JPH04199701A - Method for baking positive characteristic thermistor - Google Patents

Method for baking positive characteristic thermistor

Info

Publication number
JPH04199701A
JPH04199701A JP33401890A JP33401890A JPH04199701A JP H04199701 A JPH04199701 A JP H04199701A JP 33401890 A JP33401890 A JP 33401890A JP 33401890 A JP33401890 A JP 33401890A JP H04199701 A JPH04199701 A JP H04199701A
Authority
JP
Japan
Prior art keywords
powder
elementary bodies
molded
positive characteristic
characteristic thermistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33401890A
Other languages
Japanese (ja)
Inventor
Taiji Goto
泰司 後藤
Yasuo Tsuda
津田 泰男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP33401890A priority Critical patent/JPH04199701A/en
Publication of JPH04199701A publication Critical patent/JPH04199701A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)

Abstract

PURPOSE:To prevent the increase of a resistance value, which is caused when using the powder of zirconia, and to prevent the fusions between elementary bodies, which are caused when using the powder of the same material as the elementary bodies, by laying the powder of barium zirconate between the molded elementary bodies made of the material for a positive characteristic thermistor of barium titanate. CONSTITUTION:A powder 2 of barium zirconate is laid between molded elementary bodies, and they are baked. This baking method is used when baking the molded elementary bodies 1 made of the material for a positive characteristic thermistor, which includes barium titanate as its principal component and includes at least the element of making a material into a semiconductor, such as yttrium or rare earth element. In the event of using this powder 2 of barium zirconate, the molded elementary bodies can be baked without increasing their resistance values and fusing them each other, in comparison with the event of using the powder of zirconia or the same material as the molded elementary bodies. Thereby, with a very simple and easy method, the positive characteristic thermistor 1 of a barium titanate system, in which no fusion is caused between the molded elementary bodies and between the molded elementary bodies and the powder, can be obtained, and further, the resistance value of the thermistor 1 can be suppressed from changing.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、特定の温度で抵抗値が急峻に増加する正、特
性サーミスタの焼成方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for firing a positive characteristic thermistor whose resistance value increases sharply at a specific temperature.

従来の技術 チタン酸バリウムを特徴とする特性サーミスタは、一般
に、スイッチング温度と呼ばれる特定の温度以上で、急
峻に抵抗値が増加する。この特性を利用して、カラーテ
レビジョン受像機のシャドウマスクを消磁するための素
子として、また温風ヒータなどの発熱体として広範な用
途に使用されている。
BACKGROUND OF THE INVENTION Characteristic thermistors featuring barium titanate generally have a resistance value that sharply increases above a certain temperature called the switching temperature. Taking advantage of this property, it is used in a wide range of applications, including as an element for demagnetizing shadow masks in color television receivers, and as a heat generating element in hot air heaters and the like.

一方、正特性サーミスタの素子の形状としては、一般に
、円板形状あるいは角板形状のものがある。
On the other hand, the element shape of a positive temperature coefficient thermistor generally includes a disk shape or a square plate shape.

これらの成形体は、アルミナ質あるいはコージェライト
質の容器中(以下、厘鉢と称する)に載置され、焼結さ
れてセラミックスとなる。
These molded bodies are placed in an alumina or cordierite container (hereinafter referred to as a pot) and sintered to form a ceramic.

発明が解決しようとする課題 さて、正特性サーミスタ材料からなる成形体を厘鉢中で
焼成する場合、第1図に示すように正特性サーミスタ成
形体1を積み重ねて焼成する方法がとられているが、焼
成過程において、成形体同士が直接接触すると、素子の
部分的な融着により、焼成後に素子を分離することが極
めて困難な状態となり、機械的に分離させようとすると
素子の欠けやわれが発生したりする。
Problems to be Solved by the Invention When firing molded bodies made of positive temperature coefficient thermistor material in a pot, a method is used in which positive temperature coefficient thermistor molded bodies 1 are piled up and fired as shown in FIG. However, if the molded bodies come into direct contact with each other during the firing process, it will be extremely difficult to separate the elements after firing due to partial fusion of the elements, and attempts to separate them mechanically will result in chipping or breakage of the elements. may occur.

この融着を防止するため、従来は成形体間にジルコニア
や同材質の融着防止用粉体2を介在させて焼成していた
。また、第1図において、3は厘鉢である。
In order to prevent this fusion, conventionally, fusion prevention powder 2 made of zirconia or the same material was interposed between the molded bodies and fired. Further, in FIG. 1, 3 is a pot.

しかし、ジルコニアを用いた場合、素子間の融着はない
が、焼成時のジルコニアの拡散が原因と考えられる抵抗
値の増加が起こる。また、同材質の粉体を用いた場合に
は、抵抗値の増加はないが、この粉体中に存在する二酸
化ケイ素が焼成時にガラス相を形成することに起因する
と考えられる素子間の融着が起こる。
However, when zirconia is used, although there is no fusion between elements, the resistance value increases, which is thought to be caused by the diffusion of zirconia during firing. In addition, when powder of the same material is used, there is no increase in resistance value, but fusion between elements is thought to be caused by silicon dioxide present in this powder forming a glass phase during firing. happens.

本発明はこのような点に鑑みてなされたもので、正特性
サーミスタの特性を劣化させることな(、素子間の融着
を防止する焼成方法を提供することを目的とするもので
ある。
The present invention has been made in view of these points, and an object of the present invention is to provide a firing method that does not deteriorate the characteristics of a positive temperature coefficient thermistor (and prevents fusion between elements).

課題を解決するための手段 」−記の問題点を解決するために、本発明者らは二酸化
ケイ素を含まず、しかもチタン酸バリウムとの反応性の
低いジルコニア化合物を用いることにより、素子間の融
着かなく、素子中へのジルコニアの拡散が抑制できるの
ではないかと考え、ジルコニアに種々の物質を固溶させ
、検討を重ねた結果、チタン酸バリウム系正特性サーミ
スタ材料においては、ジルコン酸バリウムが効果的であ
ることを見出した。
In order to solve the problems described in "Means for Solving the Problems", the present inventors used a zirconia compound that does not contain silicon dioxide and has low reactivity with barium titanate. We thought that it would be possible to suppress the diffusion of zirconia into the element without causing fusion, and as a result of repeated studies of solid solution of various substances in zirconia, we found that zirconate Valium was found to be effective.

このジルコン酸バリウムの粉体を成形体間に介在させて
焼結することにより、正特性サーミスタの特性を劣化さ
せることなく、素子間の融着を防止する効果を得ること
ができる。
By interposing this barium zirconate powder between the compacts and sintering them, it is possible to obtain the effect of preventing fusion between elements without deteriorating the characteristics of the positive temperature coefficient thermistor.

作用 本発明方法によれば、上記のジルコン酸バリウム粉体を
チタン酸バリウム系正特性サーミスタ材料の成形体間に
介在させることにより、ジルコニア粉体を用いた時に発
生ずる抵抗値の増加、及び同材質の粉体を用いた時に発
生する素子間の融着を防止することができることとなる
Effect: According to the method of the present invention, by interposing the above-mentioned barium zirconate powder between molded bodies of barium titanate-based positive temperature coefficient thermistor material, the increase in resistance value that occurs when zirconia powder is used, and the same can be avoided. This makes it possible to prevent fusion between elements that occurs when powdered materials are used.

実施例 以下、本発明について実施例を挙げて説明する。Example Hereinafter, the present invention will be explained by giving examples.

まず、化学式が(B ao、54ss ro、+oP 
bo、osCao、ao5)T i○3+0.OIT 
i 02−t−0,024S i 02+0.0022
Y203十〇、0003MnO2の組成となるように、
炭酸バリウム(BaCO3)、酸化チタン(T i 0
2)、炭酸ストロンチ【クム(SrCO3)、炭酸カル
シウム(Ca C03)、酸化鉛(PbO)、酸化イツ
トリウム(Y2O2)、二酸化ケイ素(SiO2)、二
酸化マンガン(MnO2)、を秤量し、通常の方法で混
合、仮焼、粉砕した粉体を成形して、直径13mm、厚
み1 、5 mmの成形体を作製した。
First, the chemical formula is (B ao, 54ss ro, +oP
bo, osCao, ao5) T i○3+0. OIT
i 02-t-0,024S i 02+0.0022
Y203〇,0003MnO2 composition,
Barium carbonate (BaCO3), titanium oxide (T i 0
2) Weigh strontium carbonate [cum (SrCO3), calcium carbonate (Ca CO3), lead oxide (PbO), yttrium oxide (Y2O2), silicon dioxide (SiO2), manganese dioxide (MnO2), and weigh them in the usual manner. The mixed, calcined, and pulverized powder was molded to produce a molded body with a diameter of 13 mm and a thickness of 1.5 mm.

一方、成形体間に介在させるジルコン酸バリウム粉体に
関してはBaZ ro3の組成となるように、炭酸バリ
ウム(B a C03)、酸化ジルコニウム(ZrO2
)を秤量し、通常の方法で混合し、1.400℃で2回
焼成した後、100メツシユのふるいを通してジルコン
酸バリウムの粉体を得た。
On the other hand, regarding the barium zirconate powder interposed between the compacts, barium carbonate (B a C03), zirconium oxide (ZrO2
) were weighed, mixed in a conventional manner, fired twice at 1.400°C, and passed through a 100-mesh sieve to obtain barium zirconate powder.

本発明の実施例として、上記成形体間に上記のジルコン
酸バリウム粉体を散布した後、成形体を第1図のように
7段に重ねて載置し、1350℃で焼成した。その後、
ニッケルメッキより成る電極を形成し、特性の評価を行
った。さらに、比較のためジルコニア粉体あるいは同材
質の粉体を、ジルコン酸バリウムと同様の方法で成形体
間に散布し、同様に評価を行った。
As an example of the present invention, after the barium zirconate powder was spread between the molded bodies, the molded bodies were stacked in seven stages as shown in FIG. 1 and fired at 1350°C. after that,
Electrodes made of nickel plating were formed and their characteristics were evaluated. Furthermore, for comparison, zirconia powder or powder of the same material was spread between the molded bodies in the same manner as barium zirconate, and evaluated in the same manner.

= 5 − その結果、下記の第1表に示すように本実施例のジルコ
ン酸バリウム粉体を用いた場合は、ジルコニア粉体また
は同材質の粉体を用いた場合と比較すると、抵抗値を増
加さぜることなく、また素子間の融着なしに成形体を焼
成することができた。
= 5 - As a result, as shown in Table 1 below, when using the barium zirconate powder of this example, the resistance value was lower than when using zirconia powder or a powder of the same material. It was possible to sinter the molded body without increasing the temperature and without fusion between elements.

ここで、Ba2Zr04を粉体に用いた場合にも、Ba
ZrO3を粉体に用いた場合と同様な効果が得られた。
Here, even when Ba2Zr04 is used as powder, Ba
Similar effects were obtained when ZrO3 was used as powder.

第  1  表 (注)抵抗値は7ケの素子の平均値である。Table 1 (Note) The resistance value is the average value of 7 elements.

なお、本発明の焼成方法は、チタン酸バリウムを主成分
とし、イツトリウムあるいは希土類元素なとの半導体化
元素を少なく古も含む圧特性ザーミスタ材料からなる成
形体を焼成する際に適用できるものであり、上記実施例
の組成の正特性ザ一ミスタ材料に限定されないことはも
ちろんである。
Note that the firing method of the present invention can be applied to firing a molded body made of a pressure-sensitive thermistor material whose main component is barium titanate and also contains a small amount of semiconducting elements such as yttrium or rare earth elements. Of course, the present invention is not limited to the positive characteristic thermistor material having the composition of the above embodiments.

発明の効果 上記実施例より明らかなように、本発明によれば極めて
平易な方法で、素子間あるいは素子と粉体間の融着のな
いチタン酸バリウム系正特性サーミスタを得ることがで
き、また抵抗値の変化を抑制することができるので特性
面でも大きな効果がある。
Effects of the Invention As is clear from the above examples, according to the present invention, a barium titanate-based positive temperature coefficient thermistor without fusion between elements or between elements and powder can be obtained by an extremely simple method. Since it is possible to suppress changes in resistance value, it has a great effect in terms of characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法および従来方法において成形体を厘
鉢中に載置した状態を示す断面図である。 1・・・・・・正特性サーミスタ成形体、2・・・・・
・融着防止用粉体、3・・・・・・厘鉢。
FIG. 1 is a sectional view showing a molded body placed in a pot in the method of the present invention and the conventional method. 1...Positive characteristic thermistor molded body, 2...
・Powder for preventing adhesion, 3...Lanka pot.

Claims (1)

【特許請求の範囲】[Claims] チタン酸バリウムを主成分とし、イットリウムあるいは
希土類元素などの半導体化元素を少なくとも含む正特性
サーミスタ材料からなる成形体を焼成する際に、ジルコ
ン酸バリウムを上記成形体の間に介在させて焼成するこ
とを特徴とする正特性サーミスタの焼成方法。
When firing a molded body made of a positive temperature coefficient thermistor material containing barium titanate as a main component and at least a semiconducting element such as yttrium or a rare earth element, barium zirconate is interposed between the molded bodies and fired. A method for firing a positive temperature coefficient thermistor.
JP33401890A 1990-11-29 1990-11-29 Method for baking positive characteristic thermistor Pending JPH04199701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33401890A JPH04199701A (en) 1990-11-29 1990-11-29 Method for baking positive characteristic thermistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33401890A JPH04199701A (en) 1990-11-29 1990-11-29 Method for baking positive characteristic thermistor

Publications (1)

Publication Number Publication Date
JPH04199701A true JPH04199701A (en) 1992-07-20

Family

ID=18272582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33401890A Pending JPH04199701A (en) 1990-11-29 1990-11-29 Method for baking positive characteristic thermistor

Country Status (1)

Country Link
JP (1) JPH04199701A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109686515A (en) * 2018-12-30 2019-04-26 苏州团芯终端有限公司 The PTC thermistor of high reliability

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109686515A (en) * 2018-12-30 2019-04-26 苏州团芯终端有限公司 The PTC thermistor of high reliability

Similar Documents

Publication Publication Date Title
US5686367A (en) Semiconducting ceramic composition having positive temperature coefficient of resistance and production process thereof
US4898844A (en) Process for manufacturing a ceramic body having multiple barium-titanate phases
US3997479A (en) Method of reducing the evaporation of Pb during the manufacture of barium titanate (Pb substituted) semiconducting ceramics
EP0767152B1 (en) Piezoelectric ceramic and manufacturing method thereof
JPH04199701A (en) Method for baking positive characteristic thermistor
EP0937692B1 (en) Barium titanate-base semiconductor ceramic
JPH05343202A (en) Monolithic semiconductor ceramic for positive characteristic thermistor
JPH0867562A (en) Grain boundary insulating type semiconductor porcelain
JP3166787B2 (en) Barium titanate-based semiconductor porcelain composition
JP2864731B2 (en) Positive characteristic thermistor and manufacturing method thereof
JPH03145101A (en) Firing of positive temperature coefficient thermistor
EP0270119A2 (en) Semiconductor ceramic of grain boundary insulation type
JPH04151801A (en) Sintering method of positive temperature coefficient thermistor
JPH11292622A (en) Semiconductor ceramic and semiconductor ceramic element
JP2689439B2 (en) Grain boundary insulation type semiconductor porcelain body
JPH04151802A (en) Sintering method of positive temperature coefficient thermistor
JPH04299802A (en) Positive temperature coefficient thermistor
JPH0248121B2 (en)
JPS61253812A (en) Ceramic composition for semiconductor capacitor
JPH04299803A (en) Positive temperature coefficient thermistor and manufacture thereof
JPH0722204A (en) Semiconductor ceramic having positive resistance temperature characteristics
JP3163749B2 (en) Semiconductor porcelain with positive resistance temperature characteristics
JPH0159728B2 (en)
JPH0248465A (en) Barium titanate-based semiconductor porcelain
JPH04114919A (en) Production of multiple perovskite-type dielectric porcelain powder and porcelain capacitor using same