JPH04202614A - Manganese ore pellet for steelmaking refining - Google Patents

Manganese ore pellet for steelmaking refining

Info

Publication number
JPH04202614A
JPH04202614A JP33515190A JP33515190A JPH04202614A JP H04202614 A JPH04202614 A JP H04202614A JP 33515190 A JP33515190 A JP 33515190A JP 33515190 A JP33515190 A JP 33515190A JP H04202614 A JPH04202614 A JP H04202614A
Authority
JP
Japan
Prior art keywords
cao
refining
addition
yield
porosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33515190A
Other languages
Japanese (ja)
Other versions
JP2808045B2 (en
Inventor
Toshiyuki Kaneko
敏行 金子
Sadaji Kugimiya
釘宮 貞二
Masaaki Naito
誠章 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2335151A priority Critical patent/JP2808045B2/en
Publication of JPH04202614A publication Critical patent/JPH04202614A/en
Application granted granted Critical
Publication of JP2808045B2 publication Critical patent/JP2808045B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PURPOSE:To perform the addition of Mn for steelmaking refining in high yield at a low cost by exerting Mn addition by using Mn ore pellets with a specific composition at the time of subjecting a preliminarily dephosphorized molten pig iron to steelmaking refining in a converter. CONSTITUTION:At the time of producing a molten steel by charging a molten pig iron after preliminary dephosphorizing refining into a converter and exerting decarburizing refining by means of oxygen blowing, Mn addition is performed by using Mn ore pellets consisting of, by weight, 40-60% T.Mn, 6-30% CaO, 2-10% SiO2, 0.5-10% Al2O3, 2-15% T.Fe, and <=5% MgO, satisfying CaO/SiO2>=3, and having 20-40% porosity, or further, one or >=2 kinds among Na2O, NaCl, NaF, K2O, CaF2, CaCl2, and B2O3 are incorporated as a reduction accelerator for MnO by 0.3-5.0%, or, C is further added as a reducing agent for MnO by 5-30% in the case of a raw material with low Mn content. By this method, Mn ore pellets capable of performing Mn addition in high Mn yield at a low cost can be obtained.

Description

【発明の詳細な説明】 〈産業上の菊1用分野〉 本発明は、溶銑予備処理にて燐を除去した溶銑を転炉内
で吹錬する際に、溶鋼にMnを添加するための上方添加
用Mn鉱石ベレットに関するものである。
Detailed Description of the Invention <Industrial Application Field> The present invention provides an upper method for adding Mn to molten steel when blowing hot metal from which phosphorus has been removed in hot metal pretreatment in a converter. The present invention relates to a Mn ore pellet for addition.

〈従来の技術〉 近年、溶銑予備処理技術の発展と共に、転炉における吹
錬はレススラグ吹錬が主流になっている。
<Prior Art> In recent years, with the development of hot metal pretreatment technology, less slag blowing has become the mainstream for blowing in converters.

この中で、溶鋼へのMnの添加方法は、従来行われてい
た吹錬後に高価なFe −Mn系合金を使う方法に代わ
って、レススラグ吹錬中に安価なMn鉱石を投入して溶
融還元を行う方法が一般的となってきた。
Among these, the method of adding Mn to molten steel is to add cheap Mn ore during less slag blowing and reduce it by melting, instead of the conventional method of using an expensive Fe-Mn alloy after blowing. The method of doing this has become common.

しかし、Mn鉱石が高融点であるため、反応性を高める
ための方策が必要であり、その1つの例として特開昭6
2−33709号公報に見られるようなMn鉱石を事前
に焼結して転炉に投入する方法が提案されている。
However, since Mn ore has a high melting point, it is necessary to take measures to increase the reactivity.
A method has been proposed in which Mn ore is sintered in advance and then introduced into a converter, as disclosed in Japanese Patent No. 2-33709.

〈発明が解決しようとする課題〉 特開昭62−33709号公報で示されている方法は、
基本的には焼結時の加熱によるMn鉱石の熱分解効果(
酸素の放出)を狙ったものであるが、焼結機における焼
結鉱の製造歩留、生産性向上、強度等の観点から石灰石
を混合することが有効であることも述べられている。前
記公報記載の焼結鉱のCaO/SiO2としては0.2
0〜1.31のデータが示されている。
<Problem to be solved by the invention> The method disclosed in Japanese Patent Application Laid-Open No. 62-33709 is as follows:
Basically, the thermal decomposition effect of Mn ore due to heating during sintering (
It is also stated that it is effective to mix limestone from the viewpoint of improving the production yield of sintered ore in the sintering machine, improving productivity, and strength. CaO/SiO2 of the sintered ore described in the above publication is 0.2
Data from 0 to 1.31 are shown.

そこで、本発明者らは、これらのMn焼結鉱のレススラ
グ吹錬におけるMn歩留向上効果を評価するため、溶銑
脱燐処理を行った溶銑の転炉吹錬に前記焼結鉱を使って
上方投入し、従来使用していたMn鉱石の生鉱面の場合
と比較した。ところが、その結果は、従来使用していた
生鉱面のMn歩留と大差がなかったため、Mn歩留を向
上させるためのMn鉱石に要求される新たな適正条件の
解明が強(望まれていた。
Therefore, in order to evaluate the effect of improving Mn yield in less slag blowing of these Mn sintered ores, the present inventors used the sintered ores in converter blowing of hot metal that had been subjected to hot metal dephosphorization treatment. It was compared with the case of the raw ore surface of conventionally used Mn ore. However, since the results were not significantly different from the Mn yield of conventional raw ore, it is necessary to clarify the new appropriate conditions required for Mn ore in order to improve the Mn yield. Ta.

本発明の目的は、Mn歩留を向上し得る製鋼精錬用のマ
ンガンペレットを提供するにある。
An object of the present invention is to provide manganese pellets for steelmaking and refining that can improve the Mn yield.

く課題を解決するための手段〉 本発明の要旨とするところは下記のとおりである。Means to solve problems〉 The gist of the present invention is as follows.

(1) T、Mn= 40〜60 W%、 CaO=6
〜30W%。
(1) T, Mn=40-60 W%, CaO=6
~30W%.

5i02=2〜10W%、 Af!03〜0.5〜10
W%。
5i02=2~10W%, Af! 03-0.5-10
W%.

T、Fe= 2〜15 W%、 Mgo≦5W%を含有
し、CaO/5iO□≧3、且つ気孔率が20〜40%
である製鋼精神用のマンガン鉱石ペレット。
Contains T, Fe=2-15 W%, Mgo≦5W%, CaO/5iO□≧3, and porosity is 20-40%
Manganese ore pellets for steelmaking.

(2) T、Mn= 40〜60 W%、 CaO=6
〜30W%。
(2) T, Mn=40-60 W%, CaO=6
~30W%.

5iO2=2〜10W%、i□03=o、5〜10W%
5iO2=2~10W%, i□03=o, 5~10W%
.

T、Fe= 2〜15 W%、 MgO≦5W%を含有
すると共に、NazO,NaCl2 、NaF、K2O
、CaF2、CaCf Z+BZO3の1種又は2種以
上を合計で0.3〜5.0W%含有し、Cab/5in
2≧3、且つ気孔率が20〜40%である製鋼精錬用の
マンガン鉱石ペレット。
Contains T, Fe = 2-15 W%, MgO≦5W%, and also contains NazO, NaCl2, NaF, K2O
, CaF2, CaCf Z+BZO3 in a total of 0.3 to 5.0 W%, Cab/5in
2≧3 and a porosity of 20 to 40%, manganese ore pellets for steelmaking and refining.

(3) T、Mn= 31〜57 W%、 CaO=4
.5〜29 W%。
(3) T, Mn = 31-57 W%, CaO = 4
.. 5-29 W%.

SiO□−1,5〜12W%、 ANzO+ 〜0.5
〜10W%、 T、Fe=1.5〜14W%、 ?Ig
O≦5W%、カーボンー5〜30W%を含有し、Cab
/Sin、≧3、且つ気孔率が20〜40%である製鋼
精錬用のマンガン鉱石ペレット。
SiO□-1.5~12W%, ANzO+ ~0.5
~10W%, T, Fe=1.5~14W%, ? Ig
Contains O≦5W%, carbon-5-30W%, Cab
/Sin, ≧3, and a porosity of 20 to 40%, manganese ore pellets for steel refining.

(4) T、Mn= 31〜57 W%、 CaO=4
.5〜29 W%。
(4) T, Mn = 31-57 W%, CaO = 4
.. 5-29 W%.

SiO□=1.5〜12W%、^1203−o、5〜1
0W%、 T、Fe=1.5〜I 4W%、 MgO≦
5W%、カーボン=5〜30W%を含有すると共に、N
a、0゜NaCl + NaF + KzO+ CaF
 t+ CaCl 21 BzOsの1種又は2種以上
を合計で0.3〜5.0 W%含有し、Cab/5if
t≧3、且つ気孔率が20〜40%である製鋼精錬用の
マンガン鉱石ペレット。
SiO□=1.5~12W%, ^1203-o, 5~1
0W%, T, Fe=1.5~I 4W%, MgO≦
5W%, carbon = 5 to 30W%, and N
a, 0°NaCl + NaF + KzO + CaF
Contains one or more types of t+ CaCl 21 BzOs in a total amount of 0.3 to 5.0 W%, and Cab/5if
Manganese ore pellets for steelmaking and refining, with t≧3 and a porosity of 20 to 40%.

〈作 用〉 次ぎに、作用について述べる。<For production> Next, we will discuss the effect.

先ず、上記第1の発明について、Mn焼結鉱の各組成を
規定した理由を以下に述べる。
First, regarding the first invention, the reasons for specifying each composition of the Mn sintered ore will be described below.

T、Mnは、40W%より少なくなるとペレット中のM
n−0xideの濃度が他の成分に希釈されて充分な還
元反応が進まないことおよび60W%を超えるとペレッ
トの融点が上昇し滓化が困難となるために充分な反応速
度が得られないことより、40〜60W%にする必要が
ある。
When T and Mn become less than 40W%, Mn in the pellet decreases.
The concentration of n-0xide is diluted with other components and the reduction reaction does not proceed sufficiently, and if it exceeds 60W%, the melting point of the pellet increases and it becomes difficult to form a slag, making it impossible to obtain a sufficient reaction rate. Therefore, it is necessary to set it to 40 to 60 W%.

CaOおよび5iOzについてはペレ7)中のMn−0
xideを活性化するためにCaO/SiO,を3以上
の高塩基度に調整しなければならない。
Mn-0 in Pelle 7) for CaO and 5iOz
In order to activate xide, CaO/SiO must be adjusted to a high basicity of 3 or more.

A1.03については、0.5W%より少ないとペレッ
トの滓化性が阻害されること、および10W%を超える
とベレット中のMn−0w1deの活性度が低下し反応
しにくくなることから、0.5〜10W%にする必要が
ある。
Regarding A1.03, if it is less than 0.5 W%, the slagability of the pellet will be inhibited, and if it exceeds 10 W%, the activity of Mn-0w1de in the pellet will decrease and it will be difficult to react. It is necessary to set it to .5-10W%.

T、Feは、2%より少ないと滓化しにくくなること、
および15%を超える組成は酸化鉄配合がない限り得ら
れないことから、2〜15W%が適正範囲となる。
When T and Fe are less than 2%, it becomes difficult to form into slag,
Since a composition exceeding 15% cannot be obtained unless iron oxide is added, the appropriate range is 2 to 15 W%.

また、MgOについては、ペレットの滓化性を維持する
ために5%以下に抑えなければならない。
Furthermore, MgO must be suppressed to 5% or less in order to maintain the slagability of the pellets.

さらに、第1図に示すようにペレットの気孔率を20%
以上にすることにより、Mn歩留が大幅に向上する。こ
れは、上記組成に調整し高塩基度にすることでペレット
中OMn−0xide分を活性化し化学的にMn−0x
ide分を還元しやすくすると同時に、反応界面積を確
保するための手段として気孔率をある一定値以上、すな
わち20%以上に保つことが有効であることを示してい
る。気孔率の上昇は反応界面積を増大すると同時に、ペ
レットへの熱の伝達も容易にすることから、ペレットの
滓化も容易にする。ただし、その際、気孔率が40%を
超えるとペレットの強度が低下してしまい、ペレットの
製造歩留低下と搬送時の崩壊の2つ問題を同時に引き起
こす。したがって、気孔率の適正範囲は20〜40%で
ある。
Furthermore, as shown in Figure 1, the porosity of the pellets was increased to 20%.
By doing the above, the Mn yield is significantly improved. This is achieved by adjusting the composition to have a high basicity and activating the OMn-0xide content in the pellet, chemically converting it into Mn-0x.
This shows that it is effective to maintain the porosity at a certain value or higher, that is, at least 20%, as a means for making it easier to reduce the ide content and at the same time ensuring a reaction interfacial area. The increase in porosity not only increases the reaction interfacial area but also facilitates the transfer of heat to the pellets, thereby making it easier to form pellets into slag. However, in this case, if the porosity exceeds 40%, the strength of the pellets will decrease, causing two problems: a decrease in pellet manufacturing yield and collapse during transportation. Therefore, the appropriate range of porosity is 20 to 40%.

次ぎに、上記第2の発明についでは、第1の発明に示し
たペレットに種々の添加剤を添加しその効果を調べた結
果、第2図に示すように、Na2CO:1(Na20源
)、 NaCf 、NaF、に2o、 CaF 2+ 
CaCl 21 BzO:lの1種又は2種以上を合計
で0.3〜5.0 W%含有させることで、Mn−0x
ideの還元促進をさらに助長することが分かった。こ
れらの成分の効果は、ペレットの融点低下効果とペレッ
ト中のMn−0xideの活性化効果の相乗効果による
ものと考えられる。この効果は、上記添加剤の合計濃度
が0.3 W%より少なければ得られないし、逆に5w
%を超えてもその効果は大きくは変わらずコストが高く
なるだけである。
Next, regarding the second invention, as a result of adding various additives to the pellets shown in the first invention and examining their effects, as shown in FIG. 2, it was found that Na2CO:1 (Na20 source), NaCf, NaF, Ni2o, CaF2+
By containing one or more types of CaCl 21 BzO:l in a total amount of 0.3 to 5.0 W%, Mn-0x
It was found that this further promoted the reduction of ide. The effects of these components are thought to be due to the synergistic effect of the melting point lowering effect of the pellets and the activation effect of Mn-Oxide in the pellets. This effect cannot be obtained if the total concentration of the above additives is less than 0.3 W%; conversely, if the total concentration of the additives is less than 0.3 W%,
%, the effect will not change much and the cost will only increase.

上記第3および第4の発明は、上記第1および第2の発
明のペレットにカーボン分を含有させることにより、還
元特性をさらに改善するものである。すなわち、マンガ
ン鉱石は転炉内に添加された際、溶鋼中のカーボン源(
(C))により還元されることに着眼し、ペレット自体
にカーボン源を含ませてペレット内でも還元反応が進む
ようにしたものである。この反応促進の効果は、ペレッ
ト内でカーボン源力<Mn−0xideを還元し、Mn
−1)xide中の酸素源をCOガスの形で除去するこ
とによりMn−0xideが予備還元され、その後のM
n−0xideの溶鋼中(C)によるメタリンクMnま
での還元を容易にすることにより得られている。なお、
カーボン源としては、コークス、黒鉛、石炭のいずれを
用いてもかまわない。
The third and fourth inventions further improve the reduction properties by incorporating carbon into the pellets of the first and second inventions. In other words, when manganese ore is added to the converter, it becomes a carbon source (
Focusing on the reduction caused by (C)), the pellet itself contains a carbon source so that the reduction reaction proceeds even within the pellet. The effect of promoting this reaction is to reduce carbon source <Mn-0xide within the pellet, and reduce Mn-Oxide.
-1) Mn-0xide is pre-reduced by removing the oxygen source in xide in the form of CO gas, and the subsequent Mn-0xide is
It is obtained by facilitating the reduction of n-0xide to metallink Mn in molten steel (C). In addition,
As the carbon source, any of coke, graphite, and coal may be used.

第3図に示すように、ペレットへのカーボン含有量は5
W%以上で上述の効果が認められる。カーボン含有量が
30W%を超えると、転炉内へのカーボン含有量・ント
が必然的に高くなり、吹止[C)の調整に支障が出てく
ることから、適正カーボン含有量は5〜30W%である
As shown in Figure 3, the carbon content in the pellets is 5
The above effect is observed at W% or higher. If the carbon content exceeds 30W%, the amount of carbon contained in the converter will inevitably increase, which will hinder the adjustment of the blow-off [C). Therefore, the appropriate carbon content should be 5~ It is 30W%.

さらに、第4図に示すように、これらのペレットにNa
zco:+(Nazo源) + N a C1+ N 
a F + K z O+ Ca F z + Ca 
C1z +BzOzの1種又は2種以上を合計で0.3
〜5.0W%含有させることで、さらに還元特性が向上
する。
Furthermore, as shown in Figure 4, Na
zco: + (Nazo source) + N a C1+ N
a F + K z O+ Ca F z + Ca
One or more of C1z + BzOz in total of 0.3
By containing up to 5.0 W%, the reducing properties are further improved.

この効果は、前述した通り、滓化促進とMn−0xid
eの活性化の相乗効果と考えられる。
As mentioned above, this effect is due to the promotion of slag formation and Mn-0oxid
This is considered to be a synergistic effect of activation of e.

本発明者らは、以上の知見をもとに転炉内で高い還元歩
留を得るためのMn鉱石ペレットに必要な組成と性状を
明らかにし、転炉におけるMn歩留向上技術の確立に至
ったのである。
Based on the above knowledge, the present inventors clarified the composition and properties necessary for Mn ore pellets to obtain a high reduction yield in a converter, and established a technology for improving the Mn yield in a converter. It was.

〈実施例〉 〈発明の効果〉 本発明は、転炉でのレススラグ吹錬時に高いMn歩留を
得るためのMn鉱石ペレットの組成と性状、特に気孔率
を特定することにより、前記課題の転炉における低Mn
歩留を解消して、従来のFe −Mn系合金を使用する
方法より格段に製造コストを低減し得る製鋼用マンガン
鉱石ペレットを提供するものであり、この種の産業分野
にもたらす効果は極めて大きい。
<Example><Effects of the Invention> The present invention solves the above problem by specifying the composition and properties, especially the porosity, of Mn ore pellets in order to obtain a high Mn yield during less slag blowing in a converter. Low Mn in furnace
This method eliminates yield problems and provides manganese ore pellets for steelmaking that can significantly reduce manufacturing costs compared to the conventional method using Fe-Mn alloys, and has an extremely large effect on this type of industry. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は転炉におけるMn歩留に及ぼすペレットの気孔
率の影響を示す図であり、第2図はMn歩留に及ぼす低
融黒化剤微量添加の影響を示す図であり、第3図はMn
歩留に及ぼすペレット中のカーボン含有量の影響を示す
図であり、第4図はMn歩留に及ぼす各種低融点化剤の
影響を示す図である。 第1図 叡り傘(刈 第2図 jtJL率(〃)
Figure 1 is a diagram showing the influence of the porosity of pellets on the Mn yield in a converter, Figure 2 is a diagram showing the influence of the addition of a small amount of low-melting blackening agent on the Mn yield, The figure is Mn
FIG. 4 is a diagram showing the influence of the carbon content in pellets on the yield, and FIG. 4 is a diagram showing the influence of various melting point lowering agents on the Mn yield. Figure 1 Umbrella (Kari Figure 2 jtJL rate (〃)

Claims (4)

【特許請求の範囲】[Claims] (1)T.Mn=40〜60W%、CaO=6〜30W
%、SiO_2=2〜10W%、Al_2O_3=0.
5〜10W%、T.Fe=2〜15W%、MgO≦5W
%を含有し、CaO/SiO_2≧3、且つ気孔率が2
0〜40%である製鋼精錬用のマンガン鉱石ペレット。
(1) T. Mn=40~60W%, CaO=6~30W
%, SiO_2=2~10W%, Al_2O_3=0.
5-10W%, T. Fe=2~15W%, MgO≦5W
%, CaO/SiO_2≧3, and porosity is 2
Manganese ore pellets for steel refining with a content of 0 to 40%.
(2)T.Mn=40〜60W%、CaO=6〜30W
%、SiO_2=2〜10W%、Al_2O_3=0.
5〜10W%、T.Fe=2〜15W%、MgO≦5W
%を含有すると共に、Na_2O、NaCl、NaF、
K_2O、CaF_2、CaCl_2、B_2O_3の
1種又は2種以上を合計で0.3〜5.0W%含有し、
CaO/SiO_2≧3、且つ気孔率が20〜40%で
ある製鋼精錬用のマンガン鉱石ペレット。
(2) T. Mn=40~60W%, CaO=6~30W
%, SiO_2=2~10W%, Al_2O_3=0.
5-10W%, T. Fe=2~15W%, MgO≦5W
%, as well as Na_2O, NaCl, NaF,
Contains a total of 0.3 to 5.0 W% of one or more of K_2O, CaF_2, CaCl_2, and B_2O_3,
Manganese ore pellets for steel refining, with CaO/SiO_2≧3 and a porosity of 20 to 40%.
(3)T.Mn=31〜57W%、CaO=4.5〜2
9W%、SiO_2=1.5〜12W%、Al_2O_
3=0.5〜10W%、T.Fe=1.5〜14W%、
MgO≦5W%、カーボン=5〜30W%を含有し、C
aO/SiO_2≧3、且つ気孔率が20〜40%であ
る製鋼精錬用のマンガン鉱石ペレット。
(3) T. Mn=31~57W%, CaO=4.5~2
9W%, SiO_2=1.5~12W%, Al_2O_
3=0.5-10W%, T. Fe=1.5~14W%,
Contains MgO≦5W%, carbon=5 to 30W%, C
Manganese ore pellets for steel refining, with aO/SiO_2≧3 and a porosity of 20 to 40%.
(4)T.Mn=31〜57W%、CaO=4.5〜2
9W%、SiO_2=1.5〜12W%、Al_2O_
3=0.5〜10W%、T.Fe=1.5〜14W%、
MgO≦5W%、カーボン=5〜30W%を含有すると
共に、Na_2O、NaCl、NaF、K_2O、Ca
F_2、CaCl_2、B_2O_3の1種又は2種以
上を合計で0.3〜5.0W%含有し、CaO/SiO
_2≧3、且つ気孔率が20〜40%である製鋼精錬用
のマンガン鉱石ペレット。
(4) T. Mn=31~57W%, CaO=4.5~2
9W%, SiO_2=1.5~12W%, Al_2O_
3=0.5-10W%, T. Fe=1.5~14W%,
Contains MgO≦5W%, carbon = 5-30W%, and also contains Na_2O, NaCl, NaF, K_2O, Ca
Contains a total of 0.3 to 5.0 W% of one or more of F_2, CaCl_2, and B_2O_3, and contains CaO/SiO
Manganese ore pellets for steelmaking and refining, with _2≧3 and a porosity of 20 to 40%.
JP2335151A 1990-11-30 1990-11-30 Unfired manganese ore pellets for steel refining Expired - Fee Related JP2808045B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2335151A JP2808045B2 (en) 1990-11-30 1990-11-30 Unfired manganese ore pellets for steel refining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2335151A JP2808045B2 (en) 1990-11-30 1990-11-30 Unfired manganese ore pellets for steel refining

Publications (2)

Publication Number Publication Date
JPH04202614A true JPH04202614A (en) 1992-07-23
JP2808045B2 JP2808045B2 (en) 1998-10-08

Family

ID=18285338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2335151A Expired - Fee Related JP2808045B2 (en) 1990-11-30 1990-11-30 Unfired manganese ore pellets for steel refining

Country Status (1)

Country Link
JP (1) JP2808045B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100335663C (en) * 2004-11-21 2007-09-05 马鞍山中冶钢铁冶金科技实业有限公司 Pyrolusite blocks and production thereof
JP2011529133A (en) * 2008-07-25 2011-12-01 ヴァーレ、ソシエダージ、アノニマ Process for producing manganese pellets from uncalcined manganese ore and agglomerates obtained by this process
CN104451130A (en) * 2014-12-02 2015-03-25 阜新蒙古族自治县晟宇铸造有限公司 Ironmaking additive and use method thereof
CN112143913A (en) * 2020-09-21 2020-12-29 西安建筑科技大学 Low-nickel matte converter blowing additive and low-nickel matte converter blowing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0686613A (en) * 1992-09-07 1994-03-29 Takeo Tabata Method for absorbing and accumulating calcium in vegetables in water culture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0686613A (en) * 1992-09-07 1994-03-29 Takeo Tabata Method for absorbing and accumulating calcium in vegetables in water culture

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100335663C (en) * 2004-11-21 2007-09-05 马鞍山中冶钢铁冶金科技实业有限公司 Pyrolusite blocks and production thereof
JP2011529133A (en) * 2008-07-25 2011-12-01 ヴァーレ、ソシエダージ、アノニマ Process for producing manganese pellets from uncalcined manganese ore and agglomerates obtained by this process
CN104451130A (en) * 2014-12-02 2015-03-25 阜新蒙古族自治县晟宇铸造有限公司 Ironmaking additive and use method thereof
CN112143913A (en) * 2020-09-21 2020-12-29 西安建筑科技大学 Low-nickel matte converter blowing additive and low-nickel matte converter blowing method
CN112143913B (en) * 2020-09-21 2022-05-24 西安建筑科技大学 Low-nickel matte converter blowing additive and low-nickel matte converter blowing method

Also Published As

Publication number Publication date
JP2808045B2 (en) 1998-10-08

Similar Documents

Publication Publication Date Title
JP5338056B2 (en) Stainless steel refining method
KR101252644B1 (en) Flux and Method for refining molten steel by Converter
CN111455169B (en) Manganese ore directly-alloyed ball and preparation method thereof
JPH04202614A (en) Manganese ore pellet for steelmaking refining
US4060406A (en) Arc steelmaking
JP2000160233A (en) Method for desulfurize-refining stainless steel
JP3606170B2 (en) Method for producing low nitrogen-containing chromium steel
JP2958848B2 (en) Hot metal dephosphorization method
JP4022266B2 (en) Stainless steel melting method
JPH04202615A (en) Manganese ore pellet for steelmaking and refining
JPH07179920A (en) Production of molten steel
CN111893247A (en) Steelmaking method with high-efficiency refining function
JPH04160107A (en) Manganese sintered ore for steel refining and its production
CN115652184B (en) Method for smelting ultra-pure ferrite stainless steel by using slag melting agent in AOD converter
US11674192B2 (en) Method of making steel by deeply dephosphorization in hot metal tank and decarburization using semi-steel with nearly zero phosphorus load in converter
JP3728922B2 (en) Method for melting molybdenum-containing molten steel
JPH1161221A (en) Method for melting low manganese steel
CN106521078A (en) Vanadium extracting converter slag adjusting method
JP2000212635A (en) Melting of high carbon steel for wire rod
JPS6212301B2 (en)
JPS5856005B2 (en) High chromium steel melting method
CN115948634A (en) Method for extracting vanadium element in low-silicon high-chromium iron water
CN110699514A (en) Environment-friendly steelmaking active fluxing agent and preparation method thereof
JPH0517810A (en) Refining method for high-mn steel
JPH04160108A (en) Manganese sintered ore for steel refining and its production

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees