JP2001102258A - Method for manufacturing conductive polymer film - Google Patents

Method for manufacturing conductive polymer film

Info

Publication number
JP2001102258A
JP2001102258A JP27601199A JP27601199A JP2001102258A JP 2001102258 A JP2001102258 A JP 2001102258A JP 27601199 A JP27601199 A JP 27601199A JP 27601199 A JP27601199 A JP 27601199A JP 2001102258 A JP2001102258 A JP 2001102258A
Authority
JP
Japan
Prior art keywords
electrode
conductive polymer
polymer film
metal plate
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27601199A
Other languages
Japanese (ja)
Inventor
Takashi Fukami
隆 深海
Katsuhiro Yoshida
勝洋 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP27601199A priority Critical patent/JP2001102258A/en
Publication of JP2001102258A publication Critical patent/JP2001102258A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Conductive Materials (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an easy peeling method of a conductive polymer film which is stuck on a metal plate and a power supply terminal by electrolytic polymerization. SOLUTION: After a metal plate 1 and a counter electrode 2 are dipped in polymeric liquid 3 composed of polymeric monomer and support electrolyte, a DC voltage is applied from a DC power source 20 to a part between the metal plate 1 (anode) and the counter electrode 2 (cathode), and a conductive polymer film 30 on the metal plate 1 is subjected to electrolytic polymerization. The voltage between the metal plate 1 and the opposite electrode 2 is increased, oxygen gas (bubbles 50) is generated from the metal plate 1, and the conductive polymer film 30 is peeled from the surface of the metal plate 1 by the pressure of the oxygen gas.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は導電性高分子膜の製
造方法に関し、特に電気二重層コンデンサの集電体や固
体電解コンデンサの固体電解質等に使用される導電性高
分子膜を電解重合で形成後、補助電極や基体から剥離す
る方法を提供するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a conductive polymer film, and more particularly to a method for producing a conductive polymer film used for a current collector of an electric double layer capacitor or a solid electrolyte of a solid electrolytic capacitor by electrolytic polymerization. It is intended to provide a method of peeling off from an auxiliary electrode or a base after formation.

【0002】[0002]

【従来の技術】近年、導電性高分子が電気二重層コンデ
ンサの集電体や固体電解コンデンサの固体電解質に使用
されるようになっている。
2. Description of the Related Art In recent years, conductive polymers have been used for current collectors of electric double layer capacitors and solid electrolytes of solid electrolytic capacitors.

【0003】導電性高分子の形成方法には、化学重合法
と電解重合法がある。前者は、基体が電気絶縁性の場合
に使用される方法で、例えば、p―トルエンスルホン酸
鉄とピロールの混合低温溶液に基体を浸漬して乾燥、洗
浄することにより基体表面に導電性高分子のポリピロー
ルが化学重合形成される。後者の方法は、基体が導電性
の場合に使用され、例えばp―トルエンスルホン酸ナト
リウムとピロールの混合水溶液中に浸漬した基体に補助
電極を接触させ、補助電極と対向電極間に補助電極がア
ノードになるように直流電圧を所定の時間印加すると、
基体表面に導電性高分子のポリピロールが電解重合され
る。電解重合の基体としてはステンレス等の金属や酸化
タンタルのような多孔性の電気絶縁性の材料に上記の化
学重合法で導電性高分子膜をプリコートして導電性を付
与した材料等が使用される。
[0003] As a method for forming a conductive polymer, there are a chemical polymerization method and an electrolytic polymerization method. The former is a method used when the substrate is electrically insulating. For example, a conductive polymer is applied to the surface of the substrate by immersing the substrate in a low-temperature mixed solution of iron p-toluenesulfonate and pyrrole, followed by drying and washing. Of polypyrrole is formed by chemical polymerization. The latter method is used when the substrate is conductive.For example, an auxiliary electrode is brought into contact with a substrate immersed in a mixed aqueous solution of sodium p-toluenesulfonate and pyrrole, and the auxiliary electrode is placed between the auxiliary electrode and the counter electrode. When a DC voltage is applied for a predetermined time so that
The conductive polymer polypyrrole is electrolytically polymerized on the substrate surface. As a substrate for the electrolytic polymerization, a material such as a metal such as stainless steel or a material obtained by pre-coating a conductive polymer film on a porous electrically insulating material such as tantalum oxide by the above-described chemical polymerization method to impart conductivity is used. You.

【0004】電解重合法は電解液の劣化が少なく、膜厚
のコントロールがしやすいために、コンデンサの製造方
法で広く使用されるようになっている。
[0004] The electrolytic polymerization method has been widely used in a method of manufacturing a capacitor because the electrolytic solution is less likely to deteriorate and the film thickness is easily controlled.

【0005】導電性高分子を電気二重層コンデンサの集
電体に使用する場合の導電性高分子膜を形成方法につい
て図3を参照して説明する。まず、図3(a)のよう
に、ステンレス等の金属板1(アノード電極となる)を
電解槽10中の電解重合液(例えば、30wt%p―ト
ルエンスルホン酸ナトリウムと5wt%ピロールの混合
水溶液)中に浸漬して、直流電源20を使用して、金属
板1をアノード、対向電極2(ステンレス等の金属電
極)をカソードとして直流電圧を所定の時間印加する。
金属板1の電極電圧は銀の表面に塩化銀を析出した標準
電極(以下、銀/塩化銀標準電極という)を基準として
1V程度である。この電解により金属板1上には図3
(b)のように導電性高分子膜30(ポリピロール)が
析出する。次いで、電解終了後、この導電性高分子膜3
0を図3(c)のように引掻きまたは振動させて金属板
1から機械的に剥離しする。この剥離した導電性高分子
膜をカーボンと一体成形して集電体を形成する。
A method of forming a conductive polymer film when a conductive polymer is used as a current collector of an electric double layer capacitor will be described with reference to FIG. First, as shown in FIG. 3A, a metal plate 1 of stainless steel or the like (to be an anode electrode) is placed in an electrolytic polymerization solution (for example, a mixed aqueous solution of 30 wt% sodium p-toluenesulfonate and 5 wt% pyrrole) in an electrolytic tank 10. ), And using a DC power supply 20, a DC voltage is applied for a predetermined time using the metal plate 1 as an anode and the counter electrode 2 (a metal electrode such as stainless steel) as a cathode.
The electrode voltage of the metal plate 1 is about 1 V with respect to a standard electrode (hereinafter referred to as a silver / silver chloride standard electrode) in which silver chloride is deposited on the surface of silver. By this electrolysis, the metal plate 1 is placed on the metal plate 1 as shown in FIG.
As shown in (b), the conductive polymer film 30 (polypyrrole) is deposited. Next, after the electrolysis is completed, the conductive polymer film 3
3 is mechanically peeled off from the metal plate 1 by scratching or vibrating as shown in FIG. The peeled conductive polymer film is integrally formed with carbon to form a current collector.

【0006】次に、導電性高分子を固体電解コンデンサ
の固体電解質に使用する場合の、導電性高分子膜の形成
方法について図4を参照して説明する。まず、タンタル
線等の陽極リード7を植立したタンタル金属等の弁作用
金属粉末焼結体を陽極酸化した後、化学重合法のよりポ
リピロール等の導電性高分子膜のプリコート膜を被覆し
てペレット5を形成する。このペレット5を図4(a)
の電解槽10中の電解重合液(例えば、30wt%p―
トルエンスルホン酸ナトリウムと5wt%ピロールの混
合水溶液)中に浸漬する。次いで直流電源20を使用し
て、ペレットの表面にステンレス等の金属材料からなる
補助電極を接触させて補助電極をアノード、対向電極2
(ステンレス等の金属電極)をカソードとして直流電圧
を所定の時間印加して、図4(b)のようにペレット5
表面に導電性高分子膜30を形成する。
Next, a method of forming a conductive polymer film when a conductive polymer is used for a solid electrolyte of a solid electrolytic capacitor will be described with reference to FIG. First, after anodic oxidation of a valve action metal powder sintered body such as tantalum metal having an anode lead 7 such as a tantalum wire planted thereon, a prepolymer film of a conductive polymer film such as polypyrrole is coated by a chemical polymerization method. A pellet 5 is formed. FIG. 4 (a)
Electrolytic polymerization liquid (for example, 30 wt% p-
(A mixed aqueous solution of sodium toluenesulfonate and 5 wt% pyrrole). Next, using a DC power supply 20, an auxiliary electrode made of a metal material such as stainless steel is brought into contact with the surface of the pellet to make the auxiliary electrode an anode and a counter electrode 2
(A metal electrode such as stainless steel) as a cathode, and a DC voltage is applied for a predetermined time to form a pellet 5 as shown in FIG.
A conductive polymer film 30 is formed on the surface.

【0007】[0007]

【発明が解決しようとする課題】上記の導電性高分子膜
を金属板に電解重合して、これを振動や引掻きにより金
属板表面から剥離して電気二重層コンデンサの集電体に
使用する方法においては、金属表面から導電性高分子膜
を剥離する時に導電性高分子膜が破断されやすい問題が
あった。
A method of using the above-mentioned conductive polymer film on a metal plate by electrolytic polymerization and peeling it off from the surface of the metal plate by vibration or scratching to use it as a current collector of an electric double layer capacitor. Has a problem that the conductive polymer film is easily broken when the conductive polymer film is peeled off from the metal surface.

【0008】また、上記のペレットに補助電極を接触さ
せて導電性高分子膜からなる固体電解コンデンサの電解
質を電解重合する方法においては、補助電極にも、当然
導電性高分子膜が被覆される。補助電極は繰り返し使用
されるために、補助電極に析出した導電性高分子膜は次
回使用する前に剥離する必要がある。この導電性樹脂膜
を剥離方法としては、上記の電気二重層コンデンサの集
電体用導電性高分子膜を金属板から剥離する方法と同様
な振動や引掻きによって剥離する方法があるが、補助電
極にキズ等がつきやすく、次回使用する場合、ペレット
にキズや欠け等が発生する原因となっていた。
[0008] In the above-mentioned method in which an auxiliary electrode is brought into contact with the pellet to electrolytically polymerize the electrolyte of a solid electrolytic capacitor made of a conductive polymer film, the auxiliary electrode is naturally coated with the conductive polymer film. . Since the auxiliary electrode is used repeatedly, the conductive polymer film deposited on the auxiliary electrode needs to be peeled off before the next use. As a method of peeling the conductive resin film, there is a method of peeling the conductive polymer film for a current collector of the electric double layer capacitor from the metal plate by the same vibration or scratching as the method of peeling the conductive polymer film from the metal plate. The pellets are liable to be scratched, etc., which causes the pellets to be scratched or chipped when used next time.

【0009】導電性高分子膜を基体から剥離する方法と
して特開昭61―245413号公報には、電極面に電
解重合した導電性高分子膜に高分子樹脂膜を積層して剥
離する方法が開示されているが、高分子樹脂膜を積層す
る際に高分子樹脂膜が電極に付着しやすく、また導電性
高分子膜の片面が高分子樹脂膜で絶縁化されるために電
気二重層コンデンサの集電体には使用できない。
Japanese Patent Application Laid-Open No. 61-245413 discloses a method of peeling a conductive polymer film from a substrate by laminating a polymer resin film on a conductive polymer film electrolytically polymerized on an electrode surface. Although it is disclosed, when a polymer resin film is laminated, the polymer resin film easily adheres to the electrodes, and one side of the conductive polymer film is insulated by the polymer resin film. It cannot be used for current collectors.

【0010】導電性高分子膜を剥離する他の方法として
特開平7−94365号公報には、固体電解コンデンサ
の陽極リードに析出した導電性高分子膜を熱処理によっ
て分解する方法が開示されているが、これを上記の固体
電解コンデンサの電解質を電解重合する際に補助電極に
析出した導電性高分子膜を除去する方法として使用する
ことが考えられるが、補助電極が酸化したり、導電性高
分子膜の熱分解で生成した膜で補助電極表面が絶縁化さ
れる場合があり、繰り返し補助電極を使用するためには
補助電極を薬品処理する必要がある。
As another method for peeling the conductive polymer film, Japanese Patent Application Laid-Open No. 7-94365 discloses a method in which the conductive polymer film deposited on the anode lead of a solid electrolytic capacitor is decomposed by heat treatment. However, this may be used as a method of removing the conductive polymer film deposited on the auxiliary electrode when the electrolyte of the solid electrolytic capacitor is electrolytically polymerized. In some cases, the surface of the auxiliary electrode is insulated by a film generated by thermal decomposition of the molecular film, and it is necessary to chemically treat the auxiliary electrode in order to use the auxiliary electrode repeatedly.

【0011】本発明は、補助電極や金属板に電解重合形
成された導電性高分子膜を剥離する上記の従来技術の問
題点を解決した簡便な剥離方法を提供することにある。
An object of the present invention is to provide a simple peeling method which solves the above-mentioned problems of the prior art for peeling a conductive polymer film formed by electrolytic polymerization on an auxiliary electrode or a metal plate.

【0012】[0012]

【課題を解決するための手段】本発明の導電性高分子膜
の製造方法の第1の構成は、重合性モノマーおよび支持
電解質の混合溶液中に第1及び第2の電極を浸漬した
後、前記第1の電極をアノードとし、前記第2の電極を
カソードとして所定の時間電解して前記第1の電極表面
に導電性高分子膜を電解重合により形成する工程と、前
記第1の電極から酸素ガスが発生する直流電圧を前記第
1の電極と前記第2の電極間に印加して所定の時間電解
し、前記導電性高分子膜を前記第1の電極表面から剥離
する工程とからなることを特徴とする。
According to a first aspect of the method for producing a conductive polymer membrane of the present invention, the first and second electrodes are immersed in a mixed solution of a polymerizable monomer and a supporting electrolyte. Forming a conductive polymer film on the first electrode surface by electrolytic polymerization by performing electrolysis for a predetermined time using the first electrode as an anode and the second electrode as a cathode; Applying a DC voltage generated by oxygen gas between the first electrode and the second electrode to perform electrolysis for a predetermined time, and peeling the conductive polymer film from the surface of the first electrode. It is characterized by the following.

【0013】また、本発明の導電性高分子膜の製造方法
の第2の構成は、重合性モノマーおよび支持電解質の混
合溶液中に、所望の導電性高分子膜を形成する処理対象
物,この処理対象物と電気的に導通する第1の電極およ
び該第1の電極の対向電極として作用する第2の電極を
浸漬する工程と、前記第1の電極を前記処理対象物に接
触させ、記第1の電極をアノード、前記第2の電極をカ
ソードとして、所定の時間電解して、前記処理対象物お
よび前記第1の電極表面に導電性高分子膜を電解重合に
より形成する工程と、前記第1の電極を前記処理対象物
から分離した後、前記第1の電極から酸素ガスが発生す
る直流電圧を前記第1の電極と前記第2の電極間に印加
して所定の時間電解し、前記導電性高分子膜を前記第1
の電極表面から剥離する工程とからなることを特徴とす
る。
A second structure of the method for producing a conductive polymer film according to the present invention is a processing object for forming a desired conductive polymer film in a mixed solution of a polymerizable monomer and a supporting electrolyte. A step of immersing a first electrode in electrical communication with the object to be processed and a second electrode acting as a counter electrode of the first electrode; and contacting the first electrode with the object to be processed. Using a first electrode as an anode and the second electrode as a cathode, performing electrolysis for a predetermined time, and forming a conductive polymer film on the surface of the object to be processed and the first electrode by electrolytic polymerization; After separating the first electrode from the object to be processed, a DC voltage at which oxygen gas is generated from the first electrode is applied between the first electrode and the second electrode to perform electrolysis for a predetermined time, Forming the conductive polymer film on the first
Separating from the electrode surface.

【0014】本発明では、上記の構成のように、第1の
電極(アノード)に導電性高分子膜を電解重合後、さら
に酸素ガス発生電位で電解することによって、発生した
酸素ガス圧により第1の電極から導電性高分子膜を剥離
させることを特徴とするものである。
According to the present invention, as described above, after the conductive polymer film is electrolytically polymerized on the first electrode (anode), and further electrolyzed at an oxygen gas generation potential, the first electrode (anode) is subjected to electrolysis at the generated oxygen gas pressure. The conductive polymer film is separated from the first electrode.

【0015】本発明では、第1の電極から析出した導電
性高分子膜を酸素ガスの圧力で剥離する際に、第1の電
極に超音波振動を与えることによって該導電性高分子膜
の剥離を促進することができる。
In the present invention, when the conductive polymer film deposited from the first electrode is peeled off by the pressure of oxygen gas, ultrasonic vibration is applied to the first electrode to peel off the conductive polymer film. Can be promoted.

【0016】[0016]

【発明の実施の形態】次に、本発明の実施の形態につい
て図面を参照して説明する。
Next, embodiments of the present invention will be described with reference to the drawings.

【0017】図1は、本発明の第1の実施の形態の導電
性高分子膜の製造方法を説明するための電解重合装置の
概要図である。図1は金属板に電解重合した導電性高分
子膜を剥離して、電気二重層コンデンサ等の集電体に使
用する場合の導電性高分子膜の製造方法を示している。
まず、図1(a)のように、ステンレス等の金属板1と
ステンレス等の対向電極2を重合液3が入っている電解
槽10中にセットし、直流電源20を使用して、対向電
極2(カソードにする)と金属板1(アノードにする)
間に直流電圧を所定の時間印加して金属板1の表面に図
1(b)のように導電性高分子膜30を電解重合する。
重合液としては、ピロール,チオフェン,フランまたは
それらの誘導体の重合性モノマーとp―トルエンスルホ
ン酸,ナフタレンスルホン酸またはベンゼンスルホン酸
のような支持電解質を含む溶液が使用できる。例えば、
0.5Mピロールおよび0.3Mp−トルエンスルホン
酸水溶液の重合液3が使用し、金属板1の電圧は銀/塩
化銀標準電極を基準に1.0Vを印加するようにした。
FIG. 1 is a schematic view of an electrolytic polymerization apparatus for explaining a method for producing a conductive polymer film according to a first embodiment of the present invention. FIG. 1 shows a method for producing a conductive polymer film when the conductive polymer film electrolytically polymerized on a metal plate is peeled off and used as a current collector such as an electric double layer capacitor.
First, as shown in FIG. 1A, a metal plate 1 made of stainless steel or the like and a counter electrode 2 made of stainless steel or the like are set in an electrolytic cell 10 containing a polymer solution 3, and a counter electrode is set using a DC power supply 20. 2 (to be a cathode) and metal plate 1 (to be an anode)
During this time, a DC voltage is applied for a predetermined time, and the conductive polymer film 30 is electrolytically polymerized on the surface of the metal plate 1 as shown in FIG.
As the polymerization solution, a solution containing a polymerizable monomer of pyrrole, thiophene, furan or a derivative thereof and a supporting electrolyte such as p-toluenesulfonic acid, naphthalenesulfonic acid or benzenesulfonic acid can be used. For example,
A polymerization solution 3 of 0.5 M pyrrole and 0.3 M p-toluenesulfonic acid aqueous solution was used, and the voltage of the metal plate 1 was set to 1.0 V based on a silver / silver chloride standard electrode.

【0018】次に、同じ重合液3中で直流電源を使用し
て金属板1から酸素ガス(気泡50で示す)発生する電
圧(例えば金属板1の電位を銀/塩化銀標準電極基準と
して1.5Vとする)に上げて所定の時間電解し、図1
(c)のように金属板1から導電性高分子膜30を剥離
した。図1(b)において、金属板1に超音波振動を付
与すると導電性高分子膜30の剥離がより容易になる。
このように、本発明では、金属板1の表面から酸素ガス
の圧力により導電性高分子膜を容易に剥離することがで
き、この剥離した膜をカーボンと一体化成形することに
より電気二重層コンデンサ等の集電体を形成できる。
Next, a voltage (for example, the potential of the metal plate 1 is set to 1 with reference to the silver / silver chloride standard electrode) from the metal plate 1 using a DC power source in the same polymerization solution 3 using a DC power supply. 0.5 V) and electrolyze for a predetermined time.
The conductive polymer film 30 was peeled off from the metal plate 1 as shown in FIG. In FIG. 1B, when ultrasonic vibration is applied to the metal plate 1, the conductive polymer film 30 can be more easily separated.
As described above, in the present invention, the conductive polymer film can be easily peeled off from the surface of the metal plate 1 by the pressure of oxygen gas, and the peeled film is integrally formed with carbon to form an electric double layer capacitor. And the like.

【0019】次に、本発明の第2の実施の形態について
図2を参照して説明する。
Next, a second embodiment of the present invention will be described with reference to FIG.

【0020】図2は、本発明の第2の実施の形態の導電
性高分子膜の製造方法を説明するための電解重合装置の
概要図である。図2は固体電解コンデンサの電解質を形
成する例であり、Ta,Nbからなる弁作用金属焼結体
またはAlのエッチング箔を陽極酸化し、この表面に導
電性高分子膜をプリコートして導電化したペレット5に
固体電解質として導電性高分子膜を電解重合する場合で
ある。まず、Ta金属粉末成形体に陽極リードを埋め込
み公知の技術により焼結した。この焼結体を陽極酸化し
て表面に酸化タンタルを形成した。さらに酸化タンタル
表面に化学重合によりポリピロールの導電性高分子膜を
プリコートしペレット5を形成した。
FIG. 2 is a schematic view of an electrolytic polymerization apparatus for explaining a method for producing a conductive polymer film according to a second embodiment of the present invention. FIG. 2 shows an example of forming an electrolyte of a solid electrolytic capacitor. The valve action metal sintered body composed of Ta and Nb or an etched foil of Al is anodized, and the surface is precoated with a conductive polymer film to make it conductive. This is a case where a conductive polymer film is electrolytically polymerized as a solid electrolyte on the pellet 5 formed. First, an anode lead was embedded in a Ta metal powder compact and sintered by a known technique. This sintered body was anodized to form tantalum oxide on the surface. Further, a conductive polymer film of polypyrrole was precoated on the tantalum oxide surface by chemical polymerization to form pellets 5.

【0021】次に、図2(a)のように、ペレット5、
対向電極2を重合液3が入っている電解槽10中にセッ
トし、さらにステンレス製の補助電極6(給電端子とし
て使用)をペレットに接触するようにセットした。続い
て直流電源20を使用して,対向電極2(カソードにす
る)と補助電極(アノードにする)間に直流電圧を所定
の時間印加して補助電極6とペレット5の表面に図2
(b)のように導電性高分子膜30を電解重合する。重
合液としては、ピロール,チオフェン,フランまたはそ
れらの誘導体の重合性モノマーとp―トルエンスルホン
酸,ナフタレンスルホン酸またはベンゼンスルホン酸の
ような支持電解質を含む溶液が使用できる。例えば、
0.5Mピロールおよび0.3Mp―トルエンスルホン
酸水溶液の重合液3等が使用する場合、補助電極6の電
圧は銀/塩化銀標準電極を基準に1.0Vを印加するよ
うにした。
Next, as shown in FIG.
The counter electrode 2 was set in the electrolytic cell 10 containing the polymerization liquid 3, and the stainless steel auxiliary electrode 6 (used as a power supply terminal) was set so as to be in contact with the pellet. Subsequently, a DC voltage is applied between the counter electrode 2 (to be a cathode) and the auxiliary electrode (to be an anode) for a predetermined time by using a DC power source 20 to apply a DC voltage to the surfaces of the auxiliary electrode 6 and the pellet 5 as shown in FIG.
The conductive polymer film 30 is electrolytically polymerized as shown in FIG. As the polymerization solution, a solution containing a polymerizable monomer of pyrrole, thiophene, furan or a derivative thereof and a supporting electrolyte such as p-toluenesulfonic acid, naphthalenesulfonic acid or benzenesulfonic acid can be used. For example,
When a polymerization solution 3 of 0.5 M pyrrole and 0.3 M p-toluenesulfonic acid aqueous solution was used, the voltage of the auxiliary electrode 6 was set to 1.0 V based on the silver / silver chloride standard electrode.

【0022】次に、補助電極6をペレット5から離した
後、同じ重合液3中で直流電源を使用して補助電極5か
ら酸素ガス(気泡50で示す)発生する電圧(例えば補
助電極6の電位を銀/塩化銀標準電極基準として1.5
Vとする)に上げて所定の時間電解し、図2(c)のよ
うに補助電極6(給電端子)から導電性高分子膜30を
剥離した。図2(b)において、補助電極61に超音波
振動を付与すると導電性高分子膜30の剥離がより容易
になる。
Next, after the auxiliary electrode 6 is separated from the pellet 5, a voltage (for example, the voltage of the auxiliary electrode 6) generated from the auxiliary electrode 5 by using a DC power source in the same polymerization liquid 3 is generated. The potential was 1.5 with respect to the silver / silver chloride standard electrode.
V) and electrolyzed for a predetermined time, and the conductive polymer film 30 was peeled off from the auxiliary electrode 6 (feed terminal) as shown in FIG. In FIG. 2B, when ultrasonic vibration is applied to the auxiliary electrode 61, the conductive polymer film 30 can be more easily separated.

【0023】このように、本発明では、給電端子(補助
電極6)をペレットに接触させてペレット上に固体電解
コンデンサ用電解質の導電性高分子膜を電解重合した
後、給電端子に付着した導電性高分子膜を酸素ガスの圧
力によって容易に剥離することができ、給電端子を繰り
返し使用することができるばかりでなく、その剥離工数
も低減できる。
As described above, according to the present invention, the power supply terminal (auxiliary electrode 6) is brought into contact with the pellet, and the conductive polymer film of the electrolyte for the solid electrolytic capacitor is electrolytically polymerized on the pellet. The conductive polymer film can be easily peeled off by the pressure of oxygen gas, so that not only the power supply terminal can be used repeatedly, but also the number of steps for peeling off can be reduced.

【0024】[0024]

【発明の効果】以上説明したように、本発明では導電性
高分子膜を形成した電極に酸素発生電位を加え、発生し
た酸素ガスの圧力によって電極から導電性高分子膜を効
果的に剥離でき、次の効果が得られる。 (1)導電性高分子膜を形成した同じ重合液を使用して
剥離でき、導電性高分子膜を剥離コストの低減ができ、
また従来の機械的剥離方法と比較して剥離した導電性高
分子膜の品質低下も防止できる。 (2)固体電解コンデンサの電解質とて導電性高分子膜
を電解重合で形成する場合、給電端子(補助電極)に付
着した導電性高分子膜を容易に剥離でき、給電端子の繰
り返し使用ができる。
As described above, in the present invention, an oxygen generation potential is applied to the electrode on which the conductive polymer film is formed, and the conductive polymer film can be effectively peeled off from the electrode by the pressure of the generated oxygen gas. The following effects can be obtained. (1) The conductive polymer film can be peeled off using the same polymer solution formed thereon, and the conductive polymer film can be peeled at a reduced cost.
In addition, the quality of the peeled conductive polymer film can be prevented from lowering as compared with the conventional mechanical peeling method. (2) When a conductive polymer film is formed by electrolytic polymerization as an electrolyte of a solid electrolytic capacitor, the conductive polymer film attached to the power supply terminal (auxiliary electrode) can be easily peeled off, and the power supply terminal can be used repeatedly. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態の導電性高分子膜の
製造方法を説明するための電解重合装置の概要図であ
る。
FIG. 1 is a schematic view of an electrolytic polymerization apparatus for explaining a method for producing a conductive polymer film according to a first embodiment of the present invention.

【図2】本発明の第2の実施の形態の導電性高分子膜の
製造方法を説明するための電解重合装置の概要図であ
る。
FIG. 2 is a schematic view of an electrolytic polymerization apparatus for explaining a method for producing a conductive polymer film according to a second embodiment of the present invention.

【図3】従来の導電性高分子膜の製造方法の一例を説明
するための電解重合装置の概要図である。
FIG. 3 is a schematic diagram of an electrolytic polymerization apparatus for explaining an example of a conventional method for producing a conductive polymer film.

【図4】従来の導電性高分子膜の製造方法の他の例を説
明するための電解重合装置の概要図である。
FIG. 4 is a schematic diagram of an electrolytic polymerization apparatus for explaining another example of a conventional method for producing a conductive polymer film.

【符号の説明】[Explanation of symbols]

1 金属板 2 対向電極 3 重合液 5 ペレット 6 補助電極 7 陽極リード 10 電解槽 20 直流電源 30 導電性高分子膜 50 気泡 DESCRIPTION OF SYMBOLS 1 Metal plate 2 Counter electrode 3 Polymerization liquid 5 Pellet 6 Auxiliary electrode 7 Anode lead 10 Electrolyzer 20 DC power supply 30 Conductive polymer film 50 Bubbles

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01B 1/06 H01B 1/12 F 1/12 Z C08L 65:00 H01G 9/02 331H C08L 65:00 9/00 301F Fターム(参考) 4F071 AA58 AA61 AA69 AF37 AG04 AH12 BB12 BC01 4K021 AC24 BA12 BB03 BC07 BC09 CA02 CA03 CA09 CA15 DA13 5G301 CA30 CD01 CD02 CE01 5G323 AA01 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01B 1/06 H01B 1/12 F 1/12 Z C08L 65:00 H01G 9/02 331H C08L 65:00 9 / 00 301F F term (reference) 4F071 AA58 AA61 AA69 AF37 AG04 AH12 BB12 BC01 4K021 AC24 BA12 BB03 BC07 BC09 CA02 CA03 CA09 CA15 DA13 5G301 CA30 CD01 CD02 CE01 5G323 AA01

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 重合性モノマーおよび支持電解質の混合
溶液中に第1及び第2の電極を浸漬した後、前記第1の
電極をアノードとし、前記第2の電極をカソードとして
所定の時間電解して前記第1の電極表面に導電性高分子
膜を電解重合により形成する工程と、前記第1の電極か
ら酸素ガスが発生する直流電圧を前記第1の電極と前記
第2の電極間に印加して所定の時間電解し、前記導電性
高分子膜を前記第1の電極表面から剥離する工程とから
なることを特徴とする導電性高分子膜の製造方法。
After immersing a first electrode and a second electrode in a mixed solution of a polymerizable monomer and a supporting electrolyte, electrolysis is performed for a predetermined time using the first electrode as an anode and the second electrode as a cathode. Forming a conductive polymer film on the surface of the first electrode by electrolytic polymerization, and applying a DC voltage for generating oxygen gas from the first electrode between the first electrode and the second electrode. And electrolyzing for a predetermined time to peel off the conductive polymer film from the surface of the first electrode.
【請求項2】 重合性モノマーおよび支持電解質の混合
溶液中に、所望の導電性高分子膜を形成する導電性の処
理対象物,この処理対象物と電気的に導通する第1の電
極および該第1の電極の対向電極として作用する第2の
電極を浸漬する工程と、前記第1の電極を前記処理対象
物に接触させ、記第1の電極をアノード、前記第2の電
極をカソードとして、所定の時間電解して、前記処理対
象物および前記第1の電極表面に導電性高分子膜を電解
重合により形成する工程と、前記第1の電極を前記処理
対象物から分離した後、前記第1の電極から酸素ガスが
発生する直流電圧を前記第1の電極と前記第2の電極間
に印加して所定の時間電解し、前記導電性高分子膜を前
記第1の電極表面から剥離する工程とからなることを特
徴とする導電性高分子膜の製造方法。
2. A conductive object to form a desired conductive polymer film in a mixed solution of a polymerizable monomer and a supporting electrolyte, a first electrode electrically connected to the object to be processed, and Immersing a second electrode acting as a counter electrode of the first electrode, contacting the first electrode with the object to be processed, and using the first electrode as an anode and the second electrode as a cathode Electrolyzing for a predetermined time, forming a conductive polymer film on the surface of the object to be processed and the first electrode by electrolytic polymerization, and after separating the first electrode from the object to be processed, A DC voltage at which oxygen gas is generated from the first electrode is applied between the first electrode and the second electrode to perform electrolysis for a predetermined time, and the conductive polymer film is separated from the surface of the first electrode. Conducting the conductive material. A method for manufacturing a child film.
【請求項3】 前記重合性モノマーがピロール,チオフ
ェン,フランまたはそれらの誘導体であることを特徴と
する請求項1または2記載の導電性高分子膜の製造方
法。
3. The method for producing a conductive polymer film according to claim 1, wherein the polymerizable monomer is pyrrole, thiophene, furan or a derivative thereof.
【請求項4】 前記処理対象物が金属または絶縁性材料
に導電性高分子化学重合膜が被着されたものであること
を特徴とする請求項2記載の導電性高分子膜の製造方
法。
4. The method for producing a conductive polymer film according to claim 2, wherein the object to be processed is a metal or an insulating material on which a conductive polymer chemical polymer film is adhered.
【請求項5】 前記絶縁性材料がTa,AlまたはNb
からなる弁作用金属を陽極酸化したものであり、前記導
電性高分子化学重合膜がピロール,チオフェンまたはそ
れらの誘導体の重合体であることを特徴とする請求項4
記載の導電性高分子膜の製造方法。
5. The method according to claim 1, wherein the insulating material is Ta, Al or Nb.
5. An anodically oxidized valve metal comprising: a conductive polymer chemical polymer film comprising a polymer of pyrrole, thiophene or a derivative thereof.
A method for producing the conductive polymer film according to the above.
【請求項6】 前記第1の電極がステンレスであること
を特徴とする請求項1または2記載の導電性高分子膜の
製造方法。
6. The method according to claim 1, wherein said first electrode is made of stainless steel.
【請求項7】 前記第1の電極と前記第2の電極間に直
流電圧を印加し、前記第1の電極から酸素ガスを発生さ
せる際に、前記第1の電極に超音波振動を与えることを
特徴とする請求項1または2記載の導電性高分子膜の製
造方法。
7. Applying a DC voltage between the first electrode and the second electrode, and applying ultrasonic vibration to the first electrode when generating oxygen gas from the first electrode. The method for producing a conductive polymer film according to claim 1 or 2, wherein:
JP27601199A 1999-09-29 1999-09-29 Method for manufacturing conductive polymer film Pending JP2001102258A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27601199A JP2001102258A (en) 1999-09-29 1999-09-29 Method for manufacturing conductive polymer film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27601199A JP2001102258A (en) 1999-09-29 1999-09-29 Method for manufacturing conductive polymer film

Publications (1)

Publication Number Publication Date
JP2001102258A true JP2001102258A (en) 2001-04-13

Family

ID=17563550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27601199A Pending JP2001102258A (en) 1999-09-29 1999-09-29 Method for manufacturing conductive polymer film

Country Status (1)

Country Link
JP (1) JP2001102258A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002322295A (en) * 2001-04-25 2002-11-08 Chemiprokasei Kaisha Ltd Film of polypyrroles, method for producing the same and thermoelectric material comprising the same
SG94833A1 (en) * 2000-05-31 2003-03-18 Matsushita Electric Ind Co Ltd Solid electrolytic capacitor and manufacturing method and manufacturing apparatus for manufacturing the capacitor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG94833A1 (en) * 2000-05-31 2003-03-18 Matsushita Electric Ind Co Ltd Solid electrolytic capacitor and manufacturing method and manufacturing apparatus for manufacturing the capacitor
JP2002322295A (en) * 2001-04-25 2002-11-08 Chemiprokasei Kaisha Ltd Film of polypyrroles, method for producing the same and thermoelectric material comprising the same

Similar Documents

Publication Publication Date Title
JP3663952B2 (en) Manufacturing method of solid electrolytic capacitor
US5189770A (en) Method of making solid electrolyte capacitor
JP2810418B2 (en) Method for manufacturing solid electrolytic capacitor
JP2001102258A (en) Method for manufacturing conductive polymer film
JP2010272603A (en) Method of producing solid electrolytic capacitor
JP4362213B2 (en) Method for peeling electropolymerized conductive polymer film
JP3030054B2 (en) Method for manufacturing solid electrolytic capacitor
JPH04274312A (en) Manufacture of solid electrolytic capacitor
JP2001244153A (en) Method for manufacturing electrode foil for aluminum electrolytic capacitor
JP2000353641A (en) Manufacture of solid electronic element
JP2001223140A (en) Tantalum solid electrolytic capacitor and method of manufacturing it
JPH09115768A (en) Capacitor and its manufacture
JP2825975B2 (en) Electrical connector for electrolytic polymerization
JPH0590081A (en) Manufacture of solid electrolytic capacitor
JP3586182B2 (en) Method for manufacturing solid electrolytic capacitor
JP2995109B2 (en) Method for manufacturing solid electrolytic capacitor
JPH11283878A (en) Method and device for manufacturing solid electrolytic capacitor
JPH05152169A (en) Manufacture of solid electrolytic capacitor
JP2001102257A (en) Method for manufacturing solid electrolytic capacitor
JPH1197277A (en) Capacitor and its manufacture
JP2957692B2 (en) Electrolytic polymerization method
JPH0350712A (en) Electrolyte coating to electric conductor on which insulating thin film is formed
JP2940017B2 (en) Method for manufacturing solid electrolytic capacitor
JP2005268681A (en) Manufacturing method of solid electrolytic capacitor
JPH05159981A (en) Manufacture of solid electrolytic capacitor