JPH04202045A - Production of oxide superconductor and tl-based oxide superconductor - Google Patents
Production of oxide superconductor and tl-based oxide superconductorInfo
- Publication number
- JPH04202045A JPH04202045A JP2329842A JP32984290A JPH04202045A JP H04202045 A JPH04202045 A JP H04202045A JP 2329842 A JP2329842 A JP 2329842A JP 32984290 A JP32984290 A JP 32984290A JP H04202045 A JPH04202045 A JP H04202045A
- Authority
- JP
- Japan
- Prior art keywords
- oxide superconductor
- oxygen
- oxide
- producing
- superconductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002887 superconductor Substances 0.000 title claims abstract description 81
- 238000004519 manufacturing process Methods 0.000 title claims description 23
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 30
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 30
- 239000001301 oxygen Substances 0.000 claims abstract description 30
- 229910052751 metal Inorganic materials 0.000 claims abstract description 20
- 239000000203 mixture Substances 0.000 claims abstract description 20
- 239000002131 composite material Substances 0.000 claims abstract description 9
- 230000035939 shock Effects 0.000 claims abstract description 5
- 229910052735 hafnium Inorganic materials 0.000 claims abstract description 3
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 3
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 3
- 238000000034 method Methods 0.000 claims description 19
- 239000003795 chemical substances by application Substances 0.000 claims description 17
- 230000006835 compression Effects 0.000 claims description 17
- 238000007906 compression Methods 0.000 claims description 17
- 239000000126 substance Substances 0.000 claims description 16
- 239000013078 crystal Substances 0.000 claims description 12
- 239000002994 raw material Substances 0.000 claims description 11
- 239000000463 material Substances 0.000 claims description 8
- 238000010304 firing Methods 0.000 claims description 6
- 238000010298 pulverizing process Methods 0.000 claims description 2
- 230000002950 deficient Effects 0.000 abstract description 3
- 230000001902 propagating effect Effects 0.000 abstract description 2
- 238000004880 explosion Methods 0.000 abstract 1
- 239000000523 sample Substances 0.000 description 23
- 239000002184 metal Substances 0.000 description 6
- 239000000843 powder Substances 0.000 description 6
- 230000008859 change Effects 0.000 description 5
- 239000000470 constituent Substances 0.000 description 5
- 238000000634 powder X-ray diffraction Methods 0.000 description 3
- 239000007858 starting material Substances 0.000 description 3
- 230000002925 chemical effect Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000005474 detonation Methods 0.000 description 2
- 238000005247 gettering Methods 0.000 description 2
- 239000011812 mixed powder Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 229910002483 Cu Ka Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Oxygen, Ozone, And Oxides In General (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
この発明は、衝撃圧縮を利用した酸化物超伝導体の製造
方法、及びそれによって製造されるTg系酸化物超伝導
体に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing an oxide superconductor using impact compression, and a Tg-based oxide superconductor produced thereby.
[従来の技術及び発明が解決しようとする課題]酸化物
超伝導体は、金属系超伝導体よりも極めて高い超伝導転
移温度(臨界温度)を有することから、近年、酸化物超
伝導体に関する研究か盛んに行われており、現在までに
La系、Y系、Bi系、TΩ動系等の酸化物超伝導体つ
か報告されている。現在、主として研究されている酸化
物超伝導体は、Y系、Bi系、1g系等の特に高い臨界
温度を有する酸化物超伝導体であり、例えばY系のBa
2 YCu307−1なる塑性の酸化物超伝導体では、
yか大きくなると、すなわち組成中の酸素濃度が減少す
ると臨界温度が低くなること、及び結晶中に双晶かある
と臨界温度が高くなること等が確認されており、また、
T、Q系のTl2 B a 2 Cu 06−yなる組
成の酸化換起1云導体では、yが0の時には超1云導特
性を示さないが、yが大きくなると超伝導特性を示すよ
うになり、yか0.1程度の時に臨界温度が80 K程
度になることか確認されている。なお、T1!系の酸化
物超伝導体については、−数式
%式%
る他の組成のものにおいても、夫々Q<y<]の範囲内
で臨界温度の最高値が得られることを本発明者等が最近
確認した。。[Prior art and problems to be solved by the invention] Oxide superconductors have extremely higher superconducting transition temperatures (critical temperatures) than metal-based superconductors. Research is being actively carried out, and to date, oxide superconductors such as La-based, Y-based, Bi-based, and TΩ-based superconductors have been reported. The oxide superconductors currently being mainly studied are Y-based, Bi-based, and 1g-based oxide superconductors with particularly high critical temperatures; for example, Y-based Ba
2 In the plastic oxide superconductor YCu307-1,
It has been confirmed that as y increases, that is, as the oxygen concentration in the composition decreases, the critical temperature decreases, and that if there are twins in the crystal, the critical temperature increases.
An oxidation conversion 1 conductor with the composition Tl2B a 2 Cu 06-y in the T,Q system does not exhibit super1 conductivity when y is 0, but as y increases, it begins to exhibit superconductivity. It has been confirmed that the critical temperature is about 80 K when y is about 0.1. In addition, T1! Regarding oxide superconductors of the -formula % formula % type, the present inventors have recently discovered that the maximum critical temperature can be obtained within the range of Q<y<] even for those with other compositions. confirmed. .
酸化物超伝導体の一般的な製造方法は、酸化物超伝導体
を(R成する金属元素の酸化物を、酸化物超伝導体組成
における金属元素の組成比で混合し、これを圧縮成形し
た後、酸素含有雰囲気中で焼成するというものであるが
、前述した
Tl 2 Ba2Cub6−、等の酸素欠損タイプの酸
化物超伝導体を製造する方法としては、前述した一般的
な製造方法により製造した酸化物超伝導体を再加熱し、
所定温度に至った時に急冷する方法が提案されている。A general method for manufacturing oxide superconductors is to mix oxides of metal elements forming the oxide superconductor (R) in the composition ratio of the metal elements in the oxide superconductor composition, and then compression mold the mixture. After that, it is fired in an oxygen-containing atmosphere.However, as a method for manufacturing oxygen-deficient type oxide superconductors such as Tl 2 Ba 2 Cub 6-, the general manufacturing method described above is used. reheating the oxide superconductor,
A method has been proposed in which the material is rapidly cooled when it reaches a predetermined temperature.
しかし、これら以外の製造方法については、未た提案さ
れていない。However, no manufacturing method other than these has been proposed yet.
この発明はこのような実情に鑑みてなされたものであっ
て、酸化物超伝導体の新規な製造方法、特に酸素欠損タ
イプの酸化物超伝導体や双晶を有する酸化物超伝導体を
簡易に製造することができる全く新規な酸化物超伝導体
の製造方法、及びこの方法で製造された新規なTit系
の酸化物超伝導体を提供することを目的とする。This invention was made in view of the above circumstances, and is a novel method for producing oxide superconductors, in particular, a simplified method for producing oxygen-deficient oxide superconductors and twinned oxide superconductors. The purpose of the present invention is to provide a completely new method for manufacturing an oxide superconductor that can be manufactured by the same method, and a new Tit-based oxide superconductor manufactured by this method.
[課題を解決するための手段]
この発明に係る酸化物超伝導体の製造方法は、第1に、
酸化物超伝導体を構成する金属元素及び酸素を所定の割
合で含む物質を形成する工程と、この工程で得られた物
質に衝撃圧縮を加えて酸化物超伝導体を生成する]−程
とを具備することを特徴とする。[Means for Solving the Problems] The method for producing an oxide superconductor according to the present invention firstly includes:
A process of forming a substance containing metal elements and oxygen in a predetermined ratio constituting an oxide superconductor, and applying impact compression to the substance obtained in this process to generate an oxide superconductor] It is characterized by comprising the following.
また、第2に、酸化物超伝導体を構成する金属元素及び
酸素を所定の割合て含む物質とゲッタ剤とからなる複合
体を形成する工程と、この」二程で得られた複合体に衝
撃圧縮を加えて酸化換起1云導体を生成する」二程とを
具備することを特徴とする。Second, a step of forming a composite consisting of a gettering agent and a substance containing metal elements and oxygen in a predetermined proportion constituting the oxide superconductor; The method is characterized by comprising a step of applying impact compression to generate an oxidized conductor.
この場合に、前記物質は、酸化物超伝導を構成する各金
属元素の酸化物を混合して圧縮成形した混合原料自体で
もよいが、この混合原料を予め酸素含有雰囲気中で焼成
して形成した酸化物であることが好ましい。また、この
方法は、特にTfI系酸化物超伝導体に適している。な
お、ゲッタ剤としてはTi、Zr、Hfか適している。In this case, the substance may be a mixed raw material itself obtained by mixing and compression molding oxides of each metal element constituting the oxide superconductor; Preferably it is an oxide. Moreover, this method is particularly suitable for TfI-based oxide superconductors. Note that Ti, Zr, and Hf are suitable as the getter agent.
この発明に係るTg系酸化物超伝導体は、結晶中に双晶
を有することを特徴とする。The Tg-based oxide superconductor according to the present invention is characterized by having twin crystals in the crystal.
[作用コ
この発明においては、酸化物超伝導体を製造するにあた
り、それを構成する金属元素及び酸素を所定の割合で含
む物質を形成し、この物質に衝撃圧縮を加える。そうす
ると、酸素の欠損、結晶構造の若干の変化等が生じ、超
伝導性を示す結晶構造が形成される。この場合に、前記
物質にゲッタ剤を添加すると、ゲッタ剤が、衝撃圧縮時
に前記物質の内奥部においても酸素を吸着する。その結
果、酸化物超伝導体の生成率が向上する。[Operations] In the present invention, in producing an oxide superconductor, a substance containing metal elements constituting the superconductor and oxygen in a predetermined proportion is formed, and impact compression is applied to this substance. This causes oxygen vacancies and slight changes in the crystal structure, forming a crystal structure exhibiting superconductivity. In this case, if a getter agent is added to the substance, the getter agent will adsorb oxygen even deep inside the substance during impact compression. As a result, the production rate of oxide superconductor is improved.
また、T、Q系酸化物超伝導体をこのようにして製造し
た場合には、結晶中に双晶が観察される。Furthermore, when a T,Q-based oxide superconductor is produced in this manner, twins are observed in the crystal.
従来よりY系の酸化物超伝導体において双晶の存在によ
り臨界温度か上昇するのか確認されており、1g系の酸
化物超伝導体についても双晶の存在により優れた超伝導
特性を得ることができる。It has been confirmed that the critical temperature of Y-based oxide superconductors increases due to the presence of twins, and it has been confirmed that 1g-based oxide superconductors also have excellent superconducting properties due to the presence of twins. I can do it.
[実施例] 以下、この発明について詳細に説明する。[Example] This invention will be explained in detail below.
この発明に係る方法に適用される酸化物超伝導体の組成
は特に限定されるものではなく、衝撃圧縮を施すことに
より、酸素欠損が生じて超伝導特性が良好な結晶構造に
なり得るものであればよい。The composition of the oxide superconductor applied to the method according to the present invention is not particularly limited, and by applying impact compression, oxygen vacancies can be generated and a crystal structure with good superconducting properties can be formed. Good to have.
酸化物超伝導体の中では、T、ill系のものが適して
いる。Among oxide superconductors, T, ill type ones are suitable.
酸化物超伝導体を(h成する金属元素及び酸素を所定の
割合で含む物質は、必ずしも超伝導特性を示す必要はな
く、衝撃圧縮が作用することにより酸化物超伝導体にな
り得るものであればよい。このような物質としては、酸
化物超伝導体の構成元素を含む原料の混合体を酸素雰囲
気中で焼成した焼結体、あるいはこの焼結体を粉末化し
た後圧縮成形したものであることが好ましい。この場合
、焼結体を生成するに先立って、原料の混合体を圧縮成
形して成形体を作成しておくことが好ましい。A substance containing a certain proportion of metal elements and oxygen that forms an oxide superconductor does not necessarily have to exhibit superconducting properties, but can become an oxide superconductor through impact compression. Such a material may be a sintered body obtained by firing a mixture of raw materials containing the constituent elements of the oxide superconductor in an oxygen atmosphere, or a sintered body that is compressed after being pulverized. In this case, prior to producing the sintered body, it is preferable to compression mold a mixture of raw materials to create a molded body.
構成元素を含む原料として、例えばその元素の単純酸化
物、又は2種以上の構成元素を含む複酸化物が用いられ
る。As a raw material containing a constituent element, for example, a simple oxide of the element or a complex oxide containing two or more constituent elements is used.
このように焼結体を生成することにより、得ようとする
酸化物超伝導体の結晶構造に近似した結晶構造を得るこ
とができる。By producing a sintered body in this manner, it is possible to obtain a crystal structure that approximates the crystal structure of the desired oxide superconductor.
このようにして形成された物質に衝撃圧縮を加える方法
としては、成形体に高速飛翔体を衝突させる方法、及び
爆薬の爆轟波を試料に直接伝播させる方法等が採用され
る。この際の衝撃応力は、+4料によって異なるが、T
g系酸化物超伝導体の場合は10GPa、又はそれ以上
の値であれば1」的を達成することができる。As a method of applying impact compression to the material formed in this manner, a method of causing a high-speed flying object to collide with the molded body, a method of directly propagating the detonation wave of an explosive to the sample, etc. are adopted. The impact stress at this time varies depending on the +4 material, but T
In the case of a g-based oxide superconductor, a value of 10 GPa or more can achieve the 1'' target.
なお、ゲッタ剤を用いる場合は、酸化物超伝導体を構成
する金属元素及び酸素を所定の割合て含む物質とゲッタ
剤との複合体を作製し、この複合体に衝撃圧縮を加える
。この場合には、衝撃圧縮を加えることによる酸素減少
と、ゲッタ剤の酸素吸収による酸素減少とが同時に起り
、−層良好な超伝導特性か得られる可能性かある。Note that when a getter agent is used, a composite of the getter agent and a substance containing a metal element and oxygen in a predetermined ratio constituting the oxide superconductor is prepared, and impact compression is applied to this composite. In this case, there is a possibility that oxygen reduction due to impact compression and oxygen reduction due to oxygen absorption by the getter agent occur simultaneously, resulting in good superconducting properties of the layer.
このようにゲッタ剤を用いる場合にも、酸化物超伝導体
を構成する金属元素及び酸素を所定の割合で含む物質は
、酸化物超伝導体の構成元素を含む原料の混合体を酸素
雰囲気中で焼成した焼結体であることが好ましい。また
、上記複合体は、酸化物超伝導を構成する金属元素を含
む混合原料を酸素含有雰囲気で焼成した後粉砕し、この
粉砕物とゲッタ剤とを混合して形成されることが好まし
い。この場合に、複合体は粉砕物とゲッタ剤との混合体
を成形した成形体であることが好ましい。Even when using a getter agent in this way, the substance containing metal elements and oxygen in a predetermined ratio constituting the oxide superconductor is prepared by preparing a mixture of raw materials containing the constituent elements of the oxide superconductor in an oxygen atmosphere. It is preferable that the sintered body is a sintered body fired at. Further, it is preferable that the composite is formed by firing a mixed raw material containing a metal element constituting oxide superconductivity in an oxygen-containing atmosphere, pulverizing the mixture, and mixing the pulverized material with a gettering agent. In this case, the composite is preferably a molded product obtained by molding a mixture of the pulverized material and the getter agent.
このようにして製造された酸化物超伝導体は、高圧力下
で合成されるため、組織が緻密であり、高い臨界電流密
度Jcを得ることができる。The oxide superconductor produced in this manner is synthesized under high pressure, so it has a dense structure and can obtain a high critical current density Jc.
以下、具体的な実施例について説明する。Specific examples will be described below.
実施例1
出発原料としてTJ7203 、BaO2,及びCuO
の微粉末を混合して、原子数比て−r fIBa:Cu
=2:2:1.の混合粉末原料を作製した。この場合に
、Tgは有毒であるから、これらの作業をグローブボッ
クス内で行った。Example 1 TJ7203, BaO2, and CuO as starting materials
By mixing the fine powder of -r fIBa:Cu
=2:2:1. A mixed powder raw material was prepared. In this case, since Tg is toxic, these operations were performed in a glove box.
次に、このような混合粉末原料を約200 kg/cm
2の圧力で成形し、直径10mm、厚さ1mmのベレッ
ト状の試料を2個作製した。Next, about 200 kg/cm of such mixed powder raw material
Two pellet-shaped samples with a diameter of 10 mm and a thickness of 1 mm were produced by molding at a pressure of 2.
その後、Tgの高反応性に鑑み、試料をTgと反応しに
くい金箔でゆるく包み、またTgの有毒性のため、石英
管内で更に二重のトラップを付けて流M120 m (
1/分の酸素気流中890℃で5分間焼成し、次いで1
0℃/分の速度で冷却した。After that, in view of the high reactivity of Tg, the sample was loosely wrapped in gold foil that does not easily react with Tg, and due to the toxicity of Tg, an additional double trap was attached in the quartz tube and a flow M120 m (
Calcinate at 890°C for 5 minutes in a 1/min oxygen stream, then 1/min.
Cooling was performed at a rate of 0°C/min.
その結果、′工゛Ω2Ba2CuO6なる組成の酸化物
が合成された。As a result, an oxide having a composition of 10Ω2Ba2CuO6 was synthesized.
次に、合成された酸化物試料に、夫々l0GPa及び1
7.6Gjaの衝撃圧を加えた。Next, the synthesized oxide sample was given 10 GPa and 1 GPa, respectively.
An impact pressure of 7.6 Gja was applied.
この衝撃圧は、第1図に示す装置により加えた。This impact pressure was applied by the apparatus shown in FIG.
この装置は一段式火薬銃と称されるものであり、火薬室
1内の無煙火薬3を点火装置2により爆発させてその爆
轟波によりダイヤフラム4を振動させ、これにより飛翔
体5を加速する。飛翔体5は加速管6内を高速で通過し
、さらにコイル8を通過して試料9に衝突する。これに
より、試料9に圧縮圧力が加えられる。なお、飛翔体5
の速度はファイバプローブ7及び(又は)コイル8を用
いて検出される。This device is called a single-stage powder gun, in which smokeless powder 3 in a powder chamber 1 is detonated by an igniter 2, and the resulting detonation wave vibrates a diaphragm 4, thereby accelerating a flying object 5. . The flying object 5 passes through the accelerator tube 6 at high speed, further passes through the coil 8, and collides with the sample 9. As a result, compression pressure is applied to the sample 9. In addition, flying object 5
The velocity of is detected using a fiber probe 7 and/or a coil 8.
衝撃圧を加えた後の試料について、5QUIDによる磁
化率の温度変化を測定した。その結果を第2図及び第3
図に示す。第2図は10GPaの衝撃圧を加えた試料に
ついて示すものであり、第3図は17.6GPaの衝撃
圧を加えた試料について示すものである。これらの図に
示すように、10GPaの衝撃圧を加えたものでは15
にで磁化率が変化しており、17.60Paの衝撃圧を
加えたものでは60 Kで磁化率が変化していた。The temperature change in magnetic susceptibility by 5QUID was measured for the sample after applying impact pressure. The results are shown in Figures 2 and 3.
As shown in the figure. FIG. 2 shows a sample to which an impact pressure of 10 GPa was applied, and FIG. 3 shows a sample to which an impact pressure of 17.6 GPa was applied. As shown in these figures, when an impact pressure of 10 GPa is applied, 15
The magnetic susceptibility changed at 60 K, and when an impact pressure of 17.60 Pa was applied, the magnetic susceptibility changed at 60 K.
すなわち、臨界温度が15 K及び60にの超伝導体が
形成されたことが確認された。That is, it was confirmed that a superconductor with a critical temperature of 15 K and 60 K was formed.
これらの試料について粉末X線回折(CuのKa線)を
行った。その結果を第4図及び第5図に示す。第4図は
10GPaの衝撃圧を加えた試料の回折パターンを示す
ものであり、第5図は17.6GPaの衝撃圧を加えた
試料の回折パターンを示すものである。両試料の回折パ
ターンは主なピークが全て同一位置にあり、また、Tl
2 Ba2Cub6の回折パターンと酷似している。Powder X-ray diffraction (Cu Ka line) was performed on these samples. The results are shown in FIGS. 4 and 5. FIG. 4 shows a diffraction pattern of a sample subjected to an impact pressure of 10 GPa, and FIG. 5 shows a diffraction pattern of a sample applied an impact pressure of 17.6 GPa. The diffraction patterns of both samples have all main peaks at the same position, and Tl
2 The diffraction pattern is very similar to that of Ba2Cub6.
従って、TJ)2 Ba2 Cu06□が生成されたも
のと推測される。なお、その生成率、すなわち、試料中
に占めるTl 2 Ba2 Cub6□の割合は、第2
図及び第3図に示された磁化率の温度変化曲線から明ら
かなように、17.6GPaの衝撃圧を加えた試料の方
が10GPaの衝撃圧を加えた試料よりも磁化率の変化
が大きいので、17.6GPaの衝撃圧を加えた試料の
方が大きい。Therefore, it is presumed that TJ)2Ba2Cu06□ was produced. Note that the production rate, that is, the proportion of Tl 2 Ba 2 Cub6□ in the sample, is
As is clear from the temperature change curve of magnetic susceptibility shown in Figures and Figure 3, the change in magnetic susceptibility is larger in the sample to which an impact pressure of 17.6 GPa was applied than in the sample to which an impact pressure of 10 GPa was applied. Therefore, the sample to which an impact pressure of 17.6 GPa was applied is larger.
10GPaの衝撃圧を加えた試料をTEMにより観察し
た。第6図はそのTEM写真である。この写真の三角印
で示すように、双晶境界(twin boundary
)が明確に表れており、衝撃圧縮により双晶を有する
超伝導素材が得られることが確認された。A sample subjected to an impact pressure of 10 GPa was observed using a TEM. Figure 6 is a TEM photograph of it. As shown by the triangle in this photo, twin boundaries
) clearly appeared, confirming that a superconducting material with twins can be obtained by impact compression.
実施例2
実施例1と同様にしてTl2Ba2cuo6なる組成の
酸化物を合成した。次いで、合成した試料を粉砕し、こ
れにゲッタ剤として重量比で10%の金属Zrを追加混
合した。このようにして生成した粉末試料を約200
kg/ 0m2の圧力で成形し、直径10mm、厚さ1
mmのペレット状の試料を作製した。Example 2 An oxide having the composition Tl2Ba2cuo6 was synthesized in the same manner as in Example 1. Next, the synthesized sample was pulverized, and 10% by weight of metal Zr was additionally mixed therein as a getter agent. Approximately 200 powder samples were prepared in this way.
Molded at a pressure of kg/0m2, diameter 10mm, thickness 1
A sample in the form of a pellet of mm was prepared.
この試料に実施例1と同様にして100Paの衝撃圧を
加えた。衝撃圧を加えた後の試料について、5QUID
による磁化率の温度変化を測定した。その結果を第7図
に示す。この図で示すように磁化率が15 Kで変化し
ており、臨界温度が15 Kの超伝導体が形成されたこ
とが確認された。An impact pressure of 100 Pa was applied to this sample in the same manner as in Example 1. For the sample after applying impact pressure, 5QUID
The temperature change in magnetic susceptibility was measured. The results are shown in FIG. As shown in this figure, the magnetic susceptibility changed at 15 K, confirming that a superconductor with a critical temperature of 15 K was formed.
この試料について粉末X線回折を行った。その結果を第
8図に示す。この試料の回折パターンでは36.5度付
近にZrに係わると思われるピークがあるが、他の主な
ピークはいずれも第1実施例の2つの試料と同一の位置
にある。従って、明確な指数付けはできていないが、こ
の試料もT、Q2Ba2CuO6□が生成されたものと
推測される。また、その生成率は、磁化率の変化量の比
較から、第1の実施例の2つの試料よりも大きいことか
認められる。Powder X-ray diffraction was performed on this sample. The results are shown in FIG. In the diffraction pattern of this sample, there is a peak around 36.5 degrees that seems to be related to Zr, but all other main peaks are at the same positions as the two samples of the first example. Therefore, it is assumed that T and Q2Ba2CuO6□ were also produced in this sample, although a clear indexing has not been possible. Furthermore, it can be seen from the comparison of the amount of change in magnetic susceptibility that the production rate is greater than that of the two samples of the first example.
なお、実施例1.2では、酸化物超伝導体の出発原料を
焼成して一口、Tβ2Ba2CLIO+;を合成してか
ら衝撃圧を加えたが、出発原料を混合・成形したままで
焼成しないものに衝撃圧を加えてもT(12B a 2
’Cu o6−、を生成することができる。これは、衝
撃圧を加えることによる衝撃波によって熱等が生じ、こ
れによって誘起される化学反応(衝撃波の化学効果)よ
るものである。なお、前述したように、衝撃圧を加える
物質の酸素含有量は、目的とする酸化物超伝導体の酸素
含有量に近いほうが望ましいので、この場合の出発原料
としては、酸化物超伝導体を構成する金属の単純酸化物
のみて構成するよりも、複酸化物を用いた方が望ましい
。例えばT (12B a 2 CLI 06−yを製
造する場合には、T(1203、BaO2、CuOを1
:2・1で混合するよりも、TΩ203、Ba 02
、B a Cu 02を1:1:1て混合する方が望ま
しい。また、Zr等のゲッタ剤を添加した方がさらに望
ましい。ゲッタ剤を添加したものについては、上述のよ
うな化学効果とゲッタ剤の吸着とによりTΩ2f3 a
2 Cu O6−Fを生成することができる。In Example 1.2, the starting materials for the oxide superconductor were fired to synthesize Tβ2Ba2CLIO+; and then impact pressure was applied; however, the starting materials were mixed and shaped without firing. Even if impact pressure is applied, T(12B a 2
'Cu o6-, can be generated. This is due to the chemical reaction (chemical effect of the shock wave) induced by the heat generated by the shock wave caused by the application of shock pressure. As mentioned above, it is desirable that the oxygen content of the substance to which impact pressure is applied be close to the oxygen content of the target oxide superconductor. It is more desirable to use a multiple oxide than to use only simple oxides of the constituent metals. For example, when producing T(12B a 2 CLI 06-y), T(1203, BaO2, CuO is 1
:TΩ203, Ba02 than mixing 2.1
, B a Cu 02 are preferably mixed in a ratio of 1:1:1. Further, it is more desirable to add a getter agent such as Zr. For those to which a getter agent is added, TΩ2f3 a due to the above-mentioned chemical effects and adsorption of the getter agent.
2CuO6-F can be produced.
[発明の効果]
この発明によれば、衝撃圧縮を利用することにより従来
にない全く新規な酸化物超伝導体の製造方法を提供する
ことができる。この方法によれば、高い臨界温度を有す
る酸化物超伝導体を生成することが可能である。1g系
のものについては双晶の存在も確認され、特に有効であ
る。[Effects of the Invention] According to the present invention, by utilizing impact compression, it is possible to provide a completely novel method for manufacturing an oxide superconductor that has not been seen before. According to this method, it is possible to produce oxide superconductors with high critical temperatures. The presence of twin crystals has also been confirmed for the 1g type, which is particularly effective.
この発明により製造された酸化物超伝導体は、ジョセフ
ソン接合を有するジョセフソン素子及び5QUID(超
伝導量子干渉計)、超伝導発電機に適用することが期待
され、またエネルギ損失の少ない超伝導電力貯蔵、さら
にはエネルギ損失の少ない送電ケーブル等の多方面の超
伝導機器の実州北に寄与することが期待される。The oxide superconductor produced by this invention is expected to be applied to Josephson devices having Josephson junctions, 5QUIDs (superconducting quantum interferometers), and superconducting power generators, and is also a superconductor with low energy loss. It is expected that it will contribute to the development of superconducting equipment in many fields, such as power storage and power transmission cables with low energy loss.
第1図はこの発明に係る酸化物超伝導体の製造方法にお
いて衝撃圧を加えるための一段式火薬銃を示す概略構成
図、第2図、第3図及び第7図はこの発明に係る方法に
より製造された酸化物超伝導体の5QUIDによる磁化
率の温度変化を示、ず図、第4図、第5図及び第8図は
この発明に係る方法により製造された酸化物超伝導体の
粉末X線回折パターンを示す図、第6図はこの発明に係
るTN系酸化物超伝導体の結晶の構造を示す写真である
。FIG. 1 is a schematic configuration diagram showing a single-stage powder gun for applying impact pressure in the method for producing an oxide superconductor according to the present invention, and FIGS. 2, 3, and 7 are the method according to the present invention. Figures 4, 5, and 8 show temperature changes in magnetic susceptibility due to 5QUID of the oxide superconductor manufactured by the method according to the present invention. FIG. 6 is a photograph showing the powder X-ray diffraction pattern and the crystal structure of the TN-based oxide superconductor according to the present invention.
Claims (9)
定の割合で含む物質を形成する工程と、この工程で得ら
れた混合体に衝撃圧縮を加えて酸化物超伝導体を生成す
る工程とを具備することを特徴とする酸化物超伝導体の
製造方法。(1) A step of forming a substance containing metal elements and oxygen in a predetermined ratio constituting the oxide superconductor, and applying shock compression to the mixture obtained in this step to generate the oxide superconductor. A method for producing an oxide superconductor, comprising the steps of:
を含む混合原料を酸素含有雰囲気で焼成して形成される
ことを特徴とする請求項1に記載の酸化物超伝導体の製
造方法。(2) Manufacturing the oxide superconductor according to claim 1, wherein the substance is formed by firing a mixed raw material containing metal elements constituting the oxide superconductor in an oxygen-containing atmosphere. Method.
ていることを特徴とする請求項1又は2に記載の酸化物
超伝導体の製造方法。(3) The method for producing an oxide superconductor according to claim 1 or 2, wherein the oxide superconductor is made of a Tl-based oxide.
定の割合で含む物質とゲッタ剤とからなる複合体を形成
する工程と、この工程で得られた複合体に衝撃圧縮を加
えて酸化物超伝導体を生成する工程とを具備することを
特徴とする酸化物超伝導体の製造方法。(4) A step of forming a composite consisting of a substance containing metal elements and oxygen in a predetermined ratio constituting the oxide superconductor and a getter agent, and applying impact compression to the composite obtained in this step. 1. A method for producing an oxide superconductor, comprising a step of producing an oxide superconductor.
を含む混合原料を酸素含有雰囲気で焼成して形成される
ことを特徴とする請求項4に記載の酸化物超伝導体の製
造方法。(5) Manufacturing the oxide superconductor according to claim 4, wherein the substance is formed by firing a mixed raw material containing metal elements constituting the oxide superconductor in an oxygen-containing atmosphere. Method.
素を含む混合原料を酸素含有雰囲気で焼成した後粉砕し
、この粉砕物とゲッタ剤とを混合して形成されることを
特徴とする請求項4又は5に記載の酸化物超伝導体の製
造方法。(6) The composite is formed by firing a raw material mixture containing metal elements constituting the oxide superconductor in an oxygen-containing atmosphere, pulverizing it, and mixing the pulverized material with a getter agent. The method for producing an oxide superconductor according to claim 4 or 5.
ていることを特徴とする請求項4乃至6いずれか1項に
記載の酸化物超伝導体の製造方法。(7) The method for producing an oxide superconductor according to any one of claims 4 to 6, wherein the oxide superconductor is made of a Tl-based oxide.
された少なくとも1種であることを特徴とする請求項4
乃至7いずれか1項に記載の酸化物超伝導体の製造方法
。(8) Claim 4, wherein the getter agent is at least one selected from Ti, Zr, and Hf.
7. A method for producing an oxide superconductor according to any one of 7 to 7.
化物超伝導体。(9) A Tl-based oxide superconductor characterized by having twins in its crystals.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2329842A JPH04202045A (en) | 1990-11-30 | 1990-11-30 | Production of oxide superconductor and tl-based oxide superconductor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2329842A JPH04202045A (en) | 1990-11-30 | 1990-11-30 | Production of oxide superconductor and tl-based oxide superconductor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04202045A true JPH04202045A (en) | 1992-07-22 |
Family
ID=18225844
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2329842A Pending JPH04202045A (en) | 1990-11-30 | 1990-11-30 | Production of oxide superconductor and tl-based oxide superconductor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04202045A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008013243A1 (en) * | 2006-07-27 | 2008-01-31 | Kuraray Luminas Co., Ltd. | Phosphor precursor manufacturing method |
WO2008029726A1 (en) | 2006-09-01 | 2008-03-13 | Kuraray Luminas Co., Ltd. | Impact target capsule and impact compressor |
-
1990
- 1990-11-30 JP JP2329842A patent/JPH04202045A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008013243A1 (en) * | 2006-07-27 | 2008-01-31 | Kuraray Luminas Co., Ltd. | Phosphor precursor manufacturing method |
US8110124B2 (en) | 2006-07-27 | 2012-02-07 | Kuraray Co., Ltd. | Method of preparing fluorescent body precursor |
JP5185117B2 (en) * | 2006-07-27 | 2013-04-17 | 株式会社クラレ | Method for producing phosphor precursor |
WO2008029726A1 (en) | 2006-09-01 | 2008-03-13 | Kuraray Luminas Co., Ltd. | Impact target capsule and impact compressor |
US8105060B2 (en) | 2006-09-01 | 2012-01-31 | Kuraray Co., Ltd. | Impact target capsule and impact compression apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH01242421A (en) | Apparatus and system approaching novel superconductor material | |
JPH04202045A (en) | Production of oxide superconductor and tl-based oxide superconductor | |
JPH0259465A (en) | Production of oxide high temperature superconductor | |
JPH02296767A (en) | Production of high temperature superconduc- tive object | |
US5389603A (en) | Oxide superconductors, and devices and systems comprising such a superconductor | |
JPH03122018A (en) | Production of oxide superconductor | |
JP3006071B2 (en) | Method for producing Tl-based oxide superconductor | |
JP2820480B2 (en) | Oxide superconductor and manufacturing method thereof | |
JPH07187675A (en) | Production of oxide superconductor | |
JPH0574531B2 (en) | ||
JPH01164707A (en) | High temperature superconductor, method for its manufacture and its use | |
JP3167316B2 (en) | Method for producing Tl-based oxide superconductor | |
WO1989007086A1 (en) | SUPERCONDUCTING Bi-Sr-Ca-Cu OXIDE COMPOSITIONS AND PROCESS FOR MANUFACTURE | |
JPH0692634A (en) | Production of tl-based oxide superconductor | |
JPH0624829A (en) | Tl-base oxide superconductor and its production | |
JPH0214871A (en) | Production of copper oxide superconductor | |
WO2002025795A2 (en) | High temperature superconductor | |
JPH04139026A (en) | Oxide superconducting material and its production | |
JPH0543232A (en) | Production of tl-containing oxide superconductor | |
JPH0692635A (en) | Production of tl-based oxide superconductor | |
JPH0333052A (en) | Production of oxide superconducting material | |
JPH0292827A (en) | Production of bi oxide superconductor | |
JPH01313325A (en) | Production of oxide superconducting material | |
JPH02172823A (en) | Production of bi-based oxide superconductor | |
JPH02248319A (en) | Production of oxide superconducting material |