JPH04202684A - Electricity conductive connector for electrolytic polymerization - Google Patents

Electricity conductive connector for electrolytic polymerization

Info

Publication number
JPH04202684A
JPH04202684A JP2335930A JP33593090A JPH04202684A JP H04202684 A JPH04202684 A JP H04202684A JP 2335930 A JP2335930 A JP 2335930A JP 33593090 A JP33593090 A JP 33593090A JP H04202684 A JPH04202684 A JP H04202684A
Authority
JP
Japan
Prior art keywords
electrolytic
connector
current
polymer
polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2335930A
Other languages
Japanese (ja)
Other versions
JP2825975B2 (en
Inventor
Shigeo Kondo
繁雄 近藤
Kazunori Takada
和典 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2335930A priority Critical patent/JP2825975B2/en
Publication of JPH04202684A publication Critical patent/JPH04202684A/en
Application granted granted Critical
Publication of JP2825975B2 publication Critical patent/JP2825975B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE:To obtain an electricity conductive connector capable of efficiently performing electrolytic polymerization in the case of reutilization by using metal having valve action for the conductive connector which connects an electrode to a base plate for forming an electrolytic polymer. CONSTITUTION:An electrolyte 1 incorporating e.g. pyrrole is held in an electrolyzer 2. Voltage is impressed to a base plate (anode) 3 for forming an electrolytic polymer and a cathode 4 via lead wires 7, 8 and the conductive connectors 9, 10. Polypyrrole is formed on the base plate 3. At this time, metal having valve action which is made of titanium, tantalum, aluminum or alloy thereof is used for the conductive connector 9 of the base plate 3. Thereby in the case of electrolytic polymerization, the surface of the connector 9 is oxidized and sticking of the electrolytic polymer is made little. Electrolytic polymerization is efficiently performed in the case of reutilization.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は電解重合の際に電解重合体が形成される基板へ
の通電に使用する電解重合用コネクタに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a connector for electrolytic polymerization used for supplying electricity to a substrate on which an electrolytic polymer is formed during electrolytic polymerization.

[従来の技術] 近年、ポリアニリン、ポリピロール、ポリチオフェンな
どの電解酸化によるポリマー形成が盛んに行われ、特に
優れた電子伝導性を有した有機導電性ポリマーが作られ
るようになってきている。
[Prior Art] In recent years, the formation of polymers such as polyaniline, polypyrrole, polythiophene, etc. by electrolytic oxidation has been actively carried out, and organic conductive polymers having particularly excellent electronic conductivity have been produced.

こうした導電性ポリマーの応用としては電池の電極活物
質、スウッチイング素子、エレクトロクロミック材料、
あるいはコンデンサの電極材料への展開が試みられてい
る。
Applications of these conductive polymers include battery electrode active materials, switching elements, electrochromic materials,
Alternatively, attempts are being made to develop it into electrode materials for capacitors.

こうした有機化合物の電解酸化重合について、例えば代
表的なポリピロールの電解酸化重合を例にとり、詳細に
以下に説明する。
The electrolytic oxidative polymerization of such an organic compound will be explained in detail below, taking, for example, the typical electrolytic oxidative polymerization of polypyrrole.

第1図は通常用いられている電解重合装置の断面概略図
を示したものである。図中1は電解液、2は電解槽、3
は陽極となる電解重合体形成用基板、4は陰極、5は電
解液を撹拌および循環させるための循環用ポンプ、6は
電源、7および8は通電用リード線、9および10は各
電極との接続を行わせるための通電コネクター、11は
電解液の循環用パイプである。
FIG. 1 shows a schematic cross-sectional view of a commonly used electrolytic polymerization apparatus. In the figure, 1 is an electrolytic solution, 2 is an electrolytic tank, and 3
is a substrate for forming an electrolytic polymer which becomes an anode, 4 is a cathode, 5 is a circulation pump for stirring and circulating the electrolyte, 6 is a power source, 7 and 8 are lead wires for conducting electricity, 9 and 10 are connected to each electrode. 11 is a pipe for circulating electrolyte.

ここで、用いられる電解液1としては、アセトニトリル
、デイメチルフォルムアミド、プロピレンカーボネート
などの有機溶媒や水系溶媒が用いられ、これら溶媒に対
し支持電解質として過塩素酸テトラn−ブチルアンモニ
ウム、4フツ化はう素テトラn−ブチルアンモニウム等
の塩を例えば約0. 1〜0.6mol/Lとなるよう
溶解させ溶媒にイオン伝導性をあたえている。また水系
溶媒の場合には、例えばp−トルエンスフオン酸ナトリ
ウム、アルキルナフタレンスルフオン酸ナトリウムなど
が使われている。こうしてイオン伝導性を有した溶液中
にモノマー(ピロール)を例えば約0.05〜0.3m
o 1/L溶解あるいは分散させ電解液として用いる。
Here, as the electrolytic solution 1 used, organic solvents or aqueous solvents such as acetonitrile, dimethylformamide, and propylene carbonate are used, and for these solvents, tetra-n-butylammonium perchlorate and tetrafluoride are used as supporting electrolytes. For example, a salt such as borotetra-n-butylammonium may be added at a concentration of about 0. The solvent is dissolved to give an ionic conductivity of 1 to 0.6 mol/L. In the case of an aqueous solvent, for example, sodium p-toluenesulfonate, sodium alkylnaphthalenesulfonate, etc. are used. In this way, about 0.05 to 0.3 m of the monomer (pyrrole) is added to the solution having ionic conductivity.
o Dissolve or disperse in 1/L and use as an electrolyte.

こうした電解液を用いて重合をおこなわせるには、先ず
、電解液中に一対の電極として、陽極となる電解重合体
形成用基板3と陰極4を浸漬させ、その間に約数Vの電
圧を印加することにより陽極である電解重合体形成用基
板3面に電解液中のピロールが酸化されポリピロールが
電解析出する。一方、陰極4面では電解液そのものか還
元される。
To carry out polymerization using such an electrolytic solution, first, as a pair of electrodes, the electrolytic polymer forming substrate 3, which will serve as an anode, and the cathode 4 are immersed in the electrolytic solution, and a voltage of about several V is applied between them. As a result, pyrrole in the electrolytic solution is oxidized and polypyrrole is electrolytically deposited on the surface of the electrolytic polymer forming substrate 3 serving as an anode. On the other hand, on the four surfaces of the cathode, the electrolyte itself is reduced.

従って、電解酸化のために印加する電圧の大きさは電解
液および電解液中に存在する被還元性物質の酸化還元電
位の高低の違いにより変化する。
Therefore, the magnitude of the voltage applied for electrolytic oxidation changes depending on the difference in the redox potential of the electrolytic solution and the reducible substance present in the electrolytic solution.

電解液中に被還元性物質を加えていなければ、上述のよ
うに電解液そのもの、あるいは支持電解質からくるカチ
オンを還元することになる。この様に、電解酸化反応は
陽極および陰極面で通電電気量に相応して電気化学的酸
化還元反応が行われている。
If a reducible substance is not added to the electrolyte, the electrolyte itself or the cations coming from the supporting electrolyte will be reduced as described above. In this way, in the electrolytic oxidation reaction, an electrochemical redox reaction is performed on the anode and cathode surfaces in accordance with the amount of electricity applied.

[発明が解決しようとする課題] 上記従来の技術において、通電コネクタ(第1図中9.
10)が電解液中に浸っていない場合は、電解重合に際
し、特に問題とはならないが、該コネクタが電解液中に
存在する場合には、電解重合の為に通電した電流はコネ
クタにも流れ、希望する電極面すなわち電解重合体形成
用基板以外にその基板の通電コネクタ9面にもポリピロ
ールが析出する。その結果、本来目的とする部位での電
解重合体形成用基板へのポリピロール析出のための電流
効率が悪くなる。
[Problems to be Solved by the Invention] In the above-mentioned conventional technology, the current-carrying connector (9.
10) If the connector is not immersed in the electrolytic solution, there will be no particular problem during electrolytic polymerization, but if the connector is present in the electrolytic solution, the current applied for electrolytic polymerization will also flow to the connector. In addition to the desired electrode surface, that is, the substrate for electrolytic polymer formation, polypyrrole is deposited on the current-carrying connector 9 surface of the substrate. As a result, the current efficiency for depositing polypyrrole on the substrate for electrolytic polymer formation at the intended site deteriorates.

これを避けるために電解重合体形成基板である電極との
接点以外の通電コネクタ面に絶縁性樹脂等を塗布し、こ
れを防ぐ事か行われている。この場合、電解重合体形成
用基板3と通電コネクタ9との接点面を中心にしてポリ
ピロールが絶縁性樹脂表面に電析し暫時法がってくる。
In order to avoid this, an insulating resin or the like is applied to the surface of the current-carrying connector other than the contact point with the electrode, which is the electrolytic polymer formed substrate, to prevent this. In this case, polypyrrole is electrodeposited on the surface of the insulating resin centering on the contact surface between the electrolytic polymer forming substrate 3 and the current-carrying connector 9, and a temporary process occurs.

その結果、続けて電解重合を行いたいときには、析出し
たポリマーをコネクタから削りとる必要が発生する。こ
のポリマーを除去する際にあらかじめ塗布されていた絶
縁性樹脂がコネクタと剥離し、再び使用するには再度、
絶縁性樹脂を塗布する必要が生じていた。
As a result, when it is desired to continue electrolytic polymerization, it becomes necessary to scrape off the deposited polymer from the connector. When removing this polymer, the pre-applied insulating resin separates from the connector, so it must be reused before it can be used again.
It became necessary to apply insulating resin.

本発明は、再使用する際に、再度、絶縁性樹脂を塗布す
るなどの処理が必要でなく、より簡便に使用し得、再使
用の場合の効率の低下も少なく、効率良く電解重合を行
うことの出来る電解重合基板への通電用のコネクタを提
供することを目的とするものである。
When reusing the present invention, there is no need for treatment such as applying an insulating resin again, so it can be used more easily, there is less loss of efficiency when reusing, and it performs electrolytic polymerization efficiently. The object of the present invention is to provide a connector for supplying electricity to an electrolytically polymerized substrate.

[課題を解決するための手段] 前記課題を解決するため本発明は次の構成を有するもの
である。
[Means for Solving the Problems] In order to solve the above problems, the present invention has the following configuration.

(1)弁作用金属からなる事を特徴とする電解重合体形
成用基板の通電コネクタ。
(1) A current-carrying connector for a substrate for forming an electrolytic polymer, characterized by being made of a valve metal.

(2)弁作用金属がチタン、タンタル、アルミニウムな
いしはこれら合金である前記1項に記載の電解重合体形
成用基板の通電コネクタ。
(2) The current-carrying connector for a substrate for forming an electrolytic polymer according to item 1 above, wherein the valve metal is titanium, tantalum, aluminum, or an alloy thereof.

(3)表面に弁作用金属の酸化物被膜を有することを特
徴とする電解重合体形成用基板の通電コネクタ。
(3) A current-carrying connector for a substrate for forming an electrolytic polymer, characterized by having an oxide film of a valve metal on its surface.

[作用] 遷移金属、例えばチタン、タンタル、タングステンおよ
びニオブなどや、アルカリ土類金属、例えばアルミニウ
ムなどはその金属表面に比較的緻密な酸化皮膜を形成す
る。該酸化皮膜には一般に整流性があり、酸化方向には
電流か流れ難くなり、還元方面には比較的電流かよく流
れ、従ってこの様な金属は別名、弁作用金属とも呼ばれ
ている。
[Function] Transition metals, such as titanium, tantalum, tungsten, and niobium, and alkaline earth metals, such as aluminum, form relatively dense oxide films on their metal surfaces. The oxide film generally has rectifying properties, making it difficult for current to flow in the direction of oxidation, and allowing current to flow relatively well in the direction of reduction, and therefore, such metals are also called valve metals.

電解液中でこれら金属を浸漬させ電解するとその表面に
酸化皮膜が形成され酸化電流が流れなくなり、電解酸化
反応が止まる。しかし好都合にもこうした酸化反応がお
こる電位かピロールを始めとして各種電解重合用モノマ
ーの酸化反応電位より低い。
When these metals are immersed in an electrolytic solution and electrolyzed, an oxide film is formed on their surfaces, oxidation current no longer flows, and the electrolytic oxidation reaction stops. However, advantageously, the potential at which such an oxidation reaction occurs is lower than the oxidation reaction potential of various electrolytic polymerization monomers, including pyrrole.

しかして、本発明においては電解重合体形成用基板の通
電コネクタとして弁作用金属を使用しているので、電解
重合を行うと容易にコネクタ表面が酸化されコネクタ表
面には電流が流れなくなり、コネクタ表面への電解重合
体の付着を少なくすることができる。従って、目的とす
る電解重合体形成用基板の方に効率よく電流が流れ、よ
り均一な重合体膜が形成できる。
However, in the present invention, since a valve metal is used as the current-carrying connector of the substrate for forming an electrolytic polymer, when electrolytic polymerization is performed, the connector surface is easily oxidized and no current flows through the connector surface. It is possible to reduce the adhesion of electrolytic polymer to. Therefore, current flows efficiently toward the intended substrate for electrolytic polymer formation, and a more uniform polymer film can be formed.

また、コネクタに付着析出した電解重合体を剥がす場合
に、たとえコネクタ表面に形成された酸化被膜に傷か付
いたとしても、再度、電解重合を開始すると、上記電解
酸化作用により容易にコネクタ表面の酸化皮膜の修復が
行われ、再使用の場合の効率の低下も少なくすることが
できる。
In addition, even if the oxide film formed on the connector surface is scratched when peeling off the electrolytic polymer deposited on the connector, if electropolymerization is started again, the electrolytic oxidation effect will easily damage the connector surface. The oxide film is repaired, and the drop in efficiency during reuse can be reduced.

また、第2番目め発明においては、弁作用金属としてチ
タン、タンタル、アルミニウムないしはこれら合金を使
用したので、工業的に入手の容易な弁作用金属を用いて
上記の作用が容易に発揮される。
Further, in the second invention, since titanium, tantalum, aluminum, or an alloy thereof is used as the valve metal, the above-mentioned effect can be easily achieved using an industrially easily available valve metal.

また、第3番目の発明においては、表面に弁作用金属の
酸化物層を有する通電コネクタとしたので、電解重合開
始当初よりコネクタ表面への重合体の析出を防止できる
Furthermore, in the third aspect of the invention, since the current-carrying connector has an oxide layer of a valve metal on its surface, precipitation of polymer on the connector surface can be prevented from the beginning of electrolytic polymerization.

[実施例コ 以下実施例をもとに本発明を更に詳細に説明する。[Example code] The present invention will be explained in more detail below based on Examples.

実施例1 チタン金属を用い通電用コネクタクリップを作成した後
、1規定硫酸電解液中で2mA/cm2の電流密度で電
解酸化を行い、電解重合体形成用基板への接点面以外の
面に酸化チタンを形成させた。この通電用コネククリッ
プを用い陽極である電解重合体形成用基板として表面に
酸化皮膜が形成されたアルミニウム板を、また、陰極と
してステンレス板を用いピロールの電解重合を5回繰り
返し行った。クリップか電解液に浸漬している面積は1
cm  で電極面積は2Cm2その際に得られた電流効
率の変化を表1に示した。
Example 1 After creating a current-carrying connector clip using titanium metal, electrolytic oxidation was performed in a 1N sulfuric acid electrolyte at a current density of 2 mA/cm2 to oxidize the surface other than the contact surface to the electrolytic polymer forming substrate. Formed titanium. Using this current-carrying connector clip, electrolytic polymerization of pyrrole was repeated five times using an aluminum plate with an oxide film formed on its surface as an anode and a substrate for forming an electrolytic polymer, and a stainless steel plate as a cathode. The area where the clip is immersed in the electrolyte is 1
cm and the electrode area was 2 Cm2. Table 1 shows the changes in current efficiency obtained at that time.

最初、95%の電流効率のものが、電解重合を繰り返す
ことにより75%まで暫時低下している。
Initially, the current efficiency was 95%, but as the electrolytic polymerization was repeated, the current efficiency temporarily decreased to 75%.

これはクリップの接点を中心にして析出したポリピロー
ルがクリップ面に広がって来たことにより、電解重合体
形成用基板面でのポリピロールの生成効率が低下したた
めである。こうしたクリップに析出したポリピロールを
エメリーペーパで削除し再び電解酸化重合を行ったもの
か、6回目の重合の際の効率92%である。11回目、
16回目、21回目にも同様に析出したポリピロールを
エメリーペーパで削除した。この際の効率はいづれも、
90%近い高い効率を示すことが判る。
This is because the polypyrrole deposited around the contact points of the clip spread over the clip surface, resulting in a decrease in the production efficiency of polypyrrole on the surface of the electrolytic polymer forming substrate. The polypyrrole deposited on these clips was removed with emery paper and electrolytic oxidation polymerization was performed again, with an efficiency of 92% during the sixth polymerization. 11th time,
In the 16th and 21st times, the precipitated polypyrrole was similarly removed using emery paper. The efficiency in this case is
It can be seen that a high efficiency of nearly 90% is shown.

表1には比較のための実験結果を付記した。Table 1 includes experimental results for comparison.

比較実験としては、チタン材料をハイクロムステンレス
に変えてクリップを作成し、そのまま使用したものと、
電解重合体形成用基板への接点面以外の面に弗素樹脂を
コートしたものを用いた。
As a comparison experiment, we created a clip by changing the titanium material to high chrome stainless steel and used it as is.
The surface other than the contact surface to the electrolytic polymer forming substrate was coated with fluororesin.

ステンレスクリップでは初期から35%という低い効率
となり、第2回目の電解重合を行うには析出したポリピ
ロールを除去する必要を生じた。
With the stainless steel clip, the efficiency was as low as 35% from the beginning, and it became necessary to remove the precipitated polypyrrole in order to perform the second electrolytic polymerization.

弗素樹脂をコートしたステンレスクリップでは、はぼ本
発明のクリップと同様の効率を示したが、第6回目の重
合の際にクリップに付着したポリピロールを除去し、続
けて電解重合を行ったが効率は78%と本発明に比べて
低いことが判った。これはポリピロールを除去する際に
コーティングされている弗素樹脂表面に傷が入ったため
で、さらに高効率で電解重合の繰り返しを行うにはクリ
ップに析出付着したポリピロールを除去する間隔を短く
する必要が生じた。
The stainless steel clip coated with fluororesin showed the same efficiency as the clip of the present invention, but when the polypyrrole adhering to the clip was removed during the 6th polymerization and electropolymerization was continued, the efficiency was lower. was found to be 78%, which is lower than that of the present invention. This is because the coated fluororesin surface was scratched when polypyrrole was removed, and in order to repeat electrolytic polymerization with even higher efficiency, it was necessary to shorten the interval at which the polypyrrole deposited on the clip was removed. Ta.

実施例2 実施例1における通電コネクタクリップ材料をチタンか
らアルミニウムに変えた以外は実施例1と同様の実験を
行った。
Example 2 An experiment similar to Example 1 was conducted except that the material of the current-carrying connector clip in Example 1 was changed from titanium to aluminum.

表1に示すように、結果は殆ど実施例1と同じ良好な結
果を得た。
As shown in Table 1, almost the same good results as in Example 1 were obtained.

実施例3 実施例1における通電コネクタクリップ材料をチタンか
らタンタルに変えた以外は実施例1と同様の実験を行っ
た。
Example 3 An experiment similar to Example 1 was conducted except that the material of the current-carrying connector clip in Example 1 was changed from titanium to tantalum.

表1に示すように、結果は殆ど実施例1と同じ良好な結
果を得た。
As shown in Table 1, almost the same good results as in Example 1 were obtained.

実施例4 実施例1ではポリピロールを含む電解液で本発明の効果
を調べたが、本実施例では電解液としてアニリンを含む
電解液を用い、ポリアニリンの電解重合について行った
以外、実施例1と全く同様の試験を行った。得られた結
果は実施例1と同様な挙動を示した。
Example 4 In Example 1, the effect of the present invention was investigated using an electrolytic solution containing polypyrrole, but in this example, an electrolytic solution containing aniline was used as the electrolytic solution, and the electrolytic polymerization of polyaniline was carried out. Exactly the same test was conducted. The obtained results showed similar behavior to Example 1.

なお上記実施例では弁作用金属そのものをコネクタ材料
として用いたが、これら金属の有機金属アルコラードな
どの有機金属化合物をステンレスなどの金属表面に塗布
し、その後熱分解法によりその表面に弁作用金属酸化被
膜を形成させてもよい。
In the above example, the valve metal itself was used as the connector material, but an organometallic compound of these metals, such as organometallic alcoholade, is applied to the surface of a metal such as stainless steel, and then the valve metal oxidation is applied to the surface using a pyrolysis method. A film may also be formed.

表1 [発明の効果コ 本発明においては電解重合体形成用基板の通電コネクタ
として弁作用金属を使用しているので、電解重合を行う
と容易にコネクタ表面が酸化されコネクタ表面には電流
か流れなくなり、コネクタ表面への電解重合体の付着を
少なくすることができる。
Table 1 [Effects of the Invention] In the present invention, a valve metal is used as the current-carrying connector of the substrate for forming an electrolytic polymer, so when electrolytic polymerization is performed, the connector surface is easily oxidized and no current flows on the connector surface. Therefore, it is possible to reduce the adhesion of the electrolytic polymer to the connector surface.

また、コネクタに付着析出した電解重合体を剥がす場合
に、たとえコネクタ表面に形成された酸化膜に傷が付い
たとしても、再度、電解重合を開始すると、上記酸化作
用により容易にコネクタ表面の酸化皮膜の修復が行われ
、再使用の場合の効率の低下も少なくすることができる
。従って、より効率よく電解重合を行わせることが可能
であり、かつ使用回数が優れた通電コネクタが提供でき
る。
In addition, even if the oxide film formed on the connector surface is damaged when peeling off the electrolytic polymer deposited on the connector, if electrolytic polymerization is started again, the connector surface will easily oxidize due to the oxidation action described above. The film is repaired, and the drop in efficiency during reuse can be reduced. Therefore, it is possible to provide a current-carrying connector that can perform electrolytic polymerization more efficiently and can be used more frequently.

また、第2番目の発明においては、弁作用金属としてチ
タン、タンタル、アルミニウムないしはこれら合金を使
用したので、工業的に入手の容易な金属を用いて上記の
効果が容易に達成できる。
Furthermore, in the second invention, since titanium, tantalum, aluminum, or an alloy thereof is used as the valve metal, the above effects can be easily achieved using industrially easily available metals.

また、第3番目の発明においては、電解重合開始当初よ
りコネクタ表面への重合体の析出を防止できる。
Furthermore, in the third invention, precipitation of the polymer on the connector surface can be prevented from the beginning of electrolytic polymerization.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、電解重合装置の断面概略図である。 1・・・電解液、2・・・電解槽、3・・・電解重合体
形成用基板(陽極)、4・・・陰極、5・・・循環用ポ
ンプ、6・・・電源、7.8・・・通電用リード線、9
.10・・・通電コネクタ、11・・・循環用パイプ。
FIG. 1 is a schematic cross-sectional view of an electrolytic polymerization apparatus. DESCRIPTION OF SYMBOLS 1... Electrolyte solution, 2... Electrolytic cell, 3... Substrate for electrolytic polymer formation (anode), 4... Cathode, 5... Circulation pump, 6... Power supply, 7. 8...Electricity lead wire, 9
.. 10... Current-carrying connector, 11... Circulation pipe.

Claims (3)

【特許請求の範囲】[Claims] (1)弁作用金属からなる事を特徴とする電解重合体形
成用基板の通電コネクタ。
(1) A current-carrying connector for a substrate for forming an electrolytic polymer, characterized by being made of a valve metal.
(2)弁作用金属がチタン、タンタル、アルミニウムな
いしはこれら合金である請求項1記載の電解重合体形成
用基板の通電コネクタ。
(2) The current-carrying connector for a substrate for forming an electrolytic polymer according to claim 1, wherein the valve metal is titanium, tantalum, aluminum, or an alloy thereof.
(3)表面に弁作用金属の酸化物被膜を有することを特
徴とする電解重合体形成用基板の通電コネクタ。
(3) A current-carrying connector for a substrate for forming an electrolytic polymer, characterized by having an oxide film of a valve metal on its surface.
JP2335930A 1990-11-29 1990-11-29 Electrical connector for electrolytic polymerization Expired - Fee Related JP2825975B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2335930A JP2825975B2 (en) 1990-11-29 1990-11-29 Electrical connector for electrolytic polymerization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2335930A JP2825975B2 (en) 1990-11-29 1990-11-29 Electrical connector for electrolytic polymerization

Publications (2)

Publication Number Publication Date
JPH04202684A true JPH04202684A (en) 1992-07-23
JP2825975B2 JP2825975B2 (en) 1998-11-18

Family

ID=18293941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2335930A Expired - Fee Related JP2825975B2 (en) 1990-11-29 1990-11-29 Electrical connector for electrolytic polymerization

Country Status (1)

Country Link
JP (1) JP2825975B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006502569A (en) * 2002-10-07 2006-01-19 ゲン3 パートナーズ インコーポレイテッド Method for producing electrode for electrochemical device
US7888229B2 (en) 2006-03-24 2011-02-15 Gen 3 Partners, Inc. Method for manufacturing an energy storage device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006502569A (en) * 2002-10-07 2006-01-19 ゲン3 パートナーズ インコーポレイテッド Method for producing electrode for electrochemical device
US7888229B2 (en) 2006-03-24 2011-02-15 Gen 3 Partners, Inc. Method for manufacturing an energy storage device

Also Published As

Publication number Publication date
JP2825975B2 (en) 1998-11-18

Similar Documents

Publication Publication Date Title
Otero et al. Electrochemical control of the morphology, adherence, appearance and growth of polypyrrole films
JP3906043B2 (en) Manufacturing method of solid electrolytic capacitor
CN1591723B (en) Solid electrolyte capacitor, its mfg. method and device
CN1748272A (en) Solid electrolytic capacitor and process for its fabrication
JP2008001836A (en) Process of producing polymer film
US5189770A (en) Method of making solid electrolyte capacitor
JP2008053479A (en) Manufacturing method of solid electrolytic capacitor
Arsov Electrochemical study of polyaniline deposited on a titanium surface
JPH04202684A (en) Electricity conductive connector for electrolytic polymerization
Qingfeng et al. Influence of substrates on the electrochemical deposition and dissolution of aluminum in NaAlCl4 melts
JP3026817B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0258818A (en) Manufacture of solid electrolytic capacitor
JP5130416B2 (en) Conductive polymer film and method for producing the same, solid electrolytic capacitor and method for producing the same
JPH02238613A (en) Solid electrolytic capacitor
JP3076873B2 (en) Supporting electrolyte composition for manufacturing solid electrolytic capacitors
JP5954558B2 (en) Method for producing polymer membrane and electropolymerization apparatus for polymer membrane production
JPH06224077A (en) Manufacture of electrolytic capacitor which has precathode made of conductive polymer and whose leakage current is small
JP2957692B2 (en) Electrolytic polymerization method
JP2005183256A (en) Solid electrolyte and its forming method, and electronic component and its manufacturing method
JP2001102258A (en) Method for manufacturing conductive polymer film
JPH03174435A (en) Continuous production of conductive polymer material
JP2001163983A (en) Polymerization additive
JPH09283390A (en) Manufacture of capacitor
JPS61500671A (en) Production of nickel oxide hydroxide electrode
JPH09148193A (en) Manufacture of solid electrolytic capacitor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees