JPH04160108A - Manganese sintered ore for steel refining and its production - Google Patents
Manganese sintered ore for steel refining and its productionInfo
- Publication number
- JPH04160108A JPH04160108A JP28561690A JP28561690A JPH04160108A JP H04160108 A JPH04160108 A JP H04160108A JP 28561690 A JP28561690 A JP 28561690A JP 28561690 A JP28561690 A JP 28561690A JP H04160108 A JPH04160108 A JP H04160108A
- Authority
- JP
- Japan
- Prior art keywords
- ore
- manganese
- sintered ore
- particle size
- sio
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000011572 manganese Substances 0.000 title claims abstract description 76
- 229910052748 manganese Inorganic materials 0.000 title claims abstract description 27
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 title claims abstract description 26
- 238000004519 manufacturing process Methods 0.000 title claims description 17
- 238000007670 refining Methods 0.000 title claims description 13
- 229910000831 Steel Inorganic materials 0.000 title claims description 4
- 239000010959 steel Substances 0.000 title claims description 4
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 claims abstract description 72
- 239000000292 calcium oxide Substances 0.000 claims abstract description 36
- 235000012255 calcium oxide Nutrition 0.000 claims abstract description 36
- 239000002893 slag Substances 0.000 claims abstract description 25
- 235000019738 Limestone Nutrition 0.000 claims abstract description 23
- 239000006028 limestone Substances 0.000 claims abstract description 23
- 238000007664 blowing Methods 0.000 claims abstract description 21
- 239000000571 coke Substances 0.000 claims abstract description 15
- 238000013329 compounding Methods 0.000 claims abstract 2
- 239000002245 particle Substances 0.000 claims description 27
- 239000000203 mixture Substances 0.000 claims description 25
- 238000009628 steelmaking Methods 0.000 claims description 10
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 6
- 239000004615 ingredient Substances 0.000 claims description 3
- 239000011780 sodium chloride Substances 0.000 claims description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 abstract description 3
- 229910052593 corundum Inorganic materials 0.000 abstract description 3
- 229910001845 yogo sapphire Inorganic materials 0.000 abstract description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract 2
- 229910052681 coesite Inorganic materials 0.000 abstract 1
- 229910052906 cristobalite Inorganic materials 0.000 abstract 1
- -1 etc. Substances 0.000 abstract 1
- 239000000377 silicon dioxide Substances 0.000 abstract 1
- 235000012239 silicon dioxide Nutrition 0.000 abstract 1
- 229910052682 stishovite Inorganic materials 0.000 abstract 1
- 229910052905 tridymite Inorganic materials 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 11
- 238000002156 mixing Methods 0.000 description 9
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 238000002844 melting Methods 0.000 description 6
- 230000008018 melting Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 208000001840 Dandruff Diseases 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 2
- 229910002551 Fe-Mn Inorganic materials 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 239000001110 calcium chloride Substances 0.000 description 2
- 235000011148 calcium chloride Nutrition 0.000 description 2
- 229910001628 calcium chloride Inorganic materials 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 238000006722 reduction reaction Methods 0.000 description 2
- 101100136092 Drosophila melanogaster peng gene Proteins 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 1
- 229910001634 calcium fluoride Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000002440 industrial waste Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
Landscapes
- Carbon Steel Or Casting Steel Manufacturing (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、溶銑予備処理にて燐を除去した溶銑を転炉内
で吹錬する際に、溶鋼にMnを添加するための上方添加
用マンガン焼結鉱およびその製造方法に関するものであ
る。[Detailed Description of the Invention] [Field of Industrial Application] The present invention is directed to an upward addition method for adding Mn to molten steel when blowing hot metal from which phosphorus has been removed in hot metal pretreatment in a converter. This invention relates to manganese sintered ore and its manufacturing method.
近年、溶銑予備処理技術の発展と共に、転炉における吹
錬はレススラグ吹錬が主流になっている。In recent years, with the development of hot metal pretreatment technology, less slag blowing has become the mainstream for blowing in converters.
この中で、溶鋼へのMnの添加方法は、従来行われてい
た吹錬後に高価なFe−Mn系合金を使う方法に代わっ
て、レススラグ吹錬中に安価なMn鉱石を投入して溶融
還元を行う方法が一般的となってきた。Among these, the method of adding Mn to molten steel is to add inexpensive Mn ore during less slag blowing and reduce it by melting, instead of the conventional method of using an expensive Fe-Mn alloy after blowing. The method of doing this has become common.
しかし、Mn鉱石が高融点であるため、反応性を高める
ための方策が必要であり、その一つの例として特開昭6
2−33709号公報に見られるようなMn鉱石を事前
に焼結して転炉に投入する方法が提案されている。However, since Mn ore has a high melting point, it is necessary to take measures to increase the reactivity.
A method has been proposed in which Mn ore is sintered in advance and then introduced into a converter, as disclosed in Japanese Patent No. 2-33709.
特開昭62−33709号公報で示されている方法は、
基本的には焼結時の加熱によるMn鉱石の熱分解効果(
酸素の放出)を狙ったものであるが、焼結機における焼
結鉱の製造歩留、生産性向上、強度等の観点から石灰石
を混合することが有効であることも述べられている。The method disclosed in Japanese Patent Application Laid-Open No. 62-33709 is as follows:
Basically, the thermal decomposition effect of Mn ore due to heating during sintering (
It is also stated that it is effective to mix limestone from the viewpoint of improving the production yield of sintered ore in the sintering machine, improving productivity, and strength.
この際の石灰石の配合条件としては、配合率10%で焼
結鉱のCaO/SiO□が1.3のデータか示されてい
るのみである。そこで、本発明者らは、これらのMn焼
結鉱のレススラグ吹錬におけるMn歩留向上代を評価す
るため、溶銑脱燐処理を行った溶銑の転炉吹錬に本焼結
鉱を使って上方投入し、従来使用していたMn鉱石の生
鉱石の場合と比較した。ところが、その結果は、従来使
用していた生鉱石のMn歩留と大差がなかったため、M
n歩留を向上させるためのMn焼結鉱に具備すべき条件
と、その製造方法の明確化が強く望まれていた。As for the blending conditions for limestone in this case, there is only data showing that the blending ratio is 10% and the CaO/SiO□ of the sintered ore is 1.3. Therefore, in order to evaluate the Mn yield improvement in less slag blowing of these Mn sintered ores, we used this sintered ore in converter blowing of hot metal that had undergone hot metal dephosphorization treatment. The raw ore of Mn ore was charged upward and compared with the case of conventionally used raw Mn ore. However, the result was not much different from the Mn yield of the conventionally used raw ore;
It has been strongly desired to clarify the conditions that Mn sintered ore should have in order to improve the n yield and the method for producing the same.
本発明の要旨は以下の通りである。 The gist of the invention is as follows.
(1) T 、 Mn= 40〜60W%、 Ca
O= 6〜.30W%。(1) T, Mn = 40-60W%, Ca
O=6~. 30W%.
SiO□=2〜10W%、Al20− = 0.5〜1
0W%、T。SiO□=2~10W%, Al20-=0.5~1
0W%, T.
Fe= 2〜15W%、 MgO≦5W%を含有し、C
ab/SjO,≧3、且つ気孔率が25〜50%である
製鋼精錬用のマンガン焼結鉱。Contains Fe=2~15W%, MgO≦5W%, C
Manganese sintered ore for steelmaking and refining having ab/SjO, ≧3 and a porosity of 25 to 50%.
(2) T 、 Mn = 40〜60W%、 C
aO= 6〜30W%。(2) T, Mn = 40-60W%, C
aO = 6-30W%.
5iOz= 2〜10W%、 Al20g = 0.5
〜10W%、T。5iOz=2~10W%, Al20g=0.5
~10W%, T.
Fe=2〜.15W%、 MgO≦5W%を含有すると
共にNatO,NaC1,NaF、 K10,Cab、
CaCl2. Bt03の1種又は2種以上の合計を
0.3〜5.0 W%含有し、Cab/SiO□≧3、
且つ気孔率が25〜50%である製鋼精錬用のマンガン
焼結鉱。Fe=2~. Contains 15W%, MgO≦5W%, and also contains NatO, NaCl, NaF, K10, Cab,
CaCl2. Contains 0.3 to 5.0 W% of one or more types of Bt03, Cab/SiO□≧3,
Manganese sintered ore for steelmaking and refining having a porosity of 25 to 50%.
(3)配合成分が5iot + A1.Os≦15W%
である配合マンガン鉱石を45〜80W%と、石灰石又
は生石灰を15〜40W%と、コークスを4〜15W%
とを配合して焼成することを特徴とする製鋼精錬用のマ
ンガン焼結鉱の製造方法。(3) The ingredients are 5iot + A1. Os≦15W%
45 to 80 W% of manganese ore, 15 to 40 W% of limestone or quicklime, and 4 to 15 W% of coke.
A method for producing manganese sintered ore for steelmaking and refining, which comprises blending and firing.
(4) マンガン鉱石の粒度構成を0.5〜5 mm
が80%以上、石灰石又は生石灰の粒度構成を0.05
〜l鵬が80%以上、コークスの粒度構成を0.5〜5
IIIff+が80%以上になるように調整することを
特徴とする前記(3)記載の製鋼精錬用のマンガン焼結
鉱の製造方法。(4) The particle size structure of manganese ore is 0.5 to 5 mm.
is 80% or more, and the particle size composition of limestone or quicklime is 0.05
~Peng is more than 80%, coke particle size composition is 0.5~5
The method for producing manganese sintered ore for steelmaking and refining as described in (3) above, which comprises adjusting the IIIff+ to be 80% or more.
(5)配合成分がsio! + Al2O3≦15W%
である配合マンガン鉱石を45〜80W%と、石灰石又
は生石灰を15W%以下と、コークスを4〜15W%と
を配合すると共に、CaO/S iozが2.5以上の
レススラグ吹錬滓を15〜40W%配合して焼成するこ
とを特徴とする製鋼精錬用のマンガン焼結鉱の製造方法
。(5) The ingredients are sio! + Al2O3≦15W%
45 to 80 W% of manganese ore, 15 to 15 W% of limestone or quicklime, and 4 to 15 W% of coke, and 15 to 80 W of less slag blowing slag with a CaO/S ioz of 2.5 or more. A method for producing manganese sintered ore for steelmaking and refining, which comprises blending and firing 40W%.
(6)マンガン鉱石の粒度構成を0.5〜5anが80
%以上、石灰石又は生石灰の粒度構成を0.05〜ll
Imが80%以上、コークスの粒度構成を0.5〜5m
が80%以上、レススラグ吹錬滓の粒度構成を0.1〜
5IIIITlが80%以上になるように調整すること
を特徴とする前記(5)記載の製鋼精錬用のマンガン焼
結鉱の製造方法。(6) The particle size structure of manganese ore is 0.5 to 5 an 80
% or more, the particle size composition of limestone or quicklime is 0.05-11
Im is 80% or more, coke particle size structure is 0.5-5m
is 80% or more, and the particle size composition of Resslag blowing slag is 0.1~
The method for producing manganese sintered ore for steelmaking and refining as described in (5) above, characterized in that the content of 5IIITl is adjusted to 80% or more.
先ず、上記第1の発明について、Mn焼結鉱の各組成を
規定した理由を以下に述べる。First, regarding the first invention, the reasons for specifying each composition of the Mn sintered ore will be described below.
T、 Mnは、40W%より少なくなると焼結鉱中のM
n−オキサイドの濃度が他の成分に希釈されて充分な還
元反応が進まないこと、および60W%を超えると焼結
鉱の融点が上昇し滓化しない為充分な反応速度が得られ
ないことより、40〜60W%にする。When T and Mn are less than 40W%, Mn in the sintered ore decreases.
This is because the concentration of n-oxide is diluted with other components and the reduction reaction does not proceed sufficiently, and when it exceeds 60W%, the melting point of the sinter increases and it does not become slag, so a sufficient reaction rate cannot be obtained. , 40 to 60 W%.
CaOおよび5iftについては、焼結鉱中のMn−オ
キサイドの活性化のためにCaO/SiO□を3以上に
調製する必要がある。Regarding CaO and 5ift, it is necessary to adjust CaO/SiO□ to 3 or more in order to activate Mn-oxide in the sintered ore.
A1□03については、0.5W%より少ないと焼結鉱
の滓化性が阻害されること、および10W%を超えると
焼結鉱中のMn−オキサイドの活性度が低下し反応しに
くくなることから、0.5〜10W%にする必要がある
。Regarding A1□03, if it is less than 0.5W%, the slagability of the sintered ore will be inhibited, and if it exceeds 10W%, the activity of Mn-oxide in the sintered ore will decrease and it will become difficult to react. Therefore, it is necessary to set it to 0.5 to 10 W%.
T、Feは、2W%より少ないと滓化しにくくなること
と、15W%を超える組成はMn鉱石の配合では得られ
ないことから、2〜15W%か適正範囲となる。If T and Fe are less than 2W%, it becomes difficult to form into slag, and a composition exceeding 15W% cannot be obtained by blending Mn ore, so the appropriate range is 2 to 15W%.
また、MgOについては、焼結鉱の滓化性を維持するた
め5%以下にしなければならない。Furthermore, MgO must be kept at 5% or less in order to maintain the slagability of the sintered ore.
さらに、第1図に示すようにMn焼結鉱の気孔率を25
〜50%にすることにより、Mn歩留が大幅に向上する
。これは、Mn歩留を高く維持するためには、上記組成
に調製し高塩基度にすることでMn焼結鉱中のMn−オ
キサイド分を活性化し、化学的にMn −オキサイド分
を還元しやすくすると同時に、反応界面積を確保するた
め気孔率をある一定値以上に保つことか必要であるから
である。なお、気孔率50%を超えると焼結鉱の強度か
低下し、搬送に耐えられなくなるため使用出来ない。Furthermore, as shown in Fig. 1, the porosity of Mn sintered ore was increased to 25
By setting it to 50%, the Mn yield is significantly improved. In order to maintain a high Mn yield, the Mn-oxide content in the Mn sintered ore is activated by adjusting the composition to have a high basicity, and the Mn-oxide content is chemically reduced. This is because it is necessary to maintain the porosity above a certain value in order to make it easier to use and at the same time to ensure the reaction interface area. Note that if the porosity exceeds 50%, the strength of the sintered ore will decrease and it will not be able to withstand transportation, so it cannot be used.
次に、上記第2の発明については、第1の発明に示した
焼結鉱に種々の添加剤を添加しその効果を調べた結果、
第2図に示すように、Na、0. NaCl。Next, regarding the second invention, as a result of adding various additives to the sintered ore shown in the first invention and investigating their effects,
As shown in FIG. 2, Na, 0. NaCl.
NaF、 K、O,CaF2. CaCl2. B20
.の1種又は2種以上の合計を0.3〜5.0W%含有
させることで、Mn−オキサイドの還元促進を更に助長
することが分かった。これらの成分の効果は、Mn焼結
鉱の融点低下効果とMn焼結鉱中のMn−オキサイドの
活性化効果の相乗効果によるものと考えられる。この効
果は、上記添加剤の合計濃度が0.3W%より少なけれ
ば得られないし、逆に5W%を超えてもその効果は大き
くは変わらずコストが高くなるだけである。NaF, K, O, CaF2. CaCl2. B20
.. It has been found that the reduction of Mn-oxide is further promoted by containing 0.3 to 5.0 W% of one or more of the following. The effects of these components are thought to be due to the synergistic effect of the melting point lowering effect of the Mn sintered ore and the activation effect of Mn-oxide in the Mn sintered ore. This effect cannot be obtained if the total concentration of the additives is less than 0.3 W%, and conversely, even if it exceeds 5 W%, the effect will not change much and the cost will only increase.
次に、上記Mn焼結鉱を得るための製造条件について述
べる。先ず、上記第3の発明の配合条件としては、Mn
焼結鉱の組成を上記組成に調製するため、第3図に示す
ように配合Mn鉱石中の5in2とAl2O3の合計濃
度を15%以下とすると共に、Mn鉱石を45〜80%
9石灰石又は生石灰を15〜40%配合し、さらに気孔
率を上記範囲に調製するためコークスを4〜15%配合
する必要がある。Next, manufacturing conditions for obtaining the above-mentioned Mn sintered ore will be described. First, as the blending conditions of the third invention, Mn
In order to adjust the composition of the sintered ore to the above composition, as shown in Figure 3, the total concentration of 5in2 and Al2O3 in the blended Mn ore is set to 15% or less, and the Mn ore is adjusted to 45 to 80%.
It is necessary to mix 15 to 40% of limestone or quicklime, and further mix 4 to 15% of coke in order to adjust the porosity to the above range.
また、上記第4の発明の配合物の粒度については、Mn
鉱石の粒度構成を0.5〜5Mが80%以上、コークス
の粒度構成を0.5〜5Mが80%以上に調製した上で
、石灰石又は生石灰の粒度構成を0.05〜1+n+n
が80%になるように調製することが必要である。Mn
鉱石の粒度調製は気孔率の調製のために必要であり、石
灰石又は生石灰の粒度は、第4図に示すとおり、高Ca
O/SiO□であってもCaO分によるふけ現象を起こ
さないために焼結時に鉱石と充分に融合出来るような小
サイズのものを使用することが必須である。Furthermore, regarding the particle size of the formulation of the fourth invention, Mn
After adjusting the particle size composition of ore to 80% or more of 0.5-5M and the particle size composition of coke to 80% or more of 0.5-5M, adjust the particle size composition of limestone or quicklime to 0.05-1+n+n.
It is necessary to adjust the amount so that it is 80%. Mn
Particle size adjustment of ore is necessary to adjust porosity, and the particle size of limestone or quicklime is high Ca as shown in Figure 4.
Even if it is O/SiO□, it is essential to use a material of a small size that can be sufficiently fused with the ore during sintering in order to prevent dandruff caused by the CaO content.
次に、上記第5および第6の発明について述べる。Next, the fifth and sixth inventions will be described.
これまで述べた上記の方法において、焼結鉱に添加する
CaO分は石灰石又は生石灰であったが、本発明者らは
産業廃棄物の利用についても検討し、溶銑予備処理で脱
燐した溶銑を転炉でレススラグ吹錬を行った際に発生す
る高塩基度で高(MnO)のレススラグ吹錬滓を活用す
ることが可能であることも突き止めた。In the above method described so far, the CaO content added to the sintered ore was limestone or quicklime, but the present inventors also investigated the use of industrial waste, and added hot metal that had been dephosphorized during hot metal pretreatment. It was also found that it is possible to utilize the high basicity and high (MnO) less slag blowing slag generated when less slag blowing is performed in a converter.
すなわち、Mn焼結鉱の組成を上記組成にすることは、
基本的に添加元素の全体配合比を調製することで達成出
来、CaO分としては必ずしも石灰石あるいは生石灰を
使用する必要はない。その代替として、レススラグ吹錬
滓は、高塩基度であるためCaO分を多く含み、Mn焼
結鉱の塩基度調製に利用できるうえに、Mn鉱石を添加
した吹錬における発生スラグであることから10〜40
W%の(MnO)を含んでおり、Mnソースとしても活
用でき、さらには(P2O3)が1%以下であるため転
炉内に再添加しても復燐の問題はなく、Mn焼結鉱の組
成調製剤として極めて適している。That is, making the composition of Mn sintered ore the above composition,
Basically, this can be achieved by adjusting the overall blending ratio of the additive elements, and it is not necessarily necessary to use limestone or quicklime as the CaO content. As an alternative, less slag blowing slag has a high basicity and therefore contains a large amount of CaO, and can be used to adjust the basicity of Mn sintered ore. 10-40
Contains W% (MnO) and can be used as a Mn source.Furthermore, since (P2O3) is less than 1%, there is no problem of rephosphorization even if it is re-added to the converter, and Mn sintered ore It is extremely suitable as a composition preparation agent.
この場合の配合条件としては、配合Mn鉱石中の5in
2とAI、O,の合計濃度を15W%以下とすると共に
、Mn鉱石を45〜80W%と、石灰石又は生石灰を1
5W%以下と、コークスを4〜15W%配合すると共に
、CaO分の必要量確保のためにCaO/SiO□が2
.5以上のレススラグ吹錬滓を15〜40%配合して焼
結する必要がある。CaO/5i02か2.5より低い
と、焼結鉱のCaO/SiO□を3以上にすることが出
来ない。In this case, the blending conditions are as follows: 5 inches in the blended Mn ore.
The total concentration of 2, AI, and O is 15 W% or less, and Mn ore is 45 to 80 W%, and limestone or quicklime is 1
5W% or less and coke of 4 to 15W%, and CaO/SiO□ is 2 to ensure the necessary amount of CaO.
.. It is necessary to mix and sinter 15 to 40% of Resslag blowing slag of 5 or more. If CaO/5i02 is lower than 2.5, the CaO/SiO□ of the sintered ore cannot be made to be 3 or more.
又、配合物の粒度としては、上記したと同様の理由から
、Mn鉱石の粒度構成を0.5〜Sunが80%以上、
コークスの粒度構成を0.5〜5Mが80%以上、石灰
石又は生石灰の粒度構成を0.05〜1 mmが80%
以上とした上で、レススラグ吹錬滓の粒度構成を0.1
〜5賦か80%以上にする必要がある。ここで、レスス
ラグ吹錬滓の粒度が石灰石又は生石灰より大きいのは、
転炉内で一旦スラグになったものであるのでふけの問題
が石灰石又は生石灰を用いた場合より軽減されるからで
ある。また、同様の理由で、レススラグ吹錬滓の配合は
Mn焼結鉱の融点降下にも寄与する。In addition, as for the particle size of the compound, for the same reason as mentioned above, the particle size composition of the Mn ore is 0.5 to 80% or more,
80% or more of the particle size composition of coke is 0.5-5M, and 80% of the particle size composition of limestone or quicklime is 0.05-1 mm.
Based on the above, the particle size composition of Resslag blowing slag is 0.1
~5 installments or 80% or more is required. Here, the particle size of Resslag blowing slag is larger than limestone or quicklime because
This is because the problem of dandruff is reduced compared to when limestone or quicklime is used since it is once turned into slag in the converter. Furthermore, for the same reason, the blending of less slag blowing slag also contributes to lowering the melting point of Mn sintered ore.
実施例の製造方法について第1表に、製造結果および転
炉吹錬への適用結果について第2表に示す。Table 1 shows the manufacturing method of the example, and Table 2 shows the manufacturing results and the results of application to converter blowing.
本発明は、転炉でのレススラグ吹錬時に高いMn歩留を
得るため、Mn焼結鉱の組成と性状、特に気孔率を特定
することにより低Mn歩留を解消するものであり、従来
のFe−Mn系合金を使用する方法より格段に製造コス
トを低減すると共に、転炉精錬で発生するスラグの活用
による更なるコストメリットをも享受でき、効果は極め
て大きい。The present invention solves the low Mn yield by specifying the composition and properties of Mn sintered ore, especially the porosity, in order to obtain a high Mn yield during less slag blowing in a converter. The manufacturing cost is much lower than the method using Fe-Mn alloy, and further cost benefits can be enjoyed by utilizing the slag generated in converter refining, and the effect is extremely large.
第1図は転炉におけるMn歩留に及ぼすMn焼結鉱の気
孔率の影響を示す図、
第2図はMn歩留に及ぼす低融黒化剤微量添加の影響を
示す図、
第3図はMn歩留に及ぼす配合鉱石中のSin、とAl
2O3の合計濃度の影響を示す図、第4図は焼結鉱のふ
け現象発生頻度に及ぼす石灰石又は生石灰の粒度の影響
を示す図である。
代理人 弁理士 秋 沢 政 光
他1名
7I′1図
才2図
グL’jL’f” (/、)Figure 1 is a diagram showing the influence of the porosity of Mn sintered ore on the Mn yield in a converter. Figure 2 is a diagram showing the influence of the addition of a small amount of low-melting blackening agent on the Mn yield. Figure 3 are the effects of Sin and Al in the blended ore on the Mn yield.
FIG. 4 is a diagram showing the influence of the total concentration of 2O3, and FIG. 4 is a diagram showing the influence of the particle size of limestone or quicklime on the frequency of occurrence of dandruff phenomenon in sintered ore. Agent: Patent attorney Masamitsu Aki Sawa and 1 other person 7I'1 Figure 2 Figure L'jL'f” (/,)
Claims (6)
%、SiO_2=2〜10W%、Al_2O_3=0.
5〜10W%、T.Fe=2〜15W%、MgO≦5W
%を含有し、CaO/SiO_2≧3、且つ気孔率が2
5〜50%である製鋼精錬用のマンガン焼結鉱。(1) T. Mn=40~60W%, CaO=6~30W
%, SiO_2=2~10W%, Al_2O_3=0.
5-10W%, T. Fe=2~15W%, MgO≦5W
%, CaO/SiO_2≧3, and porosity is 2
Manganese sintered ore for steel making and refining with a content of 5 to 50%.
%、SiO_2=2〜10W%、Al_2O_3=0.
5〜10W%、T.Fe=2〜15W%、MgO≦5W
%を含有すると共にNa_2O、NaCl、NaF、K
_2O、CaF_2、CaCl_2、B_2O_3の1
種又は2種以上の合計を0.3〜5.0W%含有し、C
aO/SiO_2≧3、且つ気孔率が25〜50%であ
る製鋼精錬用のマンガン焼結鉱。(2) T. Mn=40~60W%, CaO=6~30W
%, SiO_2=2~10W%, Al_2O_3=0.
5-10W%, T. Fe=2~15W%, MgO≦5W
% and contains Na_2O, NaCl, NaF, K
_2O, CaF_2, CaCl_2, B_2O_3 of 1
Contains 0.3 to 5.0 W% of a species or a total of two or more species, C
Manganese sintered ore for steelmaking and refining, with aO/SiO_2≧3 and a porosity of 25 to 50%.
%である配合マンガン鉱石を45〜80W%と、石灰石
又は生石灰を15〜40W%と、コークスを4〜15W
%とを配合して焼成することを特徴とする製綱精錬用の
マンガン焼結鉱の製造方法。(3) Mixed components are SiO_2+Al_2O_3≦15W
% manganese ore 45-80W%, limestone or quicklime 15-40W%, coke 4-15W
% and then calcined.
%以上、石灰石又は生石灰の粒度構成を0.05〜1m
mが80%以上、コークスの粒度構成を0.5〜5mm
が80%以上になるように調整することを特徴とする請
求項3記載の製鋼精錬用のマンガン焼結鉱の製造方法。(4) The particle size structure of manganese ore is 0.5 to 5 mm.
% or more, the particle size composition of limestone or quicklime is 0.05 to 1 m
m is 80% or more, and the coke particle size structure is 0.5 to 5 mm.
4. The method for producing manganese sintered ore for steelmaking and refining according to claim 3, wherein the amount of manganese sintered ore is adjusted to be 80% or more.
%である配合マンガン鉱石を45〜80W%と、石灰石
又は生石灰を15W%以下と、コークスを4〜15W%
とを配合すると共に、CaO/SiO_2が2.5以上
のレススラグ吹錬滓を15〜40W%配合して焼成する
ことを特徴とする製綱精錬用のマンガン焼結鉱の製造方
法。(5) Compounding ingredients are SiO_2+Al_2O_3≦15W
%, manganese ore is 45-80W%, limestone or quicklime is 15W% or less, and coke is 4-15W%.
A method for producing manganese sintered ore for steel refining, characterized in that 15 to 40 W% of less slag blowing slag with CaO/SiO_2 of 2.5 or more is blended and fired.
%以上、石灰石又は生石灰の粒度構成を0.05〜1m
mが80%以上、コークスの粒度構成を0.5〜5mm
が80%以上、レススラグ吹錬滓の粒度構成を0.1〜
5mmが80%以上になるように調整することを特徴と
する請求項5記載の製鋼精錬用のマンガン焼結鉱の製造
方法。(6) The particle size structure of manganese ore is 0.5 to 5 mm.
% or more, the particle size composition of limestone or quicklime is 0.05 to 1 m
m is 80% or more, and the coke particle size structure is 0.5 to 5 mm.
is 80% or more, and the particle size composition of Resslag blowing slag is 0.1~
6. The method for producing manganese sintered ore for steelmaking and refining according to claim 5, wherein the manufacturing method is adjusted so that 5 mm is 80% or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28561690A JPH0686613B2 (en) | 1990-10-23 | 1990-10-23 | Manganese sinter ore for steelmaking refining and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28561690A JPH0686613B2 (en) | 1990-10-23 | 1990-10-23 | Manganese sinter ore for steelmaking refining and its manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04160108A true JPH04160108A (en) | 1992-06-03 |
JPH0686613B2 JPH0686613B2 (en) | 1994-11-02 |
Family
ID=17693835
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28561690A Expired - Lifetime JPH0686613B2 (en) | 1990-10-23 | 1990-10-23 | Manganese sinter ore for steelmaking refining and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0686613B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BRPI0804694B1 (en) * | 2008-07-25 | 2018-11-21 | Vale Do Rio Doce Co | Manganese pellet production process from non-calcined manganese ore and manganese pellet obtained by such process |
-
1990
- 1990-10-23 JP JP28561690A patent/JPH0686613B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0686613B2 (en) | 1994-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5338056B2 (en) | Stainless steel refining method | |
TWI609839B (en) | Dephosphorization agent, refining agent and dephosphorization method for molten iron | |
TWI683000B (en) | Method for dephosphorizing molten iron | |
JP5553167B2 (en) | How to remove hot metal | |
JP2002053351A (en) | Pollution-free stainless steel slag and method for manufacturing the same | |
JPH04160107A (en) | Manganese sintered ore for steel refining and its production | |
JPH04160108A (en) | Manganese sintered ore for steel refining and its production | |
JP2561615B2 (en) | Method for producing complex slag refiner for refining used in out-of-furnace refining | |
CN100412209C (en) | Preparation of steel-smelting carburant | |
JP2808045B2 (en) | Unfired manganese ore pellets for steel refining | |
CN110964878A (en) | Dephosphorizing agent for efficiently dephosphorizing for converter and preparation method and application thereof | |
JP2781266B2 (en) | Method for producing molten low-density specific gravity flux for welding | |
KR100415659B1 (en) | A cement composition and a method thereof using ladle slag | |
KR100557004B1 (en) | The additive made of Al-dross for desulfurizing | |
JP6011556B2 (en) | Method for producing phosphate fertilizer raw material | |
CN104060050B (en) | A kind of method of desulfurization dephosphorization agent and half steel desulfurization dephosphorization simultaneously | |
KR101431795B1 (en) | Slag deoxidation for electric furnace operation | |
JP2004346402A (en) | Method of refining steel material for spring | |
KR890004042B1 (en) | Dephosphorus drug for melting iron | |
KR101960934B1 (en) | Flux and the method thereof | |
JPH04202615A (en) | Manganese ore pellet for steelmaking and refining | |
JP4255816B2 (en) | Method for suppressing fluorine elution in electric furnace slag | |
JPH06346159A (en) | Production of sintered ore | |
JP2000334596A (en) | Production of calcined flux for submerged arc welding | |
JPS61113732A (en) | Sintering method of chrome ore |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071102 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081102 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081102 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091102 Year of fee payment: 15 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101102 Year of fee payment: 16 |
|
EXPY | Cancellation because of completion of term |