JP2008001836A - Process of producing polymer film - Google Patents

Process of producing polymer film Download PDF

Info

Publication number
JP2008001836A
JP2008001836A JP2006174198A JP2006174198A JP2008001836A JP 2008001836 A JP2008001836 A JP 2008001836A JP 2006174198 A JP2006174198 A JP 2006174198A JP 2006174198 A JP2006174198 A JP 2006174198A JP 2008001836 A JP2008001836 A JP 2008001836A
Authority
JP
Japan
Prior art keywords
forming
polymer film
conductive polymer
substrate
electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006174198A
Other languages
Japanese (ja)
Inventor
Yasushi Ono
恭史 小野
Takeshi Shinohara
猛 篠原
Takayuki Kawabe
隆之 川邊
Kakujitsuraku Goto
敖登格日楽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EINTESLA Inc
Niigata University NUC
Original Assignee
EINTESLA Inc
Niigata University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EINTESLA Inc, Niigata University NUC filed Critical EINTESLA Inc
Priority to JP2006174198A priority Critical patent/JP2008001836A/en
Priority to PCT/JP2007/062203 priority patent/WO2007148639A1/en
Priority to KR1020097001451A priority patent/KR20090038434A/en
Priority to CNA2007800231856A priority patent/CN101472685A/en
Publication of JP2008001836A publication Critical patent/JP2008001836A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/18Processes for applying liquids or other fluent materials performed by dipping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/18Processes for applying liquids or other fluent materials performed by dipping
    • B05D1/20Processes for applying liquids or other fluent materials performed by dipping substances to be applied floating on a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/14Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by electrical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/124Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one nitrogen atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/125Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one oxygen atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/026Wholly aromatic polyamines
    • C08G73/0266Polyanilines or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0605Polycondensates containing five-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0611Polycondensates containing five-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms with only one nitrogen atom in the ring, e.g. polypyrroles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G85/00General processes for preparing compounds provided for in this subclass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/02Polyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/0029Processes of manufacture
    • H01G9/0036Formation of the solid electrolyte layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • H01G9/028Organic semiconducting electrolytes, e.g. TCNQ
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2202/00Metallic substrate
    • B05D2202/20Metallic substrate based on light metals
    • B05D2202/25Metallic substrate based on light metals based on Al
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3221Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more nitrogen atoms as the only heteroatom, e.g. pyrrole, pyridine or triazole
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3222Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more oxygen atoms as the only heteroatom, e.g. furan
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/44Electrochemical polymerisation, i.e. oxidative or reductive coupling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a process to form an electroconductive polymer thin film with a structure having orientation in one direction, on an oxide film. <P>SOLUTION: The process of forming an electroconductive polymer thin film comprises forming a thin layer of electrolyte organic matter consisting of an electrolytically polymerizable monomer, a supporting electrolyte, and a (nonaqueous) organic solvent, or a thin layer of electrolyte aqueous solution consisting of an electrolytically polymerizable organic molecule, a supporting electrolyte, and pure water, on a liquid phase in a lower layer within a liquid bath; lifting an electroconductive substrate, which has been immersed in a liquid phase in advance and will work as an anode, at a slow and constant speed from the liquid phase to an upper part in the vertical direction; and applying an electric field between the anode and a metallic counter electrode for electrolytic polymerization in order to form the electroconductive polymer thin film having high orientation at least on a surface of one side of the substrate. According to the method, a thin film of polymerizable organic layer forming an electroconductive polymer layer is formed, the polymerizable organic layer is moved while being oriented to the surface of substrate, the electric field is applied between the anode and the metallic counter electrode for electrolytic polymerization, and the substrate coated with the electroconductive polymer thin film having high orientation is produced. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、導電性機能素子の製造方法に関し、特に、導電性層として導電性高分子材料を用いる電解重合法による導電性高分子膜の製造方法に関するものである。   The present invention relates to a method for producing a conductive functional element, and more particularly to a method for producing a conductive polymer film by an electrolytic polymerization method using a conductive polymer material as a conductive layer.

軽量で加工性の容易な高分子に導電性の機能を付与すると、この機能を生かして電子素子、光機能素子、電池、センサーをはじめとする各種機能応用の可能性が示唆され、中でも電解酸化重合法による高配向性導電性高分子膜の作製は、異方性材料、量子機能材料、分子機能材料、分子素子等の新規機能性材料構築の駆動力となることが従前から指摘されてきた。電解重合法は、重合性分子を含む溶液中に導電性の基板を浸漬して通電し、高分子膜を形成させる手法であり、高分子膜は基板全面に同時に形成され、簡単にフィルム状に合成できるため積極的な加工法として検討されている。しかるに、多くの導電性高分子は、その共役高分子が低い内部エネルギーを持つため溶剤等に不溶、不融であるという欠点がある。また、LB(ラングミュア・ブロジェット)膜法を利用した電解重合法による高配向化技術が報告されたが、重合性分子がLB膜を形成する必要があり、適応可能な分子に大きな制限があった。   Adding a conductive function to a lightweight and easily processable polymer suggests the possibility of various functional applications including electronic elements, optical functional elements, batteries, and sensors. It has long been pointed out that the production of highly oriented conductive polymer films by polymerization is the driving force for the construction of new functional materials such as anisotropic materials, quantum functional materials, molecular functional materials, and molecular devices. . Electropolymerization is a technique in which a conductive substrate is immersed in a solution containing a polymerizable molecule and energized to form a polymer film. The polymer film is formed simultaneously on the entire surface of the substrate and is easily formed into a film. Since it can be synthesized, it has been studied as an active processing method. However, many conductive polymers have the disadvantage that they are insoluble and infusible in solvents and the like because their conjugated polymers have low internal energy. In addition, a high orientation technology by electropolymerization using the LB (Langmuir-Blodget) film method has been reported, but it is necessary for the polymerizable molecules to form an LB film, and there are significant limitations on the applicable molecules. It was.

具体的に電解重合により導電性高分子層を製造する方法として、特許文献1には導電性高分子を含む電解重合液に電界を印加しつつ陽極となる金属体に電気的に接続された陽極リードを備える陽極素子を電界重合液からゆっくりと引き上げることにより気体―液体界面の重合反応を利用して導電性高分子層を形成する固体電子素子の製造法が開示されている。また、特許文献2においては、基板上に親水性ポリマーと疎水性ポリマーのブロック共重合体を塗布し、該ポリマーの融点より低温で該ポリマーに電界を印加してミクロ相分離構造膜を製造する方法が開示されている。さらには、電解重合性有機物の電解液と陽極とした水銀のような液体金属によって液相界面を形成して電解液中に設けた陰極との間で電解を行い、液相界面に有機物薄膜を重合析出させる方法が特許文献3に開示されている。   Specifically, as a method for producing a conductive polymer layer by electrolytic polymerization, Patent Document 1 discloses an anode electrically connected to a metal body serving as an anode while applying an electric field to an electrolytic polymerization solution containing the conductive polymer. A method for producing a solid electronic device is disclosed in which a conductive polymer layer is formed by utilizing a polymerization reaction at a gas-liquid interface by slowly pulling up an anode element having a lead from an electric field polymerization liquid. In Patent Document 2, a block copolymer of a hydrophilic polymer and a hydrophobic polymer is applied on a substrate, and an electric field is applied to the polymer at a temperature lower than the melting point of the polymer to produce a microphase-separated structure film. A method is disclosed. Furthermore, electrolysis is performed between an electrolytic solution of an electropolymerizable organic substance and a cathode formed in the electrolytic solution by forming a liquid phase interface with a liquid metal such as mercury as an anode, and an organic thin film is formed on the liquid phase interface. A method for polymerizing precipitation is disclosed in Patent Document 3.

特許文献1においては、電解重合液中で電界を印加するため本来は粒塊状の重合膜を形成するので陽極体である基板を引き上げることにより気体―液体界面の重合反応を利用して導電性高分子膜を得るため、膜厚が均一で、しかも高配向した薄膜を得ることが難しい。機能素子の応用分野の一つである固体電解コンデンサにおいては、この厚さの不均一性が後の外装の工程に難を及ぼしたり、完成後の固体電解コンデンサの使用中に、コンデンサ内に不均衡な熱分布を生じさせ、製品の劣化を招くことがある。また、特許文献2で開示されているミクロ相分離構造を有する高分子膜の製造方法では、配向性のある親水性・疎水性のブロック共重合体膜の製造を目的としており、あらかじめ基板上にポリマーを塗布してから電界を印加するため膜厚を薄く均一に塗布することが難しい。さらに、特許文献3における有機物薄膜の製造方法は、液体金属界面で電解液から電解重合して高配向性重合膜を形成させ、これを巻き取るため基板上に直接高配向性重合膜を形成させることができない。また、重合膜の製造段階で水銀のような有害な液体金属を用いることは、労働環境衛生、社会環境の汚染という点からも好ましい製造法とは言えない。   In Patent Document 1, since an electric field is applied in an electrolytic polymerization solution, a polymer film in the form of agglomerates is originally formed. In order to obtain a molecular film, it is difficult to obtain a thin film having a uniform film thickness and high orientation. In a solid electrolytic capacitor, which is one of the application fields of functional elements, this non-uniformity in thickness causes difficulties in the subsequent exterior packaging process, or is not contained in the capacitor during use of the solid electrolytic capacitor after completion. This may cause a balanced heat distribution and lead to product degradation. In addition, the method for producing a polymer film having a microphase separation structure disclosed in Patent Document 2 aims to produce an oriented hydrophilic / hydrophobic block copolymer film, which is previously formed on a substrate. Since an electric field is applied after applying a polymer, it is difficult to apply a thin film evenly. Further, in the method for producing an organic thin film in Patent Document 3, a highly oriented polymer film is formed by electrolytic polymerization from an electrolyte solution at a liquid metal interface, and a highly oriented polymer film is directly formed on a substrate in order to wind the polymer film. I can't. In addition, using a harmful liquid metal such as mercury in the production stage of the polymer film is not a preferable production method from the viewpoint of occupational health and social environment pollution.

特開2000−353641号公報JP 2000-353541 A 特開2005−314526号公報JP 2005-314526 A 特開平6−158375号公報JP-A-6-158375

本発明の課題は、上述した従来技術の問題点を解決することであって、その目的は、導電性高分子層を形成する重合反応速度を速め、且つ、薄膜で均一な配向性の良好な導電性高分子層を基材表面に安定してエンドレスに形成することができるようにすることである。   The object of the present invention is to solve the above-mentioned problems of the prior art, and the purpose thereof is to increase the polymerization reaction rate for forming the conductive polymer layer and to achieve a good uniform orientation with a thin film. It is to enable the conductive polymer layer to be stably and endlessly formed on the substrate surface.

本発明による導電性高分子膜の製造方法は、帯状重合サイトとして下層の水溶液相上に薄膜状の電解液相を形成させて、これに金属対極を接触させる。一方、予め水溶液層に浸漬しておいた陽極となる導電性を有する基材を水溶液相から上方に微速かつ一定速度で引き上げながら陽極と金属対極間に電界を印加して電解重合を行い、該基材の少なくとも一方の表面に高配向の導電性高分子膜を形成する方法である。すなわち、まず、導電性高分子膜を形成する電解液相の薄膜を形成させ、次にこの電解液相の薄膜を基材表面に配向させながら移動させつつ陽極と陰極の極間に電界を印加して電解酸化重合を行って高配向の導電性高分子薄膜を被覆した基材を得るという製造法、あるいは導電性を有する基材を(非水系)有機溶媒に浸漬し、さらにこの有機溶媒の上に、電解重合性モノマー、水及び支持電解質から構成される電解液水溶液薄相を形成させ、該電解液中に陰極を設けると共に上記基材を陽極として電解重合を行いつつ、該有機溶媒相から電解液水溶液薄層を経由して基材を上方に微速かつ一定速度にて引き上げることによって該基材の少なくとも一方向の面に高配向の導電性高分子膜を形成する方法である。   In the method for producing a conductive polymer film according to the present invention, a thin film electrolyte solution phase is formed on a lower aqueous solution phase as a band-shaped polymerization site, and a metal counter electrode is brought into contact therewith. On the other hand, while conducting an electropolymerization by applying an electric field between the anode and the metal counter electrode while pulling up the conductive base material, which was previously immersed in the aqueous solution layer, from the aqueous solution phase at a slow speed and a constant speed, In this method, a highly oriented conductive polymer film is formed on at least one surface of a substrate. That is, first, an electrolyte phase thin film that forms a conductive polymer film is formed, and then an electric field is applied between the anode and cathode while the electrolyte phase thin film is moved while being oriented on the substrate surface. Then, a production method of obtaining a substrate coated with a highly oriented conductive polymer thin film by performing electrolytic oxidation polymerization, or immersing a conductive substrate in a (non-aqueous) organic solvent, On top of this, an organic electrolyte aqueous solution thin phase composed of an electrolytic polymerizable monomer, water and a supporting electrolyte is formed, and a cathode is provided in the electrolytic solution, and the organic solvent phase is prepared while performing electropolymerization using the substrate as an anode. In this method, a highly oriented conductive polymer film is formed on a surface of at least one direction of the substrate by pulling the substrate upward at a low speed and at a constant speed through a thin electrolyte solution aqueous layer.

以上説明したように、本発明の導電性高分子膜の製造方法は、導電性を有する基材を水溶液に浸漬し、この水溶液の界面上に、電解重合性モノマー、有機溶媒及び支持電解質からなる電解液相に陰極を設け、基材を陽極として電解重合を行いつつ、該水溶液から基材を上方に微速で引き上げることによって、該基材の少なくとも一方の面に電解重合性ポリマーの配向性が極めてよく、膜厚の薄くかつ均一な導電性高分子層を成膜することができる。あるいは、また、電解重合性モノマー、水及び支持電解質からなる電解液水溶液相に陰極を設け、有機溶媒に浸漬しておいた導電性を有する基材を該有機溶媒から上方に引き上げることによって、該基材の少なくとも一方の面に電解重合性ポリマーの配向性が極めて良好で、膜厚の薄く、かつ、均一な導電性高分子層を成膜することができる。   As described above, in the method for producing a conductive polymer film of the present invention, a conductive substrate is immersed in an aqueous solution, and an electrolytic polymerizable monomer, an organic solvent, and a supporting electrolyte are formed on the interface of the aqueous solution. By providing a cathode in the electrolyte phase and performing the electropolymerization with the base material as the anode, the orientation of the electropolymerizable polymer is improved on at least one surface of the base material by pulling up the base material from the aqueous solution at a slow speed. Very well, a thin and uniform conductive polymer layer can be formed. Alternatively, by providing a cathode in an aqueous electrolyte solution phase composed of an electropolymerizable monomer, water and a supporting electrolyte, and pulling up the conductive substrate immersed in the organic solvent upward from the organic solvent, An electroconductive polymer layer having a very good orientation, a thin film thickness, and a uniform conductive polymer layer can be formed on at least one surface of the substrate.

従来の導電性高分子膜の製造方法は、電解重合時に膜形成と電解液有機物質の重合を行う方法が主であるのに対し、本発明による導電性高分子膜の製造方法は、電解重合の前に電解重合性モノマー、有機溶媒及び支持電解質からなる電解液相あるいは、電解重合性モノマー、水及び支持電解質からなる電解液相の薄膜を形成し、この薄膜を維持しながら電解重合を行って導電性高分子膜を形成させるという2段階のプロセスを経るところに特徴がある。   The conventional method for producing a conductive polymer film is mainly a method of forming a film and polymerizing an electrolyte organic substance at the time of electrolytic polymerization, whereas the method for producing a conductive polymer film according to the present invention is an electrolytic polymerization. Before the step, an electrolytic solution phase consisting of an electrolytic polymerizable monomer, an organic solvent and a supporting electrolyte, or a thin film of an electrolytic solution phase consisting of an electrolytic polymerizable monomer, water and a supporting electrolyte is formed, and the electrolytic polymerization is performed while maintaining this thin film. It is characterized by a two-stage process of forming a conductive polymer film.

本発明の導電性高分子薄膜の製造方法を段階的に示すと、(1)帯状重合サイトである電解重合性モノマー、有機溶媒及び支持電解質からなる電解液あるいは、電解重合性モノマー、水及び支持電解質からなる電解液水溶液の薄層を相溶性の無い液相の上に形成させ、(2)該電解液相に金属対極を接触させ、予め相溶性のない液相に陽極となる導電性を有する基材を浸漬しておく。(3)該基材を該電解液相と相溶性のない液相から上方に微速かつ一定速度で引き上げながら陽極と金属対極間に電界を印加して電界重合を行う。(4)かくして、得られた少なくとも該基材の一方表面全域に同一方向に配向した導電性高分子薄膜を所定の大きさと形状に成型して用いる。   The method for producing the conductive polymer thin film of the present invention is shown step by step. (1) An electrolytic solution comprising an electropolymerizable monomer, an organic solvent, and a supporting electrolyte that are band-shaped polymerization sites, or an electropolymerizable monomer, water, and a support. A thin layer of an electrolyte aqueous solution made of an electrolyte is formed on an incompatible liquid phase, and (2) a metal counter electrode is brought into contact with the electrolyte phase, so that the incompatible liquid phase has a conductivity that serves as an anode. The base material to have is immersed. (3) Electric field polymerization is carried out by applying an electric field between the anode and the metal counter electrode while pulling up the base material from the liquid phase incompatible with the electrolytic solution phase at a slow speed and at a constant speed. (4) Thus, the obtained conductive polymer thin film oriented in the same direction on the entire surface of at least one surface of the substrate is molded into a predetermined size and shape and used.

電解重合性モノマー、有機溶媒及び支持電解質からなる電解液相あるいは、電解重合性モノマー、水及び支持電解質からなる電解液水溶液相を薄層にするために該電解液相と相溶性の乏しく均一な薄層の形成可能な液層を下層とし、その液層表面上に該電解液薄層を形成させる。薄層を形成させるために該電解液相の低粘度化と電解重合を可能とするために該電解液には、有機溶媒及び支持電解質を用いて電解重合性モノマーを溶解することができる。   In order to make an electrolyte solution phase composed of an electropolymerizable monomer, an organic solvent and a supporting electrolyte or an aqueous electrolyte solution phase composed of an electropolymerizable monomer, water and a supporting electrolyte into a thin layer, the electrolyte phase is poorly compatible and uniform. A thin liquid layer that can be formed is used as a lower layer, and the electrolyte thin layer is formed on the surface of the liquid layer. In order to reduce the viscosity of the electrolytic solution phase and to perform electrolytic polymerization in order to form a thin layer, an electrolytic polymerizable monomer can be dissolved in the electrolytic solution using an organic solvent and a supporting electrolyte.

下層となる液相には、電解重合性モノマー、有機溶媒及び支持電解質からなる電解液相あるいは、電解重合性モノマー、水及び支持電解質からなる電解液相が下層の液相表面に広がって薄膜を形成しやすいように有機相と水相との相溶性を向上させない範囲で界面活性剤等を溶解させてもよい。一方、該電解液相が下層表面に薄膜を形成しやすいように該電解液に界面活性剤等を添加してもよい。いずれにしても、これらの添加物が電解重合で形成される導電性高分子の配向性を阻害するようであってはならない。また、電解液相が水溶液あるいは有機溶媒界面で薄膜を形成するためには、電解重合性モノマー、有機溶媒及び支持電解質を含有してなる電解液相は、下層の液層よりも液比重の小さいことが望ましいけれども、該電解液相を基材と共に移動する過程で基材表面に該電解液薄層が保持されるならば必ずしも比重の大小にこだわらないが、安定して薄層を形成するには該電解液の比重は下層の液相の液比重より小さい方が好ましい。   In the lower liquid phase, an electrolytic solution phase consisting of an electropolymerizable monomer, an organic solvent and a supporting electrolyte, or an electrolytic solution phase consisting of an electropolymerizable monomer, water and a supporting electrolyte spreads on the lower liquid phase surface to form a thin film. In order to facilitate the formation, a surfactant or the like may be dissolved so long as the compatibility between the organic phase and the aqueous phase is not improved. On the other hand, a surfactant or the like may be added to the electrolytic solution so that the electrolytic solution phase easily forms a thin film on the surface of the lower layer. In any case, these additives should not appear to inhibit the orientation of the conductive polymer formed by electrolytic polymerization. In addition, in order for the electrolytic solution phase to form a thin film at the interface between the aqueous solution and the organic solvent, the electrolytic solution phase containing the electrolytic polymerizable monomer, the organic solvent and the supporting electrolyte has a lower liquid specific gravity than the lower liquid layer. Although it is desirable, if the electrolyte thin layer is held on the surface of the substrate during the process of moving the electrolyte phase together with the substrate, the specific gravity is not necessarily limited, but a stable thin layer can be formed. The specific gravity of the electrolyte is preferably smaller than the liquid specific gravity of the lower liquid phase.

上記電解液相に含まれる電解重合性モノマーとしては、アニリン、フェノール、フタロシアニン、ピロール、チオフェン、フラン又はそれらの誘導体、または導電性を有しないものでもドーパントを含有させることにより電解重合後に導電性をもつ有機化合物が用いられ、電解重合して生成した導電性高分子膜の導電性に支障が無い範囲であれば他の重合性モノマーを併用してもよい。   As the electropolymerizable monomer contained in the electrolyte phase, aniline, phenol, phthalocyanine, pyrrole, thiophene, furan or derivatives thereof, or those that do not have conductivity, can be made conductive after electrolytic polymerization by containing a dopant. In other words, other polymerizable monomers may be used in combination as long as the conductivity of the conductive polymer film produced by electrolytic polymerization is not impaired.

上記電解液に用いられる有機溶媒には、電解重合時に支障のないアセトニトリル、ニトロベンゼン、ヘキサン、トルエン、ジエチルエーテル、ベンゼン等の比重が小さく、下層との相溶性がない有機溶媒を単独溶媒或いは混合溶媒として用いることができる。また、他の有機溶媒に支持電解質を加えて導電性を付与して電解重合可能な電解液相としてもよい。
また、使用する有機溶媒の誘電率が高い(塩を溶かしやすい)有機溶媒には、一般的な支持塩を加えることが好ましい。逆に、誘電率が低い(塩を溶かしにくい)有機溶媒にはクラウンエーテル、フタロシアニンなどのような包接化合物やイオン性液体を混合することが好ましい。
The organic solvent used in the electrolytic solution is a single solvent or a mixed solvent, which has a low specific gravity such as acetonitrile, nitrobenzene, hexane, toluene, diethyl ether, benzene and the like and has no compatibility with the lower layer. Can be used as Alternatively, a supporting electrolyte may be added to another organic solvent to provide conductivity, thereby forming an electrolytic solution phase that can be electropolymerized.
Moreover, it is preferable to add a general supporting salt to an organic solvent having a high dielectric constant (easily soluble in the salt). Conversely, it is preferable to mix an inclusion compound such as crown ether or phthalocyanine or an ionic liquid in an organic solvent having a low dielectric constant (it is difficult to dissolve the salt).

導電性を有する基材を非水系の有機溶剤に浸漬し、この非水系有機溶剤の液面上に電解液水溶液薄層を形成させて電解重合しつつ基材を微速で引き上げる場合に用いる非水系溶剤としては、該電解液相と相溶性のない溶剤で、該電解液相より比重が大きく非導電性の液体であることが必要で、ペルフルオロアルカンなどの各種アルカン類、ペルフルオロシクロエーテルなどの水に難溶性のエーテル類、トリクロロエチレン、テトラクロロエチレン、塩化メチレン(ジクロロメタン)などの塩素系溶剤、ニトロベンゼンなどが用いられる。   Non-aqueous system used when a substrate having conductivity is immersed in a non-aqueous organic solvent, a thin aqueous electrolyte solution is formed on the liquid surface of the non-aqueous organic solvent, and the substrate is pulled up at a slow speed while electrolytic polymerization is performed. The solvent is a solvent that is incompatible with the electrolyte phase and needs to be a non-conductive liquid having a specific gravity greater than that of the electrolyte phase, and water such as perfluoroalkanes and various alkanes. Insoluble ethers, chlorine solvents such as trichloroethylene, tetrachloroethylene, and methylene chloride (dichloromethane), nitrobenzene, and the like are used.

本発明に用いる基材としては、電解重合に際して電界を印加する陽極となりうる素材ならば特に限定はない。通常、金、白金、銅、タリウム、アルミニウム、タングステン、ニオブなどの導電性の金属及び/又はこれら金属の酸化物から選ばれたものが用いられ、その形状は特に限定するものではなくハニカム状、棒状又はシート状のものが一般的に用いることができる。   The substrate used in the present invention is not particularly limited as long as it is a material that can serve as an anode for applying an electric field during electrolytic polymerization. Usually, a conductive metal such as gold, platinum, copper, thallium, aluminum, tungsten, niobium and / or an oxide of these metals is used. A rod-like or sheet-like one can be generally used.

導電性を有する基材を浸漬した水溶液あるいは有機溶媒表面に形成された電解重合性モノマー、支持電解質及び有機溶媒あるいは水からなる電解液相は、基材が移動する間は陽極となる基材表面に密着した状態で保たれることが必要であり、該液相から上方に基材を移動させる速度を微速かつ、一定に保つことが重要である。基材上で該電解重合性モノマー又はドーパントを含有させることにより導電性を持つ有機化合物の配向並びに膜厚が安定に保たれた状態で、陽極および陰極の極間に電界を印加して電解重合を行い、高配向性の導電性高分子薄膜を形成するのである。   An electrolytic solution phase composed of an electropolymerizable monomer, a supporting electrolyte and an organic solvent or water formed on the surface of an aqueous solution or organic solvent in which a conductive base material is immersed is the surface of the base material that serves as an anode while the base material moves It is necessary to keep the substrate in close contact with the liquid phase, and it is important to keep the speed at which the substrate is moved upward from the liquid phase at a low speed and constant. Electropolymerization by applying an electric field between the anode and the cathode while maintaining the orientation and film thickness of the organic compound having conductivity by containing the electropolymerizable monomer or dopant on the substrate. To form a highly oriented conductive polymer thin film.

本発明の導電性高分子薄膜を形成する工程を図面を用いて説明する。
図1は、電解液有機物薄層から目的とする導電性高分子薄膜を形成するとき、図2は、電解液水溶液薄層から目的とする導電性高分子薄膜を形成するときの概略工程図をそれぞれ示す。
前者の場合は、図1に示すように、導電性を有する基材(陽極)(6)を上層と相溶性のない純水層(3)に浸漬し、この純水溶液(3)の上面に配置した、電解重合性モノマー、有機溶媒及び支持電解質から構成される電解液有機物薄層(1)に該基材(6)を接触させる。該電解液有機物薄層(1)には、陰極(5)を接触させている。該基材(6)を微速かつ一定速度で上方向に引き上げつつ電解重合して導電性高分子薄膜を該基材表面に形成する。上方向としては、垂直方向が最も適当である。
また、図2には、導電性を有する基材(6)を上層と相溶性のない有機溶媒層(4)に浸漬し、この有機溶媒層(4)の上面に配置した、電解重合性モノマー、水及び支持電解質からなり、かつ陰極(5)を接触させている電解水溶液薄層(2)に接触させつつ基材(6)を上方向に引き上げる。図1と同様に、基材上に導電性高分子薄膜を形成することができる。
The process of forming the conductive polymer thin film of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic process diagram when a target conductive polymer thin film is formed from an electrolyte organic thin layer, and FIG. 2 is a schematic process diagram when a target conductive polymer thin film is formed from an electrolyte aqueous solution thin layer. Each is shown.
In the former case, as shown in FIG. 1, a conductive base material (anode) (6) is immersed in a pure water layer (3) that is incompatible with the upper layer, and the upper surface of the pure aqueous solution (3) is immersed. The substrate (6) is brought into contact with the disposed electrolyte organic thin layer (1) composed of the electropolymerizable monomer, the organic solvent and the supporting electrolyte. The cathode (5) is brought into contact with the electrolyte organic thin layer (1). The base material (6) is electrolytically polymerized while pulling upward at a slow speed and a constant speed to form a conductive polymer thin film on the surface of the base material. The vertical direction is most appropriate as the upward direction.
FIG. 2 shows an electropolymerizable monomer in which a conductive base material (6) is immersed in an organic solvent layer (4) that is incompatible with the upper layer, and is disposed on the upper surface of the organic solvent layer (4). The base material (6) is pulled upward while being brought into contact with the electrolyte aqueous solution thin layer (2) made of water and a supporting electrolyte and in contact with the cathode (5). As in FIG. 1, a conductive polymer thin film can be formed on a substrate.

(実施例)
次に、本発明の実施例を挙げて具体的に述べるが、本発明はかならずしも実施例で示す範囲に留まるものではない。
(Example)
Next, examples of the present invention will be specifically described, but the present invention is not necessarily limited to the scope shown in the examples.

(実施例1)
電解重合性モノマーとしてピロール0.1mol/lのピロールを用い、支持電解質、有機溶媒としてそれぞれ1-ブチル-3-メチルイミダゾリウムヘキサフルオロリン酸塩、酢酸エチルに均一に溶解して得た電解重合液を純水層の上に少量滴下して電解重合液薄層を形成し、この薄層に白金対極を接触させた。一方、予め純水層に浸漬しておいた基材である酸化物電極であるITO(酸化インジウム:錫)をディップコーター(微定速引き上げ装置)により鉛直方向に引き上げながら、対極と酸化物電極間に15Vの電圧を8時間印加して酸化物電極上に均一な膜厚10μmの導電性高分子膜を形成させた。
(Example 1)
Electropolymerization obtained by using pyrrole of 0.1 mol / l pyrrole as the electropolymerizable monomer and uniformly dissolving in 1-butyl-3-methylimidazolium hexafluorophosphate and ethyl acetate as the supporting electrolyte and organic solvent, respectively. A small amount of the solution was dropped on the pure water layer to form an electrolytic polymerization liquid thin layer, and a platinum counter electrode was brought into contact with this thin layer. On the other hand, ITO (indium oxide: tin), which is an oxide electrode that is a base material previously immersed in a pure water layer, is pulled up in the vertical direction by a dip coater (a fine constant speed pulling device), and the counter electrode and the oxide electrode A voltage of 15 V was applied between them for 8 hours to form a conductive polymer film having a uniform thickness of 10 μm on the oxide electrode.

(実施例2)
導電性を有する基材である金属タリウムをクロロホルム中に浸漬し、この有機溶媒であるクロロホルム表面上に電解重合性有機分子としてアニリン濃度0.12mole/lとなるように支持電解質1N−KClで電解液水溶液相を形成し、この相に白金対極を接触させた。予めクロロホルム中に浸漬させておいた基材である金属タリウムを実施例1と同様にディップコーターにより鉛直方向に引き上げながら、白金対極と金属タリウム間に15Vの電圧を9時間印加してタリウム基材上に均一な膜厚8μmの導電性高分子薄膜を形成させた。
(Example 2)
Metal thallium, which is a conductive base material, is immersed in chloroform, and electrolyzed with a supporting electrolyte 1N-KCl so as to have an aniline concentration of 0.12 mole / l as an electropolymerizable organic molecule on the chloroform surface, which is an organic solvent. A liquid aqueous phase was formed, and a platinum counter electrode was brought into contact with this phase. While the metal thallium, which is a base material previously immersed in chloroform, was pulled up in the vertical direction by a dip coater in the same manner as in Example 1, a voltage of 15 V was applied between the platinum counter electrode and the metal thallium for 9 hours to obtain a thallium base material. A conductive polymer thin film having a uniform film thickness of 8 μm was formed thereon.

本発明の純水層の界面上に電解液有機物薄層を配置したときの導電性高分子薄膜の形成概略図Schematic diagram of forming a conductive polymer thin film when an electrolyte organic thin film layer is disposed on the interface of the pure water layer of the present invention 本発明の有機溶媒層の界面上に電解液水溶液薄層を配置したときの導電性高分子薄膜の形成概略図Schematic diagram of forming a conductive polymer thin film when an electrolyte aqueous solution thin layer is disposed on the interface of the organic solvent layer of the present invention

符号の説明Explanation of symbols

1 電解液有機物薄層
2 電解液水溶液薄層
3 上層と相溶性のない純水層
4 上層と相溶性のない有機溶媒層
5 金属対極(陰極)
6 基材(陽極)
7 電源
1 Electrolyte organic thin layer 2 Electrolyte aqueous solution thin layer 3 Pure water layer incompatible with upper layer 4 Organic solvent layer incompatible with upper layer 5 Metal counter electrode (cathode)
6 Base material (anode)
7 Power supply

Claims (14)

導電性を有する基材を水溶液に浸漬し、さらにこの水溶液の界面上に、電解重合性モノマー、有機溶媒及び支持電解質からなる電解液相を配置し、該電解液中に陰極を設け、上記基材を陽極として電解重合を行いつつ、該水溶液から基材を上方に微速で引き上げることによって、該基材の少なくとも一方の面に高配向の導電性高分子膜を形成する方法。   A base material having conductivity is immersed in an aqueous solution, and an electrolytic solution phase composed of an electrolytic polymerizable monomer, an organic solvent and a supporting electrolyte is disposed on the interface of the aqueous solution, and a cathode is provided in the electrolytic solution. A method of forming a highly oriented conductive polymer film on at least one surface of a substrate by pulling the substrate upward from the aqueous solution at a slow speed while performing electropolymerization using the material as an anode. 上記電解液が、水に難溶な電解重合性モノマー又はドーパントを含有させることにより導電性を持つ有機化合物のいずれかを用いることを特徴とする請求項1に記載の導電性高分子膜を形成する方法。   2. The conductive polymer film according to claim 1, wherein the electrolytic solution uses one of an organic compound having conductivity by containing an electropolymerizable monomer or a dopant that is hardly soluble in water. how to. 電解重合性モノマーが、アニリン、フェノール、フタロシアニン、ピロール、チオフェン、フラン又はそれらの誘導体から選ばれた少なくとも一成分を使用することを特徴とする請求項1又は2に記載の導電性高分子膜を形成する方法。   The electroconductive polymer film according to claim 1 or 2, wherein the electropolymerizable monomer uses at least one component selected from aniline, phenol, phthalocyanine, pyrrole, thiophene, furan or derivatives thereof. How to form. 上記支持電解質が、アニオンとカチオンを含む水に難溶性の有機塩を含有する溶液であることを特徴とする請求項1〜3のいずれかに記載の導電性高分子膜を形成する方法。   The method for forming a conductive polymer film according to any one of claims 1 to 3, wherein the supporting electrolyte is a solution containing an organic salt that is sparingly soluble in water containing an anion and a cation. 上記アニオン成分が、F4 、BF4 、AsF5 、SbF5 、PF 、PF5 、I 、PF 、ClO4 、I、Br、(CF3SO2)2N、CF3SO3 及び芳香族スルホン酸アニオンもしくはそれらの誘導体、フッ素含有有機アニオン又は芳香族カルボン酸アニオンから選ばれた少なくとも一成分であることを特徴とする請求項4に記載の導電性高分子膜を形成する方法。 The anion component is F 4 , BF 4 , AsF 5 , SbF 5 , PF 6 , PF 5 , I 3 , PF 4 , ClO 4 , I , Br , (CF 3 5. SO 2 ) 2 N , CF 3 SO 3 and an aromatic sulfonate anion or a derivative thereof, a fluorine-containing organic anion, or an aromatic carboxylate anion. A method for forming the conductive polymer film described in 1. 上記カチオン成分が、イミダゾリウム塩、ピリジニウム塩の芳香族系、ホスホニウム塩、ピリジニウム塩、テトラアルキルアンモニウム塩、アルキルアンモニウム塩の脂肪族系から選ばれた少なくとも一成分であることを特徴とする請求項4に記載の導電性高分子膜を形成する方法。   The cation component is at least one component selected from an imidazolium salt, an aromatic system of a pyridinium salt, an phosphonium salt, a pyridinium salt, a tetraalkylammonium salt, and an aliphatic system of an alkylammonium salt. 5. A method for forming the conductive polymer film according to 4. 上記有機溶媒が、水と相溶性の無い有機溶媒から選ばれた少なくとも1種の成分であることを特徴とする請求項1〜4記載の導電性高分子膜を形成する方法。   The method for forming a conductive polymer film according to claim 1, wherein the organic solvent is at least one component selected from organic solvents that are not compatible with water. 上記電解液が、水溶液と相溶性が無く、水溶液より比重の小さい液体であることを特徴とする請求項1〜7のいずれかに記載の導電性高分子膜を形成する方法。   The method for forming a conductive polymer film according to claim 1, wherein the electrolytic solution is a liquid having no compatibility with an aqueous solution and having a specific gravity smaller than that of the aqueous solution. 導電性を有する基材を有機溶媒に浸漬し、さらにこの有機溶媒の界面上に、電解重合性モノマー、水及び支持電解質を含む電解液水溶液相を配置し、該電解液水溶液相中に陰極を設け、上記によって該基材の少なくとも一方の面に高配向の導電性高分子膜を形成する方法。   A base material having conductivity is immersed in an organic solvent, and an electrolytic aqueous solution phase containing an electrolytic polymerizable monomer, water and a supporting electrolyte is disposed on the interface of the organic solvent, and a cathode is placed in the electrolytic aqueous solution phase. A method of forming and forming a highly oriented conductive polymer film on at least one surface of the substrate. 上記電解液が、重合後にドーパントが含有されている場合に導電性を持つ高分子となる、有機溶媒に難溶な電解重合性モノマーを含んでいることを特徴とする請求項1に記載の導電性高分子膜を形成する方法。   2. The conductive material according to claim 1, wherein the electrolytic solution contains an electropolymerizable monomer that is poorly soluble in an organic solvent and becomes a conductive polymer when a dopant is contained after polymerization. For forming a conductive polymer film. 電解重合性モノマーが、アニリン、フェノール、フタロシアニン、ピロール、チオフェン、フラン又はそれらの誘導体から選ばれた水溶性の少なくとも一成分を使用することを特徴とする請求項9又は10に記載の導電性高分子膜を形成する方法。   The electroconductive monomer according to claim 9 or 10, wherein the electropolymerizable monomer uses at least one water-soluble component selected from aniline, phenol, phthalocyanine, pyrrole, thiophene, furan or derivatives thereof. A method of forming a molecular film. 上記電解液水溶液相中の支持電解質が、有機物に難溶性のイオン性液体又は塩化物、ヨウ化物、硫酸塩、リン酸塩、炭酸塩から選ばれた溶液を用いることを特徴とする請求項9に記載の導電性高分子膜を形成する方法。   10. The supporting electrolyte in the aqueous electrolyte solution phase is an ionic liquid that is hardly soluble in organic substances or a solution selected from chloride, iodide, sulfate, phosphate, and carbonate. A method for forming the conductive polymer film described in 1. 上記有機溶媒相が、電解液水溶液相と相溶性がなく、該電解液水溶液相より比重が大きく非導電性の液体であることを特徴とする請求項9〜12のいずれかに記載の導電性高分子膜を形成する方法。   The conductive property according to any one of claims 9 to 12, wherein the organic solvent phase is a non-conductive liquid having no compatibility with the aqueous electrolyte solution phase and having a higher specific gravity than the aqueous electrolyte solution phase. A method of forming a polymer film. 上記基材が、導電性の有機物、金属、金属酸化物又はそれらを被覆したものから選ばれた、ハニカム状、棒状又はシート状のものであることを特徴とする請求項1〜13のいずれかに記載の高配向性導電性高分子膜を形成する方法。   14. The substrate according to any one of claims 1 to 13, wherein the substrate is in the form of a honeycomb, a rod, or a sheet selected from a conductive organic material, a metal, a metal oxide, or a material coated therewith. A method for forming the highly oriented conductive polymer film described in 1.
JP2006174198A 2006-06-23 2006-06-23 Process of producing polymer film Withdrawn JP2008001836A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006174198A JP2008001836A (en) 2006-06-23 2006-06-23 Process of producing polymer film
PCT/JP2007/062203 WO2007148639A1 (en) 2006-06-23 2007-06-18 Process for producing polymer film
KR1020097001451A KR20090038434A (en) 2006-06-23 2007-06-18 Process for producing polymer film
CNA2007800231856A CN101472685A (en) 2006-06-23 2007-06-18 Process for producing polymer film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006174198A JP2008001836A (en) 2006-06-23 2006-06-23 Process of producing polymer film

Publications (1)

Publication Number Publication Date
JP2008001836A true JP2008001836A (en) 2008-01-10

Family

ID=38833381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006174198A Withdrawn JP2008001836A (en) 2006-06-23 2006-06-23 Process of producing polymer film

Country Status (4)

Country Link
JP (1) JP2008001836A (en)
KR (1) KR20090038434A (en)
CN (1) CN101472685A (en)
WO (1) WO2007148639A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101935398A (en) * 2010-06-24 2011-01-05 中国科学院宁波材料技术与工程研究所 High-electric conductivity aromatic polymer ionic liquid diaphragm material and preparation method thereof

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101022208B1 (en) * 2008-10-08 2011-03-16 광 석 서 Method for Preparing Organic Solvent Dispersion of Conducting Polymers Using Polymeric Ionic Liquid and the Conducting Polymer by Prepared using the same
CN101983758B (en) * 2010-10-21 2013-06-12 中国科学院苏州纳米技术与纳米仿生研究所 Polymer/inorganic nanometer composite separation membrane and preparation method thereof
US11058444B2 (en) 2017-12-11 2021-07-13 Covidien Lp Electrically enhanced retrieval of material from vessel lumens
US11090071B2 (en) 2018-06-22 2021-08-17 Covidien Lp Electrically enhanced retrieval of material from vessel lumens
US11612430B2 (en) 2019-03-19 2023-03-28 Covidien Lp Electrically enhanced retrieval of material from vessel lumens
US11974752B2 (en) 2019-12-12 2024-05-07 Covidien Lp Electrically enhanced retrieval of material from vessel lumens
US11963713B2 (en) 2021-06-02 2024-04-23 Covidien Lp Medical treatment system
US11944374B2 (en) 2021-08-30 2024-04-02 Covidien Lp Electrical signals for retrieval of material from vessel lumens

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3284993B2 (en) * 1998-12-21 2002-05-27 日本電気株式会社 Solid electrolytic capacitor manufacturing method and solid electrolytic capacitor
JP2000353641A (en) * 1999-06-14 2000-12-19 Nec Corp Manufacture of solid electronic element
JP2001044080A (en) * 1999-07-30 2001-02-16 Nec Corp Solid electrolytic capacitor and manufacture thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101935398A (en) * 2010-06-24 2011-01-05 中国科学院宁波材料技术与工程研究所 High-electric conductivity aromatic polymer ionic liquid diaphragm material and preparation method thereof

Also Published As

Publication number Publication date
CN101472685A (en) 2009-07-01
WO2007148639A1 (en) 2007-12-27
KR20090038434A (en) 2009-04-20

Similar Documents

Publication Publication Date Title
JP2008001836A (en) Process of producing polymer film
Inagi Fabrication of gradient polymer surfaces using bipolar electrochemistry
Wang Research progress on a novel conductive polymer–poly (3, 4-ethylenedioxythiophene)(PEDOT)
Fomo et al. Electrochemical polymerization
US8644003B2 (en) Electrolytic capacitor element and process for producing the same
Han et al. Morphology of electrodeposited poly (3, 4-ethylenedioxythiophene)/poly (4-styrene sulfonate) films
Vorotyntsev et al. Mechanisms of electropolymerization and redox activity: fundamental aspects
CN1677590A (en) Conducting polymer composite and solid electrolytic capacitor using the same
Kuo et al. Electrosynthesis and characterization of four electrochromic polymers based on carbazole and indole-6-carboxylic acid and their applications in high-contrast electrochromic devices
Atobe et al. Preparation of highly aligned arrays of conducting polymer nanowires using templated electropolymerization in supercritical fluids
Geetha et al. Studies on polypyrrole film in room temperature melt
Liu et al. Electrochemical fabrication and electronic behavior of polypyrrole nano-fiber array devices
AU2011235617B2 (en) Dye-sensitised solar cell with nickel cathode
Han et al. Electropolymerization of polypyrrole on PFIL–PSS-modified electrodes without added support electrolytes
JP5103622B2 (en) Manufacturing method of nano cylinder type conductive polymer material
Onoda et al. New fabrication technique of conductive polymer/insulating polymer composite films and evaluation of biocompatibility in neuron cultures
JP2001163960A (en) Method for preparing electrically conductive polymer material and solid electrolytic capacitor
JP2016062651A (en) Method for producing conductive composite, and conductive composite
JP4614445B2 (en) Conductive thin film, flexible member using the same, transparent electrode member, and electromagnetic shielding coating film
JP2008120981A (en) Process for forming multilayered thin film
Wang et al. Improved quality of electrochemically polymerized luminescent films on Au-nanoparticle modified electrodes: Au-nanoparticle induced interfacial nucleation and fast electron transfer
Turac et al. Synthesis of conducting polymer/zinc sulfide nanocomposite films and investigation of their electrochemical and morphological properties
JP5954558B2 (en) Method for producing polymer membrane and electropolymerization apparatus for polymer membrane production
US7678880B2 (en) Molecular oriented polymer gel and cast film with self-organizable amphiphilic compound as template, and their production methods
Abu et al. Self-standing polyaniline film of mono-particle layer

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090901