. The product was identified as β-manganese dioxide from the X-ray diffraction shown in FIG. Further, from the result of the SEM observation shown in FIG. 6, the particle shape of the product has a minor axis diameter of 1 μm or less,
Needle-like particles having an equivalent diameter of 5 μm or less in major axis and 1 μm or less in height.

次に、得られた針状β二酸化マンガン43.5gを用いた
以外は実施例1と同様にLiMn2O4を作成した。図2及び
表1に示すX線回折及び化学組成分析の結果から、得ら
れた化合物はLiMn2O4であると同定された。また第3図
(B)に示したSEM観察の結果から、得られたLiMn2O4
粒子形状は短軸径が5μm以下、長軸径が10μm以下、
高さが5μm以下の相当径を有する針状粒子であった。
さらに、これを第1図3の正極に用いた以外は実施例1
と同様な第1図に示す電池を作成した。第4図に示した
電池特性評価の結果、50サイクル目の放電容量は、1サ
イクル目の放電容量に対して約80%の容量を維持してい
た。
Next, LiMn 2 O 4 was prepared in the same manner as in Example 1 except that 43.5 g of the obtained acicular β-manganese dioxide was used. From the results of X-ray diffraction and chemical composition analysis shown in FIG. 2 and Table 1, the obtained compound was identified to be LiMn 2 O 4 . Also, from the results of the SEM observation shown in FIG. 3 (B), the obtained LiMn 2 O 4 particle shape has a minor axis diameter of 5 μm or less, a major axis diameter of 10 μm or less,
Needle-like particles having an equivalent diameter of 5 μm or less in height.
Example 1 was repeated except that this was used for the positive electrode in FIG.
A battery similar to that shown in FIG. 1 was prepared. As a result of the battery characteristic evaluation shown in FIG. 4, the discharge capacity at the 50th cycle was maintained at about 80% of the discharge capacity at the first cycle.

比較例1 比較例1として、二酸化マンガンに市販の電解二酸化
マンガン43.5g(球状粒子,γ型結晶構造)と酸化リチ
ウムを3.75gを乳鉢で混合した。この混合物を酸素雰囲
気下850℃で20時間焼成を行った。X線回折の結果から
この化合物はLiMn2O4であると同定された。さらに、SEM
観察から粒子形状は球形で粒径が約50μmであることが
分かった。又、これを第1図3の正極に用いて実施例1
と同様な第1図の電池を構成し、電池特性を評価した結
果、第4図に示したように50サイクル目の放電容量は、
1サイクル目の放電容量に対して約30%の容量しか保持
していなかった。
Comparative Example 1 As Comparative Example 1, manganese dioxide was mixed with 43.5 g of commercially available electrolytic manganese dioxide (spherical particles, γ-type crystal structure) and 3.75 g of lithium oxide in a mortar. This mixture was baked at 850 ° C. for 20 hours in an oxygen atmosphere. The compound was identified to be LiMn 2 O 4 from the result of X-ray diffraction. In addition, SEM
Observation revealed that the particle shape was spherical and the particle size was about 50 μm. Further, this was used for the positive electrode of FIG.
1 and the battery characteristics were evaluated. As a result, as shown in FIG. 4, the discharge capacity at the 50th cycle was:
Only about 30% of the discharge capacity of the first cycle was retained.

[発明の効果] 以上述べてきたとおり、本発明の方法により、粒子成
長が抑制され、短軸径が5μm以下、長軸径が10μm以
下、高さが5μm以下の相当径を有する針状粒子から成
り、且つβ−MnO2及びLi2CO3を含まない高表面積なLiMn
2O4が製造でき、これを負極にリチウムまたはリチウム
合金を用い、電解質に非水電解質を用いる、非水リチウ
ム二次電池の正極に用いることで、サイクル放電容量の
大きい非水リチウム二次電池が構成可能となる。
[Effects of the Invention] As described above, the method of the present invention suppresses particle growth, and acicular particles having a minor axis diameter of 5 µm or less, a major axis diameter of 10 µm or less, and a height of 5 µm or less. And high surface area LiMn free of β-MnO 2 and Li 2 CO 3
2 O 4 can be manufactured, and this is used for the positive electrode of non-aqueous lithium secondary batteries using lithium or lithium alloy for the negative electrode and non-aqueous electrolyte for the electrolyte. Can be configured.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、実施例1、実施例2及び比較例1で作成した
電池の実施態様を示す断面概略図である。 図中、 1:正極用リード線,2:正極集電用メッシュ 3:正極、4:セパレーター 5:負極、6:負極集電用メッシュ 7:負極用リード線、8:容器 を示す。 第2図は実施例1、実施例2において正極に用いたLiMn
2O4のX線回折図を示す。 第3図は、実施例1(A)及び実施例2(B)で作成し
たLiMn2O4の粒子構造を示す。 第4図は、実施例1、実施例2及び比較例1で作成した
電池の電池特性評価結果を示す。 第5図は、実施例2で作成した針状β二酸化マンガンの
X線回折図を示す。 第6図は、実施例2で作成した針状β二酸化マンガンの
粒子構造を示すものである。
FIG. 1 is a schematic sectional view showing an embodiment of the batteries prepared in Example 1, Example 2, and Comparative Example 1. In the figure, 1: positive electrode lead wire, 2: positive electrode current collecting mesh 3: positive electrode, 4: separator 5: negative electrode, 6: negative electrode current collecting mesh 7: negative electrode lead wire, 8: container. FIG. 2 shows LiMn used for the positive electrode in Examples 1 and 2.
2 shows an X-ray diffraction diagram of 2 O 4 . FIG. 3 shows the particle structure of LiMn 2 O 4 prepared in Example 1 (A) and Example 2 (B). FIG. 4 shows battery characteristic evaluation results of the batteries prepared in Example 1, Example 2, and Comparative Example 1. FIG. 5 shows an X-ray diffraction diagram of the acicular β-manganese dioxide prepared in Example 2. FIG. 6 shows the particle structure of acicular β-manganese dioxide prepared in Example 2.

フロントページの続き (56)参考文献 特開 昭63−187569(JP,A) 特開 平3−245839(JP,A) 特開 平2−139860(JP,A) (58)調査した分野(Int.Cl.7,DB名) C01G 45/00 H01M 4/58 CA(STN)(56) References JP-A-63-187569 (JP, A) JP-A-3-245839 (JP, A) JP-A-2-139860 (JP, A) (58) Fields studied (Int .Cl. 7 , DB name) C01G 45/00 H01M 4/58 CA (STN)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】短軸径が5μm以下、長軸径が10μm以
下、高さ5μm以下の相当径を有する針状粒子から成
り、且つβ−MnO2及びLi2CO3を含まないLiMn2O4.
1. LiMn 2 O comprising a needle-like particle having a minor axis diameter of 5 μm or less, a major axis diameter of 10 μm or less and a height of 5 μm or less, and not containing β-MnO 2 and Li 2 CO 3. 4 .
【請求項2】マンガン酸化物とリチウム材料との混合物
の構成によりLiMn2O4を製造する方法において、前記マ
ンガン酸化物に短軸径が1μm以下、長軸径が5μm以
下、高さが1μm以下の相当径を有する針状水和酸化マ
ンガン(MnOOH)を用い、650℃以上で焼成することを特
徴とする、特許請求の範囲第1項記載のLiMn2O4の製造
方法。
2. A method for producing LiMn 2 O 4 by using a mixture of a manganese oxide and a lithium material, wherein the manganese oxide has a minor axis diameter of 1 μm or less, a major axis diameter of 5 μm or less, and a height of 1 μm. 2. The method for producing LiMn 2 O 4 according to claim 1, wherein the calcination is performed at 650 ° C. or higher using needle-like hydrated manganese oxide (MnOOH) having the following equivalent diameter.
【請求項3】マンガン酸化物とリチウム材料との混合物
の焼成によりLiMn2O4を製造する方法において、前記マ
ンガン酸化物に短軸径が1μm以下、長軸径が5μm以
下、高さが1μm以下の相当径を有する針状β二酸化マ
ンガンを用い、650℃以上で焼成することを特徴とす
る、特許請求の範囲第1項記載のLiMn2O4の製造方法。
3. A method for producing LiMn 2 O 4 by firing a mixture of a manganese oxide and a lithium material, wherein the manganese oxide has a minor axis diameter of 1 μm or less, a major axis diameter of 5 μm or less, and a height of 1 μm. 2. The method for producing LiMn 2 O 4 according to claim 1, wherein firing is performed at 650 ° C. or higher using acicular β-manganese dioxide having the following equivalent diameter.
【請求項4】負極にリチウムまたはリチウム合金を用
い、電解質に非水電解質を用いる非水リチウム二次電池
において、正極に特許請求の範囲第1項記載のLiMn2O4
を用いることを特徴とする非水リチウム二次電池。
4. A non-aqueous lithium secondary battery using lithium or a lithium alloy for a negative electrode and a non-aqueous electrolyte for an electrolyte, wherein the LiMn 2 O 4 according to claim 1 is used for a positive electrode.
A non-aqueous lithium secondary battery characterized by using:
JP32994390A 1990-11-30 1990-11-30 Lithium manganese composite oxide, method for producing the same and use thereof Expired - Fee Related JP3235098B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32994390A JP3235098B2 (en) 1990-11-30 1990-11-30 Lithium manganese composite oxide, method for producing the same and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32994390A JP3235098B2 (en) 1990-11-30 1990-11-30 Lithium manganese composite oxide, method for producing the same and use thereof

Publications (2)

Publication Number Publication Date
JPH04206354A JPH04206354A (en) 1992-07-28
JP3235098B2 true JP3235098B2 (en) 2001-12-04

Family

ID=18227002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32994390A Expired - Fee Related JP3235098B2 (en) 1990-11-30 1990-11-30 Lithium manganese composite oxide, method for producing the same and use thereof

Country Status (1)

Country Link
JP (1) JP3235098B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6870505B2 (en) * 2017-07-05 2021-05-12 三洋電機株式会社 Non-aqueous electrolyte secondary battery
CN113896244B (en) * 2021-09-09 2023-07-18 江苏大学 Porous disc-shaped lithium manganate electrode for extracting lithium from salt lake and preparation method thereof

Also Published As

Publication number Publication date
JPH04206354A (en) 1992-07-28

Similar Documents

Publication Publication Date Title
JP3550783B2 (en) Lithium-containing transition metal composite oxide, method for producing the same, and use thereof
EP2822065B1 (en) Positive active material for rechargeable lithium battery, method of preparing the same, and positive electrode for rechargeable lithium battery and rechargeable lithium battery including the same
EP1189296B1 (en) Lithiated oxide materials and methods of manufacture
JP5320710B2 (en) Positive electrode active material, method for producing the same, and electrochemical device
JP4305629B2 (en) Trimanganese tetroxide powder and production method thereof, positive electrode active material for nonaqueous electrolyte secondary battery and production method thereof, and nonaqueous electrolyte secondary battery
JP3922040B2 (en) Lithium manganese composite oxide, method for producing the same, and use thereof
JPH1171115A (en) Lithium manganese-based oxide, having spinel structure and containing another kind of element, its production and use thereof
TW201023416A (en) Positive electrode materials for lithium ion batteries having a high specific discharge capacity and processes for the synthesis of these materials
JPH08217452A (en) Needle manganese complex oxide, production and use thereof
JP5737513B2 (en) Positive electrode active material powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JPH04270125A (en) Manganese oxide compound
EP1233001B1 (en) Lithium-manganese complex oxide, production method thereof and use thereof
JPH07101728A (en) Lithium manganese double oxide, its production and application
JP3057755B2 (en) Method for producing lithium manganese composite oxide and use thereof
JP3702481B2 (en) Acicular manganese complex oxide, method for producing the same, and use thereof
JP3651022B2 (en) Lithium manganese composite oxide, method for producing the same, and use thereof
JP3235098B2 (en) Lithium manganese composite oxide, method for producing the same and use thereof
JP4055269B2 (en) Manganese oxide and method for producing the same, lithium manganese composite oxide using manganese oxide, and method for producing the same
JP4234334B2 (en) Lithium manganese composite oxide for secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery
US20030047717A1 (en) Multi-doped nickel oxide cathode material
JP5691159B2 (en) Manganese oxyhydroxide, process for producing the same, and lithium manganese composite oxide using the same
JP3079577B2 (en) Lithium-containing manganese dioxide, method for producing the same, and use thereof
JP3921697B2 (en) Lithium manganese spinel, method for producing the same, and use thereof
JP4320808B2 (en) Lithium manganese oxide having spinel structure, method for producing the same, and use thereof
JP2000154021A (en) New lithium manganese oxide, its production and its use

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070928

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080928

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080928

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080928

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080928

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees