JPH04202394A - Organic luminescent element, production thereof and optically neural network using the same element - Google Patents

Organic luminescent element, production thereof and optically neural network using the same element

Info

Publication number
JPH04202394A
JPH04202394A JP2335909A JP33590990A JPH04202394A JP H04202394 A JPH04202394 A JP H04202394A JP 2335909 A JP2335909 A JP 2335909A JP 33590990 A JP33590990 A JP 33590990A JP H04202394 A JPH04202394 A JP H04202394A
Authority
JP
Japan
Prior art keywords
light
layer
organic light
general formula
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2335909A
Other languages
Japanese (ja)
Other versions
JP2708274B2 (en
Inventor
Akio Takimoto
昭雄 滝本
Masaaki Suzuki
正明 鈴木
Michio Okajima
岡島 道生
Kuni Ogawa
小川 久仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP33590990A priority Critical patent/JP2708274B2/en
Priority to EP91113370A priority patent/EP0470629B1/en
Priority to US07/742,421 priority patent/US5331182A/en
Priority to DE69118615T priority patent/DE69118615T2/en
Publication of JPH04202394A publication Critical patent/JPH04202394A/en
Application granted granted Critical
Publication of JP2708274B2 publication Critical patent/JP2708274B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)
  • Luminescent Compositions (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Led Devices (AREA)
  • Electroluminescent Light Sources (AREA)
  • Optical Communication System (AREA)

Abstract

PURPOSE:To obtain an organic luminescent element having high luminance and low change of luminescent brightness with time by laminating a specific polymer to a substrate by a vapor-liquid interface developing film-forming method. CONSTITUTION:A polymer having a repeating unit shown by the formula [n>=2; X is O, S, Se or Te; Y is (substituted) aromatic group; Z is imide ring-containing group] is laminated to a face of substrate such as glass to give the objective luminescent element. The luminescent element is useful for a light arithmetic unit or a space light-modulating element such as luminous type display.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、光演算装置または発光型デイスプレィなどに
用いられる空間光変調素子などの発光素子及びその製造
方法並びにこれを用いた光ニューラルネットワーク素子
に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a light-emitting device such as a spatial light modulation device used in an optical processing device or a light-emitting display, a method for manufacturing the same, and an optical neural network device using the same. It is related to.

[従−来技術] 近年、有機化合物を構成材料として用いた有機発光素子
の試みが報告された。例えば、ジャパニーズ・ジャーナ
ル・オブ・アプライド・フィジックス、  (Japa
nese Jounal of Applied Ph
1sics)27 (2)(1988)L269頁に記
載されている有機発光層および電荷輸送層を積層した構
造の電界発光素子等がある。ガラス基板上に半透明のA
u製の下部電極を設け、その上に、膜厚2000A(オ
ングストローム)のN、N’  −ジフェニル−N、N
’ −(3−メチルフェニル)−1,1′−ビフェニル
−4,4′−ジアミン(以後、TPDと略称する。)よ
りなる正孔輸送層、そしていずれも膜厚1000Aの、
有機発光層及びペリレンテトラカルボキシル基誘導体よ
りなる電子輸送層が構成されている。上部電極はMg薄
膜よりなる。有機発光層の材料としてフタロペリノン誘
導体を用い、静電界を印加することで明るい電界発光が
観測されている(第35回応用物理学合巻期講演会)。
[Prior Art] In recent years, attempts have been made to develop organic light emitting devices using organic compounds as constituent materials. For example, Japanese Journal of Applied Physics,
nese Journal of Applied Ph.
1sics) 27 (2) (1988), page L269, there is an electroluminescent device having a structure in which an organic light-emitting layer and a charge transport layer are laminated. Transparent A on a glass substrate
A lower electrode made of u is provided, and on top of that, N,N'-diphenyl-N,N with a film thickness of 2000A (angstrom) is provided.
'-(3-methylphenyl)-1,1'-biphenyl-4,4'-diamine (hereinafter abbreviated as TPD), and a hole transport layer of 1000A in thickness.
An organic light emitting layer and an electron transport layer made of a perylene tetracarboxyl group derivative are configured. The upper electrode is made of a Mg thin film. Bright electroluminescence has been observed when a phthaloperinone derivative is used as the material for the organic light-emitting layer and an electrostatic field is applied (35th Annual Conference on Applied Physics).

有機発光層の材料を選択することで、発光波長を変化さ
せることができる。
By selecting the material of the organic light emitting layer, the emission wavelength can be changed.

[発明が解決しようとする課題] 電荷輸送層と発光層を積層することで、電極からの電荷
注入を増加し且つ発光効率を従来の有機発光素子に較べ
飛躍的に向上してはいるが、発光効率は0.5%以下と
低く、改良が必要である。
[Problems to be Solved by the Invention] By stacking a charge transport layer and a light emitting layer, charge injection from an electrode is increased and luminous efficiency is dramatically improved compared to conventional organic light emitting devices. The luminous efficiency is low at 0.5% or less, and improvement is required.

また、発光輝度の経時変化も大きく、特に発光層への電
荷注入効率の低下、電荷輸送層での空間電荷の蓄積が問
題となる。
In addition, the luminance of the emitted light changes greatly over time, which causes problems, particularly the reduction in charge injection efficiency into the light emitting layer and the accumulation of space charges in the charge transport layer.

発光輝度の低下は以下の要因が考えられている。The following factors are thought to be responsible for the decrease in luminance.

■ 発光層を形成する分子が結晶化し、消光する。■ Molecules forming the light-emitting layer crystallize and quench light.

■ 発光層を耐酸する分子が酸素分子等によって化学反
応して分解する。
■ The molecules that make the light-emitting layer resistant to acid undergo a chemical reaction with oxygen molecules and decompose.

■ 膜中に電荷が蓄積され、外部より電荷注入が阻害さ
れる。
■ Charge is accumulated in the film, and charge injection from the outside is inhibited.

本発明は、前記従来技術の課題を解決するため、高輝度
で発光輝度の経時変化も少ない有機発光素子及びその製
造方法並びに前記発光素子を用いた光ニューラルネット
ワーク素子を提供することを目的とする。
In order to solve the problems of the prior art, it is an object of the present invention to provide an organic light-emitting device with high brightness and little change in luminance over time, a method for manufacturing the same, and an optical neural network device using the light-emitting device. .

[課題を解決するための手段] 前記目的を達成するため、本発明の有機発光素子は、下
記の一般式(A)で示される繰り返し単位を含む高分子
を含有する層を発光層として有するものである。
[Means for Solving the Problems] In order to achieve the above object, the organic light emitting device of the present invention has a layer containing a polymer containing a repeating unit represented by the following general formula (A) as a light emitting layer. It is.

−Z−(−X−Y−)  −(A) (ただし、n≧2 X:0.S、Se、Teのいずれか Y:芳香族または置換芳香族の基 Z:イミド環を含む基) 前記構成においては、一般式(A)で示される高分子が
他の受光層と積層されてなることが好ましい。
-Z-(-X-Y-) -(A) (However, n≧2 X: 0. Any one of S, Se, or Te Y: Aromatic or substituted aromatic group Z: Group containing an imide ring) In the above structure, it is preferable that the polymer represented by the general formula (A) is laminated with another light-receiving layer.

また本発明方法は、前記一般式(A)で表わされる繰り
返し単位を含む高分子を、気液界面展開成膜法によって
基板面に積層するものである。
Further, in the method of the present invention, a polymer containing a repeating unit represented by the general formula (A) is laminated on a substrate surface by a gas-liquid interface deposition method.

また本発明の光ニューラルネットワーク素子は、基板の
上に下部電極を備え、その上に受光層、発光層、電荷輸
送層、透明電極を順次積層した光ニューラルネットワー
ク素子であって、前記発光層に前記一般式(A)で示さ
れる繰り返し単位を含む高分子を含有する層を有するこ
とを特徴とする。
Further, the optical neural network device of the present invention is an optical neural network device that includes a lower electrode on a substrate, and a light-receiving layer, a light-emitting layer, a charge transport layer, and a transparent electrode are sequentially laminated on the lower electrode, and the light-emitting layer is It is characterized by having a layer containing a polymer containing a repeating unit represented by the general formula (A).

[作用] 前記本発明の構成によれば、前記一般式(A)で示され
る繰り返し単位を含む高分子を含有する層を発光層とし
て有するので、発光層が耐熱性高分子の主鎖骨格内また
は側鎖に組み込まれてなり、発光部である一般式(A)
のZ基は分子レベルで分散されており、互いに凝集体を
形成することはない。この結果、高輝度で発光輝度の経
時変化も少ない有機発光素子とすることができる。また
膜中を流れる電流によるジュール熱で母体高分子が融け
て結晶化する可能性は低い。さらに、一般式(A)のY
基は膜中の電荷輸送能力に優れている。
[Function] According to the configuration of the present invention, since the layer containing the polymer containing the repeating unit represented by the general formula (A) is included as a light-emitting layer, the light-emitting layer is formed within the main chain skeleton of the heat-resistant polymer. Or the general formula (A) is incorporated into the side chain and is a light emitting part.
The Z groups are dispersed at the molecular level and do not form aggregates with each other. As a result, an organic light-emitting element with high luminance and little change in luminance over time can be obtained. Furthermore, there is a low possibility that the host polymer will melt and crystallize due to Joule heat caused by the current flowing through the film. Furthermore, Y in general formula (A)
The group has excellent charge transport ability in the membrane.

よって膜中電荷蓄積は少ない。Therefore, charge accumulation in the film is small.

また、一般式(A)で示される高分子が他の受光層と積
層されてなるという本発明の好ましい構成によれば、発
光効率をさらに上げることができる。
Further, according to a preferred configuration of the present invention in which the polymer represented by the general formula (A) is laminated with another light-receiving layer, the luminous efficiency can be further increased.

また、前記一般式(A)で表わされる繰り返し単位を含
む高分子を、気液界面展開成膜法によって基板面に積層
するという本発明方法によれば、薄くてかつ欠点のない
膜を得ることができる。発光層の発光部は電極或は他の
電荷輸送層との界面近傍に限られる。よって発光層はピ
ンホールの発生しない程度に薄い方が有利である。また
駆動電圧を下げる意味においても有利である。と(に好
ましくは、一般式(A)の高分子をラングミュア−プロ
ジェット法(LB法)により基板面に積層すれば、数原
子層の薄さでピンホールなしの高分子層が得られる。
Further, according to the method of the present invention in which a polymer containing a repeating unit represented by the general formula (A) is laminated on a substrate surface by a gas-liquid interfacial deposition method, a thin and defect-free film can be obtained. I can do it. The light emitting portion of the light emitting layer is limited to the vicinity of the interface with the electrode or other charge transport layer. Therefore, it is advantageous for the light-emitting layer to be thin enough to prevent pinholes from occurring. It is also advantageous in terms of lowering the driving voltage. Preferably, by laminating a polymer of general formula (A) on a substrate surface by the Langmuir-Prodgett method (LB method), a polymer layer with a thickness of several atomic layers and without pinholes can be obtained.

また本発明の、基板の上に下部電極を備え、その上に受
光層、発光層、電荷輸送層、透明電極を順次積層した光
ニューラルネットワーク素子であって、前記発光層に前
記一般式(A)で示される繰り返し単位を含む高分子を
含有する層を有するという光ニューラルネットワーク素
子の構成によれば、正確な認識が可能な素子とすること
ができる。
Further, there is provided an optical neural network device according to the present invention, in which a lower electrode is provided on a substrate, and a light-receiving layer, a light-emitting layer, a charge transport layer, and a transparent electrode are sequentially laminated thereon, wherein the light-emitting layer has the general formula (A ) According to the structure of the optical neural network element having a layer containing a polymer containing the repeating unit shown in ( ), it is possible to make the element capable of accurate recognition.

[実施例] 本発明の実施例について、図面を参照しながら説明する
[Examples] Examples of the present invention will be described with reference to the drawings.

第1図に本発明の有機発光素子の一実施例の断面図を示
す。素子の構成は、透明絶縁性基板101(例えばガラ
ス)iに透明導電性電極102(例えばI To、 S
 n OX )があり、有機発光層103を積層する。
FIG. 1 shows a sectional view of an embodiment of the organic light emitting device of the present invention. The structure of the device is such that a transparent insulating substrate 101 (for example, glass) i and a transparent conductive electrode 102 (for example, I To, S
n OX ), and an organic light-emitting layer 103 is stacked thereon.

次にその上に上部電極104を設ける。透明導電性電極
102と上部電極104の間に外部電圧として直流ある
いは交流電場を印加する。有機発光層103の膜厚は5
A〜5000Aの範囲であることが好ましい。
Next, an upper electrode 104 is provided thereon. A direct current or alternating current electric field is applied as an external voltage between the transparent conductive electrode 102 and the upper electrode 104. The thickness of the organic light emitting layer 103 is 5
It is preferable that it is in the range of A to 5000A.

第2図に本発明の有機発光素子の一実施例の断面図を示
す。素子の構成は、透明絶縁性基板201(例えばガラ
ス)上に透明導電性電極202(例えばITo、5nO
x)があり、電荷輸送層203と有機発光層204を積
層する。次にその上に上部電極205を設ける。透明導
電性電極202と上部電極205の間に外部電圧として
直流あるいは交流電場を印加する。有機発光層204と
上部電極205の間に電荷輸送層を設けてもよい。電荷
輸送層203の膜厚は100A〜5μmの範囲が好まし
い。
FIG. 2 shows a sectional view of an embodiment of the organic light emitting device of the present invention. The device has a transparent conductive electrode 202 (for example, ITo, 5nO) on a transparent insulating substrate 201 (for example, glass).
x), in which a charge transport layer 203 and an organic light emitting layer 204 are laminated. Next, an upper electrode 205 is provided thereon. A direct current or alternating current electric field is applied as an external voltage between the transparent conductive electrode 202 and the upper electrode 205. A charge transport layer may be provided between the organic light emitting layer 204 and the upper electrode 205. The thickness of the charge transport layer 203 is preferably in the range of 100 A to 5 μm.

第3図に素子の構成として有機受光層を有する場合の一
実施例の断面図を示す。絶縁性基板301上に下部電極
302があり、受光層303と有機発光層304を積層
する。さらに電荷輸送層305を積層し透明電極306
を設ける。下部電極は透明導電性電極であってもよい。
FIG. 3 shows a cross-sectional view of an embodiment in which the element has an organic light-receiving layer. A lower electrode 302 is provided on an insulating substrate 301, and a light receiving layer 303 and an organic light emitting layer 304 are laminated thereon. Furthermore, a charge transport layer 305 is laminated to form a transparent electrode 306.
will be established. The lower electrode may be a transparent conductive electrode.

透明導電性電極306と下部電極306の間に外部電圧
として直流あるいは交流電場を印加する。
A direct current or alternating current electric field is applied as an external voltage between the transparent conductive electrode 306 and the lower electrode 306.

有機発光層304より発光する光を有機受光層303で
受光する場合はメモリー特性を有する発光素子となる。
When the organic light-receiving layer 303 receives light emitted from the organic light-emitting layer 304, the device becomes a light-emitting element with memory characteristics.

また、下部電極302を透明導電性電極として、外部よ
り下部電極302を通して光を照射し、有機受光層30
3で受光する場合は発光型の空間光変調素子となる。更
に両者を兼ねることでメモリー性を有する空間光変調素
子となる。
Further, by using the lower electrode 302 as a transparent conductive electrode, light is irradiated from the outside through the lower electrode 302, and the organic light-receiving layer 30
3, it becomes a light-emitting spatial light modulator. Furthermore, by combining both functions, it becomes a spatial light modulator having memory properties.

本発明の一般式(A)で示される高分子の一例として次
のものがある。
Examples of the polymer represented by the general formula (A) of the present invention include the following.

O0 前記の式においてmの好ましい範囲は1O−1o、oo
oである。Arとしては、例えば下記に前記A2式にお
いて、nは1〜5の範囲が好ましい。
O0 In the above formula, the preferred range of m is 1O-1o, oo
It is o. As for Ar, for example, in the formula A2 shown below, n is preferably in the range of 1 to 5.

一般式(A)の発光部X基としては代表例として3原色
に対応して、それぞれペリレン(オレンジ色)、コロネ
ン(緑)、アントラセン(青)がある。なお、芳香族ま
たは置換芳香族として以下のものが例として挙げられる
。アントラセン、ナフタレン、ピレン、ペリレン、ナフ
タセン、ベンゾアントラセン、ベンゾフェナントレン、
クリセン、トリフェニレン、フェナントレン等の縮合多
環炭化水素及びその置換誘導体、アントラキノン、ジベ
ンゾピレンキノン、アントアントロン、イソビオラント
ロン、ピラントロン等の縮合多環キノン及びその置換誘
導体である。
Representative examples of the light-emitting moiety X group in general formula (A) include perylene (orange), coronene (green), and anthracene (blue), corresponding to the three primary colors. In addition, the following are mentioned as examples of aromatics or substituted aromatics. anthracene, naphthalene, pyrene, perylene, naphthacene, benzanthracene, benzophenanthrene,
These include fused polycyclic hydrocarbons and substituted derivatives thereof such as chrysene, triphenylene, and phenanthrene, and fused polycyclic quinones and substituted derivatives thereof such as anthraquinone, dibenzopyrenequinone, anthanthrone, isoviolanthrone, and pyranthrone.

一般式(A)のY基としてはその代表例とじてが挙げら
れる。
Typical examples of the Y group in general formula (A) include:

一般式(A)のZ基として以下の例がある。Examples of the Z group in general formula (A) are as follows.

実施例1 第1図の有機発光素子において、透明絶縁性基2板10
1としてガラス基板を使用し、これに透明導電性電極1
02として0.1〜0.5μm厚のITOをスパッタリ
ング法により成膜する。有機発光層103として、アン
トラセンを発光部として有する高分子A2を形成した。
Example 1 In the organic light emitting device shown in FIG.
A glass substrate is used as 1, and a transparent conductive electrode 1 is attached to this.
As No. 02, an ITO film having a thickness of 0.1 to 0.5 μm is formed by sputtering. As the organic light-emitting layer 103, a polymer A2 having anthracene as a light-emitting portion was formed.

次に成膜法としては、スピンコードなども使用できるが
、気液界面成膜法の一例としてLB法を用いた。以下、
LB法により膜形成するため手順を説明する。
Next, as a film forming method, a spin code or the like can be used, but the LB method was used as an example of a gas-liquid interface film forming method. below,
The procedure for forming a film by the LB method will be explained.

膜形成に用いたLB法の累積装置の概略図を第4図に示
す。第4図において、401はLB装置、402は純水
展開液槽、403は基板、404は加重である。
A schematic diagram of the LB method accumulator used for film formation is shown in FIG. In FIG. 4, 401 is an LB device, 402 is a pure water developing liquid tank, 403 is a substrate, and 404 is a weight.

アントラセンを発光部として有するジアミン化合物と芳
香族テトラカルボン酸二無水物の無水ピロメリット酸、
を1:1の比率で有機溶媒ジメチルアセトアミドに添加
し、ポリアミド酸を重合する。
A diamine compound having anthracene as a light emitting moiety and pyromellitic anhydride of aromatic tetracarboxylic dianhydride;
is added to an organic solvent dimethylacetamide in a ratio of 1:1 to polymerize polyamic acid.

このポリアミド酸をジメチルアセトアミド、ベンゼン1
:1の混合溶媒で1mmol/Lに希釈する。一方LB
法を適用するためにポリアミド酸を長鎖アルキルアミン
との塩形成を行なう。すなわちN、 N−ジメチル−n
−ヘキサデシルアミン(以下、C16DMAと称す)を
ジメチルアセトアミド、ベンゼン1:1の混合溶媒で1
mmol/Lに調整する。LB法で気水界面に展開する
直前にポリアミド酸:C16DC16D:2に調整し、
純水面上に展開する。LB法におけるポリアミド酸単分
子膜の累積条件は、表面圧25dyn/cm、引き上げ
速度:3〜10mm/mi n、室温20℃とした。2
0層展開し、積層膜の膜厚を100A(オングストロー
ム)とする。最後にポリアミド酸累積膜のイミド化は、
化学的イミド化法による。無水酢酸:ピリジン:ベンゼ
ン=1:l:3の混合液に基板を12時間浸漬し、ポリ
イミド累積膜とする。その後ベンゼンで洗浄し溶媒除去
する。
This polyamic acid is dimethylacetamide, benzene 1
: Dilute to 1 mmol/L with a mixed solvent of 1. On the other hand, LB
To apply the method, polyamic acids are salt-formed with long-chain alkyl amines. i.e. N, N-dimethyl-n
-Hexadecylamine (hereinafter referred to as C16DMA) was dissolved in a mixed solvent of dimethylacetamide and benzene 1:1.
Adjust to mmol/L. Polyamic acid: C16DC16D: Adjusted to 2 immediately before being developed at the air-water interface using the LB method,
Develop on the surface of pure water. The cumulative conditions of the polyamic acid monomolecular film in the LB method were a surface pressure of 25 dyn/cm, a pulling rate of 3 to 10 mm/min, and a room temperature of 20°C. 2
0 layers are developed, and the thickness of the laminated film is set to 100A (angstroms). Finally, the imidization of the polyamic acid cumulative film is
By chemical imidization method. The substrate is immersed in a mixed solution of acetic anhydride:pyridine:benzene=1:l:3 for 12 hours to form a polyimide cumulative film. Thereafter, the solvent is removed by washing with benzene.

この素子の電気特性、発光特性を調べた。透明導電性電
極102と上部電極104の間に直流電圧を印加する。
The electrical characteristics and light emitting characteristics of this device were investigated. A DC voltage is applied between the transparent conductive electrode 102 and the upper electrode 104.

その電圧−電流特性を第5図に、電流−発光輝度特性を
第6図に示す。印加直流電圧5v以上で電流密度が10
0mA/car以上となる。このとき発光輝度は100
cd/n(を越え初め、印加電圧10vでは、およそ5
00cd/イの発光輝度が得られた。
Its voltage-current characteristics are shown in FIG. 5, and its current-emission brightness characteristics are shown in FIG. When the applied DC voltage is 5V or more, the current density is 10
It becomes 0mA/car or more. At this time, the luminance is 100
At the beginning of exceeding cd/n (at an applied voltage of 10 V, approximately 5
A luminance of 00 cd/i was obtained.

また発光部の基をアントラセンの他にナフタレン、ピレ
ン、ペリレンを成膜した。その印加電圧10■での発光
スペクトルを第7図に示す。
In addition to anthracene, naphthalene, pyrene, and perylene were used as the base for the light-emitting part. The emission spectrum at an applied voltage of 10 cm is shown in FIG.

実施例2 第2図の有機発光素子において、透明絶縁性基板201
としてガラス基板を使用し、これに透明導電性電極20
2として0,1〜0.5μm厚のITOをスパッタリン
グ法により成膜し、電荷輸送層203を形成する。電荷
輸送層203の材料にはベンゾフェノンテトラカルボン
酸二無水物(以下BPDAと称する。)とオリゴパラフ
ェニレンスルフィドジアミンから重合されるポリイミド
(以下、BPDA−nと称する)を使った。ポリイミド
の前駆体であるポリアミック酸の合成は、BPDAとオ
リゴパラフェニレンスルフィドジアミンを溶媒ジメチル
アセトアミド中で行う。このポリアミック酸をスピナー
により前出基板面に500A〜200OAの範囲で塗布
する。塗布後、基板を熱処理炉に入れ、300℃2時間
の加熱処理を施す。この過程でポリイミド膜はイミド化
と結晶化がなされる。有機発光層204として、実施例
1と同様の方法で高分子A2を5原子層成膜した。
Example 2 In the organic light emitting device shown in FIG.
A glass substrate is used as a substrate, and a transparent conductive electrode 20 is attached to this.
2, a charge transport layer 203 is formed by forming an ITO film with a thickness of 0.1 to 0.5 μm by sputtering. As the material for the charge transport layer 203, polyimide (hereinafter referred to as BPDA-n) polymerized from benzophenone tetracarboxylic dianhydride (hereinafter referred to as BPDA) and oligoparaphenylene sulfide diamine was used. Synthesis of polyamic acid, which is a precursor of polyimide, is carried out using BPDA and oligoparaphenylene sulfide diamine in a solvent dimethylacetamide. This polyamic acid is applied to the surface of the substrate using a spinner in an amount of 500A to 200OA. After coating, the substrate is placed in a heat treatment furnace and heat treated at 300° C. for 2 hours. In this process, the polyimide film is imidized and crystallized. As the organic light-emitting layer 204, a 5-atomic layer of polymer A2 was formed in the same manner as in Example 1.

この素子の電気特性、発光特性を調べた。透明導電性電
極202と上部電極205の間に直流電圧を印加する。
The electrical characteristics and light emitting characteristics of this device were investigated. A DC voltage is applied between the transparent conductive electrode 202 and the upper electrode 205.

その電圧−電流特性を第8図に、電流−発光輝度特性を
第9図に示す。印加直流電圧7v以上で電流密度が10
0mA/cnf以上となる。このとき発光輝度は100
cd/mを越え初め、印加電圧10vでは、およそ50
’Ocd/rriの発光輝度が得られた。
Its voltage-current characteristics are shown in FIG. 8, and its current-emission brightness characteristics are shown in FIG. When the applied DC voltage is 7V or more, the current density is 10
It becomes 0mA/cnf or more. At this time, the luminance is 100
cd/m, and at an applied voltage of 10 V, approximately 50
Emission brightness of 'Ocd/rri was obtained.

実施例3 有機受光層にポリイミドを用いたメモリー特性を有する
発光素子を製作した。素子構造は第3図に示すものであ
る。下部電極302としてITOを形成したガラス基板
301上に受光層303として実施例2の方法でBPD
A−2を2μm成膜する。発光層には480nmに発光
ピーク波長を持つアントラセン、460nmに発光ピー
ク波長を持つナフタレンを含有する高分子A2.Alを
用いた。BPDA−Ph3の感度領域550nmより短
波長である。透明電極206はITOを室温で成膜した
Example 3 A light-emitting element having memory characteristics using polyimide in the organic light-receiving layer was manufactured. The device structure is shown in FIG. BPD was formed as a light-receiving layer 303 by the method of Example 2 on a glass substrate 301 on which ITO was formed as a lower electrode 302.
A-2 is deposited to a thickness of 2 μm. The light-emitting layer contains polymer A2. containing anthracene having a peak emission wavelength of 480 nm and naphthalene having a peak emission wavelength of 460 nm. Al was used. The wavelength is shorter than the sensitivity range of 550 nm of BPDA-Ph3. The transparent electrode 206 was formed by forming an ITO film at room temperature.

印加電圧−発光輝度特性を第10図に示す。発光特性は
履歴特性を持つ。40v印加で発光状態に移った後は、
印加電圧を20v以下に設定するまで発光状態を保つ。
The applied voltage-emission brightness characteristics are shown in FIG. The luminescence characteristics have history characteristics. After entering the light emitting state by applying 40V,
The light emitting state is maintained until the applied voltage is set to 20V or less.

実施例4 実施例2の有機発光素子構造において、発光層に青色と
してアントラセンを有するA2、緑色としてピレンのA
4、赤色としてペリレンのA3の3原色を画素に展開し
てフルカラーデイスプレィを作製した。
Example 4 In the organic light emitting device structure of Example 2, A2 having anthracene as the blue color in the light emitting layer and pyrene as the green color in the light emitting layer.
4. A full-color display was created by developing the three primary colors of perylene A3 into pixels as red.

この画像表示装置は、発光輝度50fL時の半減寿命に
おいて、1000時間以上を達成することができた。ま
た、エネルギー変換効率は、1゜0〜3.3%であった
。本実施例により、長寿命の、低電圧で安定に駆動する
、高輝度マルチカラーデイスプレィを実現することがで
きた。
This image display device was able to achieve a half-life of more than 1000 hours when the luminance was 50 fL. Moreover, the energy conversion efficiency was 1°0 to 3.3%. According to this example, it was possible to realize a high-brightness multi-color display that has a long life and is driven stably at low voltage.

実施例5 発光型の空間光変調素子を製作した。素子構造は実施例
3と同様である。この場合は受光層3゜3はガラス基板
301からの光入射によって光書き込みされる。入射光
は半導体レーザー(780%m)とした。この波長に対
して感度を有する受光層として無金属フタロシアニンを
2重量%含有するポリイミド膜BPDA−2を実施例3
とほぼ同様の方法で成膜した。発光層304は実施例3
と同様な方法で480 nmに発光ピークを有する高分
子A2を使った。入射光強度に対する発光輝度変化を第
11図に示す。非線形特性とメモリー性が生じる。即ち
光書き込みされ発光状態になった部分は入射光が無くな
った後も発光を維持する。
Example 5 A light-emitting spatial light modulator was manufactured. The element structure is the same as in Example 3. In this case, the light-receiving layer 3.3 is optically written by light incident on the glass substrate 301. The incident light was a semiconductor laser (780% m). Example 3 A polyimide film BPDA-2 containing 2% by weight of metal-free phthalocyanine was used as a light-receiving layer sensitive to this wavelength.
The film was formed using almost the same method. The light emitting layer 304 is Example 3
Polymer A2 having an emission peak at 480 nm was used in the same manner as above. FIG. 11 shows the change in luminance of light emission with respect to the intensity of incident light. Nonlinear characteristics and memorability occur. That is, the portion that has been optically written into a light-emitting state continues to emit light even after the incident light disappears.

印加電圧35vの状態で入射光が照射されると受光層3
03は電圧降下し、発光層304に電界が集中し、発光
状態となる。入射光がなくても受光層は発光層からの照
射によって低抵抗な状態を維持し、発光は持続する。印
加電圧が5v以下となって消光状態になり、もとの35
v状態に戻っても受光層203は高抵抗になっているの
で消光は持続する。
When the incident light is irradiated with an applied voltage of 35 V, the light receiving layer 3
03, the voltage drops and the electric field concentrates on the light-emitting layer 304, resulting in a light-emitting state. Even in the absence of incident light, the light-receiving layer maintains a low resistance state due to irradiation from the light-emitting layer, and light emission continues. When the applied voltage becomes less than 5V, the light becomes quenched, and the original 35
Even if the light-receiving layer 203 returns to the v state, the light-receiving layer 203 has a high resistance, so extinction continues.

この有機発光素子素子を使って光ニューラルネットワー
クを構成し、その機能動作を確認した。
We constructed an optical neural network using this organic light-emitting device and confirmed its functionality.

第12図に構成を示す。直交学習法を用いており、実施
例1の発光素子をもちいた入射画像111、マイクロレ
ンズアレイ112、学習マスクパターン113、本実施
例の有機発光素子による光しきい鎖素子114からなる
。入力画像111は6×6のマトリックスでアルファベ
ット10文字を表示する。画像入力はメモリー性を使い
、各画素に電気的に書き込む。学習マスクパターン11
3は36X36のマトリックスからなり、直交学習法で
求めた8階調表示を透過光強度で表現できるように透過
率を変化させたフィルムである。光しきい鎖素子114
は6×6のマトリックスであり、各画素にはマイクロレ
ンズアレイ113で6×6ケのマスクパターンからの透
過光が集光されている。第9図に示す光非線形特性に依
って発光する。
Figure 12 shows the configuration. The orthogonal learning method is used and consists of an incident image 111 using the light emitting device of Example 1, a microlens array 112, a learning mask pattern 113, and a light threshold chain element 114 using the organic light emitting device of this example. The input image 111 displays 10 alphabetic characters in a 6×6 matrix. Image input uses memory and writes electrically to each pixel. Learning mask pattern 11
3 is a film consisting of a 36×36 matrix, and the transmittance is changed so that the 8-gradation display determined by the orthogonal learning method can be expressed by the transmitted light intensity. Optical threshold chain element 114
is a 6×6 matrix, and transmitted light from 6×6 mask patterns is focused on each pixel by a microlens array 113. Light is emitted based on the optical nonlinear characteristics shown in FIG.

このシステムを用いてアルファベット10文字の完全パ
ターンの自己想起とハミング距離1の不完全パターンの
連想に対して100%の認識率で回答した。
Using this system, a 100% recognition rate was obtained for self-recall of a complete pattern of 10 letters of the alphabet and association of an incomplete pattern with a Hamming distance of 1.

以上説明した通り上記本発明の実施例によれば、一般式
(A)の高分子を発光層とする有機発光素子を用いた画
像表示装置により、長寿命の、低電圧で安定に駆動する
、高輝度デイスプレィを実現することができた。また外
部からの光照射で光書き込み可能な空間光変調素子をで
きた。これは光ニューラルネットワークシステムを代表
とする光コンピユーテイングシステムの構成デノくイス
に最適であった。
As explained above, according to the embodiments of the present invention, an image display device using an organic light-emitting element having a polymer of general formula (A) as a light-emitting layer has a long life and is stably driven at a low voltage. We were able to realize a high-brightness display. We also created a spatial light modulator that can be optically written by external light irradiation. This was ideal for the configuration of optical computing systems such as optical neural network systems.

[発明の効果] 以上説明した通り本発明によれば、前記一般式(A)で
示される繰り返し単位を含む高分子を含有する層を発光
層として有するので、高輝度で発光輝度の経時変化も少
ない有機発光素子とすることができる。
[Effects of the Invention] As explained above, according to the present invention, since the light-emitting layer includes a layer containing a polymer containing a repeating unit represented by the general formula (A), the luminance is high and the luminance does not change over time. The number of organic light emitting elements can be reduced.

また、一般式(A)で示される高分子が他の受光層と積
層されてなるという本発明の好ましい構成によれば、発
光効率をさらに上げることができる。
Further, according to a preferred configuration of the present invention in which the polymer represented by the general formula (A) is laminated with another light-receiving layer, the luminous efficiency can be further increased.

また、前記一般式(A)で表わされる繰り返し単位を含
む高分子を、気液界面展開成膜法によって基板面に積層
するという本発明方法によれば、薄くてかつ欠点のない
膜を得ることができる。
Further, according to the method of the present invention in which a polymer containing a repeating unit represented by the general formula (A) is laminated on a substrate surface by a gas-liquid interfacial deposition method, a thin and defect-free film can be obtained. I can do it.

また本発明の、基板の上に下部電極を備え、その上に受
光層、発光層、電荷輸送層、透明電極を順次積層した光
ニューラルネットワーク素子であって、前記発光層に前
記一般式(A)で示される繰り返し単位を含む高分子を
含有する層を有するという光ニューラルネットワーク素
子の構成によれば、正確な認識が可能な素子とすること
ができる。
Further, there is provided an optical neural network device according to the present invention, in which a lower electrode is provided on a substrate, and a light-receiving layer, a light-emitting layer, a charge transport layer, and a transparent electrode are sequentially laminated thereon, wherein the light-emitting layer has the general formula (A ) According to the structure of the optical neural network element having a layer containing a polymer containing the repeating unit shown in ( ), it is possible to make the element capable of accurate recognition.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図、第3図は本発明の有機発光素子の一
実施例の断面図、第4図は本発明の有機発光素子の製造
に用いるLB法の累積装置の概略図、第5図は実施例1
における有機発光素子の電圧電流特性を表した図、第6
図は実施例1における有機発光素子の電流発光輝度特性
を表わした図、第7図は有機発光素子の発光スペクトル
図、第8図は実施例2における有機発光素子の電流発光
輝度特性を表した図、第9図は実施例3における有機発
光素子の電圧発光輝度特性を表した図、第10図は実施
例3における有機発光素子のメモリー特性を表した図、
第11図は実施例5における有機発光素子の入射光強度
に対する発光輝度変化を表した図、第12図は実施例5
における光ニューラルネットワークシステムの概略図で
ある。 101・・・ガラス基板、102・・・透明電極、10
3・・・発光層、104・・・上部電極、111・・・
入力画像、112・・・マイクロレンズアレイ、123
・・・学習マスクパターン、124・・・光しきい値特
性、201・・・ガラス基板、202・・・透明電極、
203・・・電荷輸送層、204・・・発光層、205
・・・上部電極、206・・・有機発光素子、301・
・・基板、302・・・下部電極、303・・・受光層
、304・・・発光層、305・・・電荷輸送層、30
6・・・透明電極、307・・・電荷輸送層、401・
・・LB装置、402・・・純水展開液槽、403・・
・基板、404゛・・・加重。 代理人の氏名 弁理士 池内寛幸 ほか1名N1図 第2図 第3図 401・・・LB装置 402・・・純水展開液槽 403・・・基板 404・・・加重 第4図 印加電圧(V) 第5図 電流密度(mA/aI) 第6図 第7図 第8図 電流密度(mA/c# 第9図 電流密度(mA/can 第10図
1, 2, and 3 are cross-sectional views of one embodiment of the organic light-emitting device of the present invention, and FIG. Figure 5 shows Example 1.
Figure 6 shows the voltage-current characteristics of an organic light-emitting device in
The figure shows the current luminescence brightness characteristics of the organic light emitting device in Example 1, FIG. 7 shows the emission spectrum of the organic light emitting device, and FIG. 8 shows the current luminance characteristics of the organic light emitting device in Example 2. 9 is a diagram showing the voltage luminance luminance characteristics of the organic light emitting device in Example 3, and FIG. 10 is a diagram showing the memory characteristics of the organic light emitting device in Example 3.
FIG. 11 is a diagram showing the change in luminance of the organic light emitting device according to the incident light intensity in Example 5, and FIG.
FIG. 1 is a schematic diagram of an optical neural network system in FIG. 101...Glass substrate, 102...Transparent electrode, 10
3... Light emitting layer, 104... Upper electrode, 111...
Input image, 112... Microlens array, 123
... Learning mask pattern, 124 ... Optical threshold characteristic, 201 ... Glass substrate, 202 ... Transparent electrode,
203...Charge transport layer, 204...Light emitting layer, 205
... Upper electrode, 206 ... Organic light emitting element, 301.
... Substrate, 302 ... Lower electrode, 303 ... Light-receiving layer, 304 ... Light-emitting layer, 305 ... Charge transport layer, 30
6... Transparent electrode, 307... Charge transport layer, 401.
...LB device, 402...Pure water developing liquid tank, 403...
・Substrate, 404゛...load. Name of agent: Patent attorney Hiroyuki Ikeuchi and one other person V) Figure 5 Current density (mA/aI) Figure 6 Figure 7 Figure 8 Current density (mA/c# Figure 9 Current density (mA/can) Figure 10

Claims (4)

【特許請求の範囲】[Claims] (1)下記の一般式(A)で示される繰り返し単位を含
む高分子を含有する層を発光層として有する有機発光素
子。 −Z−(−X−Y−)_n−(A) (ただし、n≧2 X:O,S,Se,Teのいずれか Y:芳香族または置換芳香族の基 Z:イミド環を含む基)
(1) An organic light-emitting device having, as a light-emitting layer, a layer containing a polymer containing a repeating unit represented by the following general formula (A). -Z-(-X-Y-)_n-(A) (However, n≧2 X: Any of O, S, Se, Te Y: Aromatic or substituted aromatic group Z: Group containing an imide ring )
(2)一般式(A)で示される高分子が他の受光層と積
層されてなる請求項1記載の有機発光素子。
(2) The organic light-emitting device according to claim 1, wherein the polymer represented by the general formula (A) is laminated with another light-receiving layer.
(3)一般式(A)で表わされる繰り返し単位を含む高
分子を、気液界面展開成膜法によって基板面に積層する
有機発光素子の製造方法。 −Z−(−X−Y−)_n−(A) (ただし、n≧2 X:O,S,Se,Teのいずれか Y:芳香族または置換芳香族の基 Z:イミド環を含む基)
(3) A method for manufacturing an organic light-emitting device, in which a polymer containing a repeating unit represented by the general formula (A) is laminated on a substrate surface by a gas-liquid interfacial deposition method. -Z-(-X-Y-)_n-(A) (However, n≧2 X: Any of O, S, Se, Te Y: Aromatic or substituted aromatic group Z: Group containing an imide ring )
(4)基板の上に下部電極を備え、その上に受光層、発
光層、電荷輸送層、透明電極を順次積層した光ニューラ
ルネットワーク素子であって、前記発光層に下記の一般
式(A)で示される繰り返し単位を含む高分子を含有す
る層を有することを特徴とする光ニューラルネットワー
ク素子。 −Z−(−X−Y−)_n−(A) (ただし、n≧2 X:O,S,Se,Teのいずれか Y:芳香族または置換芳香族の基 Z:イミド環を含む基)
(4) An optical neural network device comprising a lower electrode on a substrate, and a light-receiving layer, a light-emitting layer, a charge transport layer, and a transparent electrode successively laminated thereon, wherein the light-emitting layer has the following general formula (A). An optical neural network device comprising a layer containing a polymer containing a repeating unit represented by: -Z-(-X-Y-)_n-(A) (However, n≧2 X: Any of O, S, Se, Te Y: Aromatic or substituted aromatic group Z: Group containing an imide ring )
JP33590990A 1990-08-08 1990-11-29 Organic light emitting device and method of manufacturing the same Expired - Fee Related JP2708274B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP33590990A JP2708274B2 (en) 1990-11-29 1990-11-29 Organic light emitting device and method of manufacturing the same
EP91113370A EP0470629B1 (en) 1990-08-08 1991-08-08 Organic light emitting device and preparation and use thereof
US07/742,421 US5331182A (en) 1990-08-08 1991-08-08 Organic light emitting device and preparation and use thereof
DE69118615T DE69118615T2 (en) 1990-08-08 1991-08-08 Organic light-emitting component and its production and use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33590990A JP2708274B2 (en) 1990-11-29 1990-11-29 Organic light emitting device and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH04202394A true JPH04202394A (en) 1992-07-23
JP2708274B2 JP2708274B2 (en) 1998-02-04

Family

ID=18293727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33590990A Expired - Fee Related JP2708274B2 (en) 1990-08-08 1990-11-29 Organic light emitting device and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2708274B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0888402A (en) * 1994-09-12 1996-04-02 Motorola Inc Molecule matching organic light emitting diode and its preparation
JP2001516939A (en) * 1997-09-05 2001-10-02 ケンブリッジ ディスプレイ テクノロジー リミテッド Self-assembled transport layer for organic light-emitting devices
WO2005019374A1 (en) * 2003-08-21 2005-03-03 Konica Minolta Holdings, Inc. Organic electroluminescent device, display, and illuminating device
US6878974B2 (en) 1991-02-27 2005-04-12 The Regents Of The University Of California Visible light emitting diodes fabricated from soluble semiconducting polymers
CN114613928A (en) * 2022-02-28 2022-06-10 复旦大学 OLED optical neural interface based on printed electronic technology and preparation method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6878974B2 (en) 1991-02-27 2005-04-12 The Regents Of The University Of California Visible light emitting diodes fabricated from soluble semiconducting polymers
JPH0888402A (en) * 1994-09-12 1996-04-02 Motorola Inc Molecule matching organic light emitting diode and its preparation
JP2001516939A (en) * 1997-09-05 2001-10-02 ケンブリッジ ディスプレイ テクノロジー リミテッド Self-assembled transport layer for organic light-emitting devices
WO2005019374A1 (en) * 2003-08-21 2005-03-03 Konica Minolta Holdings, Inc. Organic electroluminescent device, display, and illuminating device
JPWO2005019374A1 (en) * 2003-08-21 2006-10-19 コニカミノルタホールディングス株式会社 Organic electroluminescence element, display device and lighting device
JP5168785B2 (en) * 2003-08-21 2013-03-27 コニカミノルタホールディングス株式会社 Organic electroluminescence element, display device and lighting device
CN114613928A (en) * 2022-02-28 2022-06-10 复旦大学 OLED optical neural interface based on printed electronic technology and preparation method thereof

Also Published As

Publication number Publication date
JP2708274B2 (en) 1998-02-04

Similar Documents

Publication Publication Date Title
KR100497626B1 (en) Organic semiconductor device and organic electroluminescent device manufactured by wet process
US5571626A (en) Electroluminescent devices comprising polymers, and processes for their use
US5443921A (en) Thin film electroluminescence device and process for production thereof
JP3451680B2 (en) Organic electroluminescent device
US5331182A (en) Organic light emitting device and preparation and use thereof
JPH10289784A (en) Organic electroluminescnet element
JP4769242B2 (en) Polymer compound and organic electroluminescence device containing the polymer compound
JP4406991B2 (en) Thin film EL device and manufacturing method thereof
JP2002056973A (en) Organic electroluminescent element and photosensitive polymer
EP0949695A2 (en) Electroluminescent structure using blend systems
KR101288586B1 (en) Hole-injecting material, material for light-emitting element, light-emitting element, organic compound, monomer, and monomer mixture
US20040081854A1 (en) Organic electroluminescent element
KR100478522B1 (en) Polymeric electroluminescent device comprising organic compound layer and method thereof
JP2003277741A (en) Organic el light-emitting element and liquid crystal display device obtained using the same
JP2712784B2 (en) Organic light emitting device
JPH06338392A (en) Organic thin film el element
JP2708274B2 (en) Organic light emitting device and method of manufacturing the same
JPH08199161A (en) Organic electroluminescence element
JPH11273870A (en) Organic el element
JP2002212150A (en) Triarylamine compound, polymer film by using the triarylamine compound, organic light emission element and method for producing the same
JPH08288064A (en) Manufacture of organic electroluminescent element
US5763110A (en) Electroluminescent devices comprising polynuclear arylamines
JPH09208944A (en) Fluorescent transducing membrane
JPH0711249A (en) Thin film electroluminescent element and its production
JPH05311163A (en) Organic thin film el device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees