JPH04203858A - Absorption type refrigerating machine - Google Patents

Absorption type refrigerating machine

Info

Publication number
JPH04203858A
JPH04203858A JP33449590A JP33449590A JPH04203858A JP H04203858 A JPH04203858 A JP H04203858A JP 33449590 A JP33449590 A JP 33449590A JP 33449590 A JP33449590 A JP 33449590A JP H04203858 A JPH04203858 A JP H04203858A
Authority
JP
Japan
Prior art keywords
evaporator
refrigerant
liquid
absorption
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33449590A
Other languages
Japanese (ja)
Inventor
Minoru Morita
稔 守田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsukishima Kikai Co Ltd
Original Assignee
Tsukishima Kikai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsukishima Kikai Co Ltd filed Critical Tsukishima Kikai Co Ltd
Priority to JP33449590A priority Critical patent/JPH04203858A/en
Publication of JPH04203858A publication Critical patent/JPH04203858A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE:To permit the operation of a refrigerating machine even when the temperature of cooling water is high by a method wherein one part of absorbing solution is sent into an absorber after distilling refrigerant by an evaporator and the balance of the same is sent into a condenser to contact it with vapor from a reproducer to effect absorption cooling and circulate it between the evaporator and the condenser. CONSTITUTION:Vapor, generated from a reproducer 1, is introduced into a condenser 2 and is mixed with the other vapor generated by spraying concentrated weak liquid obtained by an evaporator 3 to effect absorption condensation. Concentrated strong liquid, obtained by absorption condensation, is sent into the evaporator 3 through a concentrated liquid heat exchanger 6 and, thereafter, refrigerant vapor is sent into an absorber 4. Hot brine is cooled by the latent heat of evaporation of the refrigerant to obtain low-temperature brine. The weak liquid, from which the refrigerant obtained by the evaporator 3 is removed, is returned to the condenser 2. The diluted weak liquid from the reproducer 1 is mixed with the vapor from the evaporator 3 in an absorber 4 and condensing heat is removed by cooling water in the group of cooling pipes to remove condensing heat and obtain the diluted strong liquid while the diluted strong liquid is sent into the reproducer 1 to complete an absorption cycle whereby high-temperature heat, fed to the heater of the reproducer 1, is taken out of the evaporator 3 as the low-temperature heat source and a refrigerating system can be completed.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、冷媒を吸収する吸収液を利用して冷媒のエン
トロピーを変化させることにより熱交換動作を行う、吸
収式冷凍機に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an absorption refrigerator that performs a heat exchange operation by changing the entropy of the refrigerant using an absorption liquid that absorbs the refrigerant.

[従来の技術] 水リチュームブロマイドを代表とする、水を冷媒として
無機塩類を吸収剤とするヒートポンプにおいて、凝縮器
で蒸発器よりの冷媒と吸収液を混合する提案は1984
年に小開(1)らによって行われた。この提案は蒸発器
/凝縮器の循環サイクルと再生器/吸収器の循環サイク
ルに用いる吸収剤の種類を変えて熱効率を上げることを
目的としている点に特徴がある。異なる吸収剤AとBと
を同じ吸収剤に変えて行っても本提案は成立する。−方
、1987年に植材(2)らは水リチュームブロマイド
系で同じ吸収剤を用いた上記のヒートポンプの性能につ
いて発表している。
[Prior Art] In a heat pump that uses water as a refrigerant and inorganic salts as an absorbent, typified by water lithium bromide, a proposal was made in 1984 to mix the refrigerant from the evaporator and the absorption liquid in the condenser.
It was carried out by Kokai (1) et al. This proposal is unique in that it aims to increase thermal efficiency by changing the type of absorbent used in the evaporator/condenser circulation cycle and the regenerator/absorber circulation cycle. This proposal also holds true even if the same absorbent is used instead of the different absorbents A and B. In 1987, Iezai (2) et al. announced the performance of the above-mentioned heat pump using the same absorbent in the water lithium bromide system.

但し、本発明は水を冷媒とし、無機塩を吸収剤ヒートポ
ンプと異なり、気液平衡のある冷凍用吸収剤/冷媒、(
水アンモニア系、フロン、有機溶剤等)を用いた吸収式
冷凍機において、蒸発器の液を凝縮器へ送り両者の間を
循環利用する方法についてである。
However, unlike heat pumps, the present invention uses water as a refrigerant and an inorganic salt as an absorbent.
This article describes a method of sending the liquid from the evaporator to the condenser and circulating it between the two in an absorption refrigerator using aqueous ammonia, chlorofluorocarbons, organic solvents, etc.

[発明が解決しようとする課題] 本発明は蒸気の水リチューム・ブロマイドのように冷却
される水の温度の下限がなく、また水アンモニア系より
熱経済が良く、かつ利用できる熱源および冷却水の使用
条件が緩やかでも運転可能な吸収冷凍機を利用するのが
目的である。更に、現在新しく開発されつつある気液平
衡関係のある多成分系冷媒についても本方法によって初
めて経済的に工業的に適用できる。
[Problems to be Solved by the Invention] The present invention has no lower limit on the temperature of the water to be cooled unlike steam water lithium bromide, has better thermal economy than the water ammonia system, and has a heat source and cooling water that can be used. The purpose is to use an absorption chiller that can be operated even under mild operating conditions. Furthermore, this method allows for the first time to economically and industrially apply multi-component refrigerants having a vapor-liquid equilibrium relationship, which are currently being newly developed.

[課題を解決するための手段] 本発明による吸収式冷凍機においては、蒸発器で冷媒を
蒸留した後の吸収液(濃厚弱液)の一部を吸収器へ、又
残部を凝縮器へ送り、そこで再生器よりのベーパーと接
触させ吸収冷却をし、得られた液(濃厚強液)を蒸発器
へ送り、この吸収液を蒸発器と凝縮器の間を循環させる
ことを特徴とする。
[Means for Solving the Problems] In the absorption refrigerator according to the present invention, after distilling the refrigerant in the evaporator, a part of the absorption liquid (thick weak liquid) is sent to the absorber, and the remaining part is sent to the condenser. There, it is characterized in that it is brought into contact with the vapor from the regenerator for absorption cooling, the resulting liquid (thick strong liquid) is sent to the evaporator, and this absorbed liquid is circulated between the evaporator and the condenser.

[作用コ (1)凝縮器における凝縮温度は蒸発液と混合されて、
高い温度で吸収凝縮が起こるために次の利点がある。
[Effects (1) The condensation temperature in the condenser is such that when mixed with the evaporated liquid,
Absorption condensation occurs at high temperatures, which has the following advantages:

従来法と同じ操作圧力であれば、凝縮器の凝縮温度が高
くなり、冷却水の温度が高くても冷凍機・の運転が可能
である。また、凝縮温度を従来法の□それと同じとすれ
ば、操作圧力が低くなり、再生器の加熱温度が低くても
よく、より低い温度の熱源が利用できる。また、再生器
の操作圧力は低いので、安価な設備の設計が可能である
。(表1・表2) (2)純粋な冷媒を蒸発器で蒸発させなくてもよいので
次の利点がある。
If the operating pressure is the same as in the conventional method, the condensation temperature of the condenser will be high, and the refrigerator can be operated even if the temperature of the cooling water is high. Furthermore, if the condensation temperature is the same as that of the conventional method, the operating pressure will be lower, the heating temperature of the regenerator may be lower, and a heat source with a lower temperature can be used. Furthermore, since the operating pressure of the regenerator is low, it is possible to design inexpensive equipment. (Tables 1 and 2) (2) There is no need to evaporate pure refrigerant in an evaporator, so there are the following advantages.

蒸発器では純粋な冷媒を用いなくてもよいので、再生器
では還流を伴う精留の必要がなく、装置の配置が簡略化
される。
Since pure refrigerant does not need to be used in the evaporator, there is no need for rectification with reflux in the regenerator, simplifying the arrangement of the equipment.

(3)高圧で運転している再生器と凝縮器と低圧で運転
している蒸発器と吸収器との間の圧力差が(1)の理由
により小さくなり、循環ポンプの動力は少なくてよい。
(3) The pressure difference between the regenerator and condenser operating at high pressure and the evaporator and absorber operating at low pressure becomes smaller due to the reason in (1), and the power of the circulation pump can be reduced. .

(表3) 表2.再生器の操作圧力対凝縮温度 表3.圧力差対凝縮温度 (1)小開康雄はか:化学工業協会第18回秋季大会研
究発表会講演要旨集、249、 [実施例] 再生器1は加熱器を持っており、吸収器より得られた稀
薄弱液を蒸留によってベーパーを発生させ、これを次の
凝縮器2へ送る。一方、発生器で得られた弱液、すなわ
ち冷媒の薄くなった稀薄弱液は吸収器4へ返す。この際
、熱交換器7を通じて稀薄弦波の両者の熱交換を行わせ
る。再生器1より発生したベーパーは、凝縮器2に導か
れ、冷却用加熱管群上に濃厚弱液、すなわち蒸発器3に
よって得られた濃厚弱液を降らせ、前記発生したベーパ
ーと混合させて吸収凝縮を行わせる。得られた濃厚強液
は6の濃厚液熱交を通じて、蒸発器3に送られる。蒸発
器3では蒸発、あるいは相平衡のある場合には蒸留、あ
るいは精留を戻り温ブラインにより加熱して行い、冷媒
蒸気を吸収器へ送る。温ブラインは冷媒の蒸発潜熱によ
って冷却され、低温ブラインを得る。蒸発器で得られた
冷媒を除去した弱液は前記の通り凝縮器へ返される。
(Table 3) Table 2. Regenerator operating pressure vs. condensing temperature Table 3. Pressure difference vs. condensing temperature (1) Yasuo Kokai: Abstracts of the 18th Autumn Conference of the Japan Chemical Industry Association, 249, [Example] The regenerator 1 has a heater, and the The resulting dilute weak liquid is distilled to generate vapor, which is sent to the next condenser 2. On the other hand, the weak liquid obtained by the generator, that is, the diluted weak liquid in which the refrigerant has become diluted, is returned to the absorber 4. At this time, heat exchange between the thin and thin chord waves is performed through the heat exchanger 7. The vapor generated from the regenerator 1 is led to the condenser 2, where the concentrated weak liquid, that is, the concentrated weak liquid obtained by the evaporator 3, falls on a group of heating tubes for cooling, and is mixed with the generated vapor and absorbed. Let condensation take place. The obtained concentrated strong liquid is sent to the evaporator 3 through a concentrated liquid heat exchanger 6. In the evaporator 3, evaporation, or in the case of phase equilibrium, distillation or rectification is performed by heating with return hot brine, and the refrigerant vapor is sent to the absorber. The hot brine is cooled by the latent heat of vaporization of the refrigerant to obtain a cold brine. The weak liquid obtained in the evaporator from which the refrigerant has been removed is returned to the condenser as described above.

吸収器4では再生器からの稀薄弱液と蒸発器からのベー
パーが混合されて冷却管群により、冷却水によって凝縮
熱を除去し、稀薄弦波を得て、これを再生器へ送り吸収
サイクルを完成させ、再生器の加熱器に供給された高温
の熱量が蒸発器で低温熱源として取り出され、冷凍シス
テムを完結する。
In the absorber 4, the dilute weak liquid from the regenerator and the vapor from the evaporator are mixed, and the cooling pipe group removes the heat of condensation with cooling water to obtain a dilute sinusoidal wave, which is sent to the regenerator for an absorption cycle. The high-temperature heat supplied to the regenerator heater is extracted as a low-temperature heat source by the evaporator, completing the refrigeration system.

以上の操作は再生および凝縮は高圧で吸収および蒸発は
低圧で行う。そのために低圧側より高圧側への輸送ポン
プ、すなわち稀薄液循環ポンプ8および濃厚液循環ポン
プ5によって循環が行われる。
The above operations are performed at high pressure for regeneration and condensation, and at low pressure for absorption and evaporation. For this purpose, circulation is carried out by transport pumps from the low-pressure side to the high-pressure side, ie the dilute liquid circulation pump 8 and the concentrated liquid circulation pump 5.

水−アンモニア系の冷媒を用いた場合温度の高い冷却水
(30ないし40℃)、あるいは低い温度の熱源(80
ないし120℃)を用い、蒸発器で低温のブライン(5
ないし一30℃)を得るためには従来のように100%
に近い冷媒を得る替わりに、純度の低い冷媒、すなわち
70ないし90%程度の冷媒を用いて蒸発器の操業を低
圧気圧(1ないし5kg17cm2) 、低温(10な
いし一30℃)として運転する必要がある。この際蒸発
器の加温には温ブラインを用いてブラインを冷却する。
When using a water-ammonia type refrigerant, high-temperature cooling water (30 to 40°C) or low-temperature heat source (80°C) is used.
to 120°C) and cool brine (5°C to 120°C) in an evaporator.
to -30℃), 100% as before.
Instead of obtaining a refrigerant close to 100%, it is necessary to use a refrigerant with a lower purity, i.e., about 70 to 90%, and operate the evaporator at low pressure (1 to 5 kg 17 cm2) and low temperature (10 to -30°C). be. At this time, warm brine is used to heat the evaporator and the brine is cooled.

再生液からベーパーは高濃度(90ないし9996)で
あるので、これを凝縮させる必要がある。しかし、通常
の冷却水を用いた凝縮器ではその操作圧力を高くしても
凝縮温度が低いため、運転不可能である。そのために、
凝縮操作は従来と異なり、本発明の方法再生器の稀薄弱
液を用いて吸収凝縮により凝縮温度を高めることが重要
である。この際蒸発器と凝縮器の間で循環する濃厚強液
と濃厚弱液との間の熱交を行わせる。これは蒸発力(冷
凍能力)を増加させるし、蒸発器に供給される液を蒸発
器の沸騰温度に近付けるので熱経済になる。このように
して生じた凝縮器からの濃厚強液の濃度は80〜97%
であり、これを蒸発器へ送り必要な蒸発温度で(要求さ
れるブライン冷却温度で、ただし純冷媒よりも蒸発温度
は高いカリ運転可能である。蒸発器よりのベーパーは吸
収器で濃縮されて再生器で蒸留、あるいは蒸発されるが
、再生器では従来の吸収冷凍機と異なり純粋な冷媒を得
る必要がないため還流を必要としないがアンモニアに同
伴される水は、蒸発器の濃厚弱液を吸収器へ送ることで
全体の物質収支を保つことができるので、熱経済は良く
なる。再生器の冷媒ベーパーは凝縮器へ、凝縮液として
得られた稀薄弱液は吸収器へ返す。これは通常の吸収冷
凍機のサイクルと同じである。
Since the vapor from the regenerated liquid has a high concentration (90 to 9996), it is necessary to condense it. However, a condenser using ordinary cooling water cannot be operated because the condensation temperature is low even if the operating pressure is increased. for that,
The condensation operation is different from the conventional method, and it is important to use a dilute weak liquid in the method regenerator of the present invention to increase the condensation temperature by absorption condensation. At this time, heat exchange is performed between the concentrated strong liquid and the concentrated weak liquid circulating between the evaporator and the condenser. This increases the evaporation power (refrigeration capacity) and brings the liquid supplied to the evaporator closer to the boiling temperature of the evaporator, resulting in thermal economy. The concentration of the concentrated strong liquid from the condenser thus produced is 80-97%.
The vapor from the evaporator is concentrated in the absorber. It is distilled or evaporated in the regenerator, but unlike conventional absorption refrigerators, the regenerator does not require reflux because it does not need to obtain pure refrigerant. By sending the refrigerant to the absorber, the overall material balance can be maintained, which improves the thermal economy.The refrigerant vapor in the regenerator is sent to the condenser, and the dilute weak liquid obtained as condensate is returned to the absorber. is the same as a normal absorption refrigerator cycle.

第1図に示されるような本発明による実施例と従来の水
アンモニア吸収冷凍機との比較を行うため、第1図に示
されるようなシステムで、表4に示す装置を用い本発明
による実施例において水−アンモニアを使用し低温−2
8ないし一29℃の蒸発温度を運転の条件とした場合の
各種数値を下記の実施例1の欄に記した。通常の水アン
モニア系の成績係数は0.420であるが、本方法によ
れば還流を行っていないために、成績係数は0゜512
と向上している。
In order to compare the embodiment according to the present invention as shown in FIG. 1 with a conventional water ammonia absorption refrigerator, the system according to the present invention as shown in FIG. In the example, water-ammonia is used at low temperature-2
Various numerical values when the operating conditions were evaporation temperatures of 8 to -29°C are listed in the column of Example 1 below. The coefficient of performance of a normal water-ammonia system is 0.420, but since reflux is not performed with this method, the coefficient of performance is 0°512.
and has improved.

第1図に示されるような本発明による実施例と従来の水
リチューム・ブロマイドの吸収冷凍機との比較を行うた
め、第1図に示されるような本発明による実施例で水リ
チューム・ブロマイドを使用した冷水装置の場合との比
較の各種数値を実施例2の欄に記した。成績係数はほぼ
同じである。
In order to make a comparison between the embodiment of the present invention as shown in FIG. Various numerical values for comparison with the case of the chilled water device used are listed in the column of Example 2. The coefficient of performance is almost the same.

ただしここで重要なのは、水アンモニア系を用いても前
述のごとく還流する必要がないので操作が簡単であり、
0℃以下の冷水を簡単に得ることができる。また新しい
多成分の冷媒を用いることにより吸収冷凍機の適用範囲
を拡げることができる点である。
However, what is important here is that even if a water ammonia system is used, there is no need for reflux as mentioned above, so the operation is easy.
Cold water below 0°C can be easily obtained. Another advantage is that by using a new multi-component refrigerant, the range of application of absorption refrigerators can be expanded.

濃厚液循環ポンプ   、プランジャー型5001 /
 ht X 80m稀薄液循環ポンプ    プランジ
ャー型15001 / ht >< 80m第2図には
、再生器1と凝縮器2の間にベーパーヒーター11がも
うけられ、再生器1内で加熱された吸収液を加熱源とし
て再生器1内で発生した冷媒蒸気を加熱し、且つ、蒸発
器3と吸収器4の間に過冷却器10をもうけ、凝縮器2
内で冷却された吸収液を冷熱源として蒸発器3内で発生
した冷媒蒸気を冷却する、本発明の一実施例が示されて
いる。
Concentrated liquid circulation pump, plunger type 5001 /
ht A supercooler 10 is provided between the evaporator 3 and the absorber 4, and a supercooler 10 is provided between the evaporator 3 and the absorber 4 to heat the refrigerant vapor generated in the regenerator 1 as a heat source.
An embodiment of the present invention is shown in which the refrigerant vapor generated in the evaporator 3 is cooled using the absorption liquid cooled therein as a cold heat source.

第3図に示されるように、高温の熱源を用いて低温の熱
源を中温まで持ち上げる第1種ヒートポンプに本発明を
利用できる。この適用では、吸収式冷凍機と同様に再生
器および凝縮器は高い圧力で発生器と吸収器は低圧で行
う。
As shown in FIG. 3, the present invention can be applied to a first-class heat pump that uses a high-temperature heat source to raise a low-temperature heat source to an intermediate temperature. In this application, the regenerator and condenser are at high pressure and the generator and absorber at low pressure, similar to absorption chillers.

本発明の利点は、蒸発液を凝縮液へ循環することで純粋
な冷媒を得てこれを蒸発させる従来法と異なり、凝縮の
圧力を高くしなくても蒸発器からの濃厚弱液によって凝
縮温度が高くなるので、低温源の加熱に有利である、す
なわちより高温の中温水を得ることができ、かつ、伝熱
面積を小さくすることができる。
The advantage of the present invention is that unlike the conventional method in which pure refrigerant is obtained by circulating the evaporated liquid to the condensate and then evaporated, the condensation temperature is increased by the concentrated weak liquid from the evaporator without increasing the condensing pressure. is higher, which is advantageous for heating a low-temperature source, that is, it is possible to obtain higher-temperature medium-temperature water and to reduce the heat transfer area.

第2種ヒートポンプへの適用: 従来蒸気圧の高い冷媒を用いたヒートポンプは、いわゆ
る第1種ヒートポンプに限定されていた。
Application to Type 2 Heat Pumps: Conventionally, heat pumps using refrigerants with high vapor pressure have been limited to so-called Type 1 heat pumps.

これは純度の高い純粋な冷媒によって第2種のサイクル
を作ろうとすれば、再生器および蒸発器のいづれも高圧
となって高圧側の機器の価格が高くなり、経済的でない
とされていた。例えば、60ないし80℃の温熱源を用
い、25ないし30℃の冷却水を用いて第2種のヒート
ポンプを作り従来法の純粋な冷媒を用いる場合には、蒸
発器の圧力は40ないし60 [kgl /cm2] 
、蒸発器ノソれは17ないし19 [kgl /cm”
 ]となり、これから110ないし120℃の熱源を得
るシステムとしては設備が高くなり経済的とは言えない
。以上の数値は水アンモニア系の場合であるが、他の冷
媒を用いても低温よりの熱源の回収のためには蒸気圧の
高い冷媒を使う必要があり、この傾向は避けられない。
This was considered uneconomical if an attempt was made to create a type 2 cycle using pure refrigerant, as both the regenerator and evaporator would be at high pressure, making the high-pressure equipment expensive. For example, when a heat source of 60 to 80 degrees Celsius is used and cooling water of 25 to 30 degrees Celsius is used to create a second type heat pump, and a pure refrigerant of the conventional method is used, the pressure of the evaporator is 40 to 60 degrees Celsius. kgl/cm2]
, evaporator flow is 17 to 19 [kgl/cm”
] Therefore, as a system for obtaining a heat source of 110 to 120° C., the equipment becomes expensive and cannot be said to be economical. The above values are for water-ammonium type refrigerants, but even if other refrigerants are used, it is necessary to use refrigerants with high vapor pressure in order to recover the heat source from low temperatures, and this tendency is unavoidable.

第4図に示されるような本発明の実施例において、15
 [kgl /cm2]の加圧で運転される蒸発器のア
ンモニア濃度は51%、塔頂のアンモニア濃度は55.
5%で75°Cである。このベーパーを再生器から送ら
れる稀薄液の供給されている吸収器では、その凝縮温度
は114℃であり、高温の温水が回収できる。再生器の
運転は塔底の温度が77℃であり、塔頂の温度は68°
Cで運転がされている。この時のアンモニア濃度は、塔
底が28.4%で塔頂が32%である。この再生器から
のベーパーは凝縮器に送られ、蒸発器の底部より来る弱
液と混合されここで30℃で吸収凝縮が行われる。ここ
で得られた液の濃度は55.5%で、これが蒸発器へ返
される。蒸発器の弱液を凝縮器へ供給することによって
通常の冷却水(特に冷水でなくてよい)を用いて第2種
のヒートポンプを構成することができる。
In an embodiment of the invention as shown in FIG.
The ammonia concentration in the evaporator operated at a pressure of [kgl/cm2] is 51%, and the ammonia concentration at the top of the column is 55.
5% and 75°C. In the absorber, which is supplied with the diluted liquid sent from the regenerator, the condensation temperature is 114° C., and high-temperature hot water can be recovered. When operating the regenerator, the temperature at the bottom of the column is 77°C and the temperature at the top is 68°C.
It is being driven in C. The ammonia concentration at this time was 28.4% at the bottom of the column and 32% at the top. The vapor from this regenerator is sent to the condenser where it is mixed with the weak liquid coming from the bottom of the evaporator where absorption and condensation takes place at 30°C. The concentration of the liquid obtained here is 55.5%, and this is returned to the evaporator. By supplying the weak liquid from the evaporator to the condenser, a second type of heat pump can be constructed using ordinary cooling water (not particularly cold water).

冷媒としてR22−DMFを用いた場合の第2種ヒート
ポンプを構成する本発明の実施例においては、蒸発温度
10℃、加熱源15℃、凝縮温度−10℃で25ないし
30℃の加熱源を用いたときR22の濃度を90%とし
て5alの圧力を蒸発器の操作圧力とし、蒸発温度を1
0℃とすれば、吸収器では25℃の凝縮温度を得る。こ
の際の凝縮液濃度は7396であり、再生器塔底の温度
は10℃であり、その時のR22の濃度は7196であ
る。
In an embodiment of the present invention constituting a type 2 heat pump using R22-DMF as the refrigerant, a heating source of 25 to 30°C is used with an evaporation temperature of 10°C, a heating source of 15°C, and a condensing temperature of -10°C. When the concentration of R22 was 90%, the operating pressure of the evaporator was 5al, and the evaporation temperature was 1.
Assuming 0°C, a condensation temperature of 25°C is obtained in the absorber. The condensate concentration at this time was 7396, the temperature at the bottom of the regenerator was 10°C, and the R22 concentration at that time was 7196.

以上のように本発明を第2種ヒートポンプへ適用した場
合には冷温の冷却水を特に必要としないので、経済的な
第2種ヒートポンプを構成することができる。
As described above, when the present invention is applied to a second type heat pump, cold cooling water is not particularly required, so that an economical second type heat pump can be constructed.

第5図には、本発明の工業的利用の場合のフローシート
の実施例を示す。
FIG. 5 shows an example of a flow sheet for industrial use of the present invention.

[発明の効果] (1)凝縮器が濃厚弱液による吸収凝縮によるために凝
縮圧力が下がり従来型の操作圧力よりして設計圧力を低
く取ることができるので、経済的な装置が製作可能であ
る。
[Effects of the invention] (1) Since the condenser absorbs and condenses a concentrated weak liquid, the condensing pressure decreases and the design pressure can be set lower than the operating pressure of the conventional type, making it possible to manufacture an economical device. be.

(2)  水リチューム・ブロマイドの吸収冷凍機では
低温(0℃ないし5℃以下)の冷水を得ることは従来困
難とされており、吸収式冷凍機の新しい開発が要望され
ていたが、本発明によれば、凝縮器の濃厚弱液による吸
収凝縮を送るため(a)熱効率が良くなり、(b)再生
器の加熱温度が低く、(c)冷却水の温度は高くても冷
媒を凝縮させることができる等の利点を持った吸収式冷
凍機を提供できる。
(2) It has traditionally been difficult to obtain cold water at low temperatures (below 0°C to 5°C) using water lithium bromide absorption refrigerators, and there has been a demand for new development of absorption refrigerators. According to the method, since the condenser absorbs and condenses the concentrated weak liquid, (a) the thermal efficiency is improved, (b) the heating temperature of the regenerator is low, and (c) the refrigerant is condensed even if the temperature of the cooling water is high. It is possible to provide an absorption chiller that has the following advantages.

(3)本方法では水アンモニア系、あるいはフロンと有
機溶剤等の多成分の様な冷媒−吸収剤系を用いることで
効率良く広い温度範囲で吸収冷凍機が吸収冷凍法による
冷凍ができる。すなわち、水アンモニア系で代表される
気液平衡を持った冷媒を冷凍用に使う場合には、高濃度
の冷媒を得ることが低温を得るための条件であったが、
蒸発温度が5ないし一30℃であれば(−30°C以上
を要求される場合には、純度の高い冷媒を要求されるこ
とがあるが、)冷媒濃度を適当に選択することで蒸発器
の温度制御はてき、上記の低温を得ることができる。従
って、水アンモニアによって代表される冷凍システムに
おいて、高純度のアンモニアを得るために努力していた
次の条件は不要となる。
(3) In this method, by using a refrigerant-absorbent system such as a water ammonia system or a multi-component system such as fluorocarbons and an organic solvent, an absorption refrigerator can efficiently perform absorption cooling over a wide temperature range. In other words, when using a refrigerant with vapor-liquid equilibrium, such as the water-ammonium system, for refrigeration, obtaining a highly concentrated refrigerant was a condition for obtaining a low temperature.
If the evaporation temperature is 5 to -30°C (if a temperature higher than -30°C is required, a highly pure refrigerant may be required), the evaporator can be heated by appropriately selecting the refrigerant concentration. The temperature control is good and the above low temperature can be obtained. Therefore, in the refrigeration system represented by aqueous ammonia, the following conditions, which have been striving to obtain high purity ammonia, are no longer necessary.

(a)還流比は大きくとる(必要なし)(b)高い加熱
圧力を必要する(必要なし)(c)冷却水温度が低いこ
と(高くてもよい)(4)新しい多成分系の冷媒に対し
て本システムが十分適用できる。すなわち純粋な冷媒を
得る必要がないため、例えばR22とDMFの場合には
希液平衡があり、従来のシステムではR22を液化する
ためには高圧と低温の冷却水を必要としたが、本方法に
よればDMFの混入した冷媒を用いるため簡単な蒸留操
作によって望む純度のものが得られる。このようにして
冷媒の性質に適合した蒸留、あるいは精留塔操作を組合
わせることによって効率の良い吸収冷凍機を供給するこ
とができる。従って、今後オゾン破壊能がない多成分系
の吸収冷凍用冷媒の開発が進むと考えられるので本シス
テムの適用が更に広くなると考えられる。
(a) A high reflux ratio (not necessary) (b) A high heating pressure is required (not necessary) (c) A low cooling water temperature (it can be high) (4) New multi-component refrigerant This system is fully applicable to these situations. In other words, there is no need to obtain pure refrigerant, so for example, in the case of R22 and DMF, there is a dilute liquid equilibrium, and conventional systems required high pressure and low temperature cooling water to liquefy R22, but this method According to the method, since a refrigerant mixed with DMF is used, the desired purity can be obtained by a simple distillation operation. In this way, an efficient absorption refrigerator can be provided by combining distillation or rectification column operations that are suited to the properties of the refrigerant. Therefore, it is thought that the development of multi-component absorption refrigerants without ozone depletion ability will progress in the future, and the application of this system will become even more widespread.

(5)  ヒートポンプとしての作用も適切な冷媒を使
うことによって広い運動範囲で簡便な操作が可能である
(5) The function as a heat pump can be easily operated over a wide range of motion by using an appropriate refrigerant.

(6)水リチューム・ブロマイドの問題点であった腐食
の問題点が多成分系冷媒を用いることによって解決でき
る。
(6) The problem of corrosion, which was a problem with water lithium bromide, can be solved by using a multi-component refrigerant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の実施例として基本的なものを示す概
略図、 第2図は、ベーパーヒーターおよび過冷却器を付加した
本発明の実施例を示す概略図、第3図は、第1種ヒート
ポンプを構成する本発明の実施例を示す概略図、 第4図は、第2種ヒートポンプを構成する本発明の実施
例を示す概略図、 第5図は、冷媒の蒸留を必要とする場合の本発明の実施
例を示す概略図、 1−・・再生器、2・・・凝縮器、3・・・蒸発器、4
・・吸収器、5・・・濃厚液循環ポンプ、6・・濃厚液
熱交換器、7・稀薄液熱交換器、8・・・稀薄液循環ポ
ンプ、10・・過冷却器、11・・・ベーパーヒーター
Fig. 1 is a schematic diagram showing a basic embodiment of the present invention, Fig. 2 is a schematic diagram showing an embodiment of the present invention in which a vapor heater and a supercooler are added, and Fig. 3 is a schematic diagram showing a basic embodiment of the present invention. FIG. 4 is a schematic diagram showing an embodiment of the present invention constituting a type 1 heat pump; FIG. 4 is a schematic diagram showing an embodiment of the present invention constituting a type 2 heat pump; FIG. 5 is a schematic diagram showing an embodiment of the present invention constituting a type 2 heat pump; FIG. Schematic diagram showing an embodiment of the present invention in the case of: 1--regenerator, 2-- condenser, 3-- evaporator, 4--
...Absorber, 5.. Concentrated liquid circulation pump, 6.. Concentrated liquid heat exchanger, 7. Dilute liquid heat exchanger, 8.. Dilute liquid circulation pump, 10.. Supercooler, 11..・Vapor heater.

Claims (3)

【特許請求の範囲】[Claims] (1)冷媒を吸収している吸収液を加熱して、気液平衡
のある吸収冷凍用、冷媒−吸収剤を用いた吸収冷凍機に
於て、吸収器からの吸収液から冷媒を蒸留させる再生器
と、再生器内で発生した冷媒ベーパーを凝縮させる凝縮
器と、凝縮器により液化された冷媒をブラインで加熱し
て蒸留して得られた冷媒を、吸収器へ供給し、冷却され
たブラインを得る蒸発器と、蒸発器で発生した冷媒ベー
パーに再生器よりの吸収液を接触させて、冷媒を吸収液
に吸収冷却させる吸収器を有する、吸収式冷凍機におい
て、蒸発器で冷媒を蒸留した後の吸収液(濃厚弱液)の
一部を吸収器へ、又残部を凝縮器へ送り、そこで再生器
よりのベーパーと接触させ吸収冷却をし、得られた液(
濃厚強液)を蒸発器へ送り、この吸収液を蒸発器と凝縮
器の間を循環させることを特徴とする、吸収冷凍機。
(1) Heating the absorption liquid that absorbs the refrigerant and distilling the refrigerant from the absorption liquid from the absorber in absorption refrigeration machines with vapor-liquid equilibrium and using refrigerant-absorbent. A regenerator, a condenser that condenses the refrigerant vapor generated in the regenerator, and a refrigerant obtained by heating and distilling the refrigerant liquefied by the condenser with brine to the absorber, where it is cooled. In an absorption refrigerator, which has an evaporator that obtains brine and an absorber that brings the refrigerant vapor generated in the evaporator into contact with an absorption liquid from a regenerator to absorb and cool the refrigerant into the absorption liquid, the refrigerant is absorbed by the evaporator. After distillation, a part of the absorption liquid (concentrated weak liquid) is sent to the absorber, and the rest is sent to the condenser, where it is brought into contact with vapor from the regenerator for absorption cooling, and the obtained liquid (
An absorption refrigerator characterized by sending a concentrated strong liquid to an evaporator and circulating the absorbed liquid between the evaporator and the condenser.
(2)特許請求の範囲第1項による吸収式冷凍機であり
、蒸発器から凝縮器内に送られる吸収液と、凝縮器から
蒸発器へ送られる吸収液との間で熱交換を行う吸収液熱
交換器を有する、吸収式冷凍機。
(2) An absorption refrigerating machine according to claim 1, which performs heat exchange between the absorption liquid sent from the evaporator to the condenser and the absorption liquid sent from the condenser to the evaporator. Absorption refrigerator with liquid heat exchanger.
(3)特許請求の範囲第1項による吸収式冷凍機であり
、再生器から凝縮器へ流れる冷媒蒸気を再生器で加熱さ
れた吸収液を加熱源として加熱するベーパーヒーターと
、蒸発器から吸収器へ流れる冷媒蒸気を凝縮器から蒸発
器へ流れる冷媒を含む吸収液を冷熱源として冷却する過
冷却器とを有する、吸収式冷凍機。
(3) An absorption refrigerating machine according to claim 1, which includes a vapor heater that heats refrigerant vapor flowing from the regenerator to the condenser using an absorption liquid heated in the regenerator as a heating source, and an absorption refrigerant from the evaporator. An absorption refrigerating machine that has a supercooler that cools the refrigerant vapor flowing into the container using an absorption liquid containing refrigerant flowing from the condenser to the evaporator as a cooling heat source.
JP33449590A 1990-11-30 1990-11-30 Absorption type refrigerating machine Pending JPH04203858A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33449590A JPH04203858A (en) 1990-11-30 1990-11-30 Absorption type refrigerating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33449590A JPH04203858A (en) 1990-11-30 1990-11-30 Absorption type refrigerating machine

Publications (1)

Publication Number Publication Date
JPH04203858A true JPH04203858A (en) 1992-07-24

Family

ID=18278043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33449590A Pending JPH04203858A (en) 1990-11-30 1990-11-30 Absorption type refrigerating machine

Country Status (1)

Country Link
JP (1) JPH04203858A (en)

Similar Documents

Publication Publication Date Title
KR19990022970A (en) Compression and Absorption Hybrid Heat Pump
GB2166534A (en) Absorption refrigeration system
US5467614A (en) Dual-circuit, multiple-effect refrigeration system and method
Ghodeshwar et al. Thermodynamic analysis of lithium bromide-water (LiBr-H2O) vapor absorption refrigeration system based on solar energy
JPH04203858A (en) Absorption type refrigerating machine
JP2011196580A (en) Absorbing liquid for absorption refrigeration machine
JPH05272837A (en) Compression absorption composite heat pump
JP2000154946A (en) Triple effect absorption refrigeration machine
JPH01234761A (en) Double-effect multi-stage pressure type absorption type refrigerator and system therefor
JPH07198222A (en) Heat pump including reverse rectifying part
JPS6122225B2 (en)
JP3466018B2 (en) Liquid phase separation type absorption refrigeration system
KR100234062B1 (en) Ammonia absorber cycle
JP3948814B2 (en) Multi-effect absorption refrigerator
JP2628023B2 (en) Absorption refrigerator
JP3700330B2 (en) Absorption refrigeration system
JPS5832301B2 (en) absorption refrigerator
JPH01239354A (en) Refrigerator of engine exhaust heat recovering and absorbing type
JP3785737B2 (en) Refrigeration equipment
JPH04295555A (en) Multi-effect type absorption refrigerator
KR100381373B1 (en) Absorbent solution composition for use with absorption refrigeration and heating apparatus
JP2606030B2 (en) Multi-effect absorption refrigerator
JPH09229510A (en) Absorption refrigenerating machine
JPH11257776A (en) Multiple-effect absorption type refrigerator
JPH04254166A (en) Method of operating absorption type refrigerating machine employing water as refrigerant