JPH0419696B2 - - Google Patents
Info
- Publication number
- JPH0419696B2 JPH0419696B2 JP2515382A JP2515382A JPH0419696B2 JP H0419696 B2 JPH0419696 B2 JP H0419696B2 JP 2515382 A JP2515382 A JP 2515382A JP 2515382 A JP2515382 A JP 2515382A JP H0419696 B2 JPH0419696 B2 JP H0419696B2
- Authority
- JP
- Japan
- Prior art keywords
- film
- amorphous silicon
- silicon
- oxide film
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000010408 film Substances 0.000 claims description 70
- 229910021417 amorphous silicon Inorganic materials 0.000 claims description 42
- 239000010409 thin film Substances 0.000 claims description 12
- 239000000758 substrate Substances 0.000 claims description 11
- 239000001257 hydrogen Substances 0.000 claims description 10
- 229910052739 hydrogen Inorganic materials 0.000 claims description 10
- 238000000034 method Methods 0.000 claims description 10
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 8
- 238000004519 manufacturing process Methods 0.000 claims description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 5
- 229910052799 carbon Inorganic materials 0.000 claims description 5
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 claims description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 4
- 239000011737 fluorine Substances 0.000 claims description 4
- 229910052731 fluorine Inorganic materials 0.000 claims description 4
- 229910052751 metal Inorganic materials 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 4
- 229910052757 nitrogen Inorganic materials 0.000 claims description 4
- 239000001301 oxygen Substances 0.000 claims description 4
- 229910052760 oxygen Inorganic materials 0.000 claims description 4
- 230000004888 barrier function Effects 0.000 claims description 3
- 238000005530 etching Methods 0.000 claims description 2
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims 3
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 18
- 238000010521 absorption reaction Methods 0.000 description 11
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 11
- 239000010931 gold Substances 0.000 description 11
- 229910052737 gold Inorganic materials 0.000 description 11
- 230000014759 maintenance of location Effects 0.000 description 11
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 9
- 229910052581 Si3N4 Inorganic materials 0.000 description 8
- 229910004205 SiNX Inorganic materials 0.000 description 8
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 8
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 7
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 7
- 229910052814 silicon oxide Inorganic materials 0.000 description 7
- 239000010936 titanium Substances 0.000 description 7
- 229910052719 titanium Inorganic materials 0.000 description 7
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 5
- 229910004298 SiO 2 Inorganic materials 0.000 description 5
- 229910021419 crystalline silicon Inorganic materials 0.000 description 5
- 238000010894 electron beam technology Methods 0.000 description 5
- 239000013078 crystal Substances 0.000 description 4
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 4
- 239000004926 polymethyl methacrylate Substances 0.000 description 4
- 238000002834 transmittance Methods 0.000 description 4
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 238000007747 plating Methods 0.000 description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 239000011147 inorganic material Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000000992 sputter etching Methods 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical group [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F1/00—Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
- G03F1/22—Masks or mask blanks for imaging by radiation of 100nm or shorter wavelength, e.g. X-ray masks, extreme ultraviolet [EUV] masks; Preparation thereof
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
- Preparing Plates And Mask In Photomechanical Process (AREA)
Description
【発明の詳細な説明】
この発明は、超高密度集積回路等サブミクロン
寸法の微細エレクトロニクス素子の製作に用いら
れるX線露光用マスクおよびその製造方法に関す
るものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an X-ray exposure mask used for manufacturing microelectronic elements of submicron dimensions such as ultra-high density integrated circuits, and a method for manufacturing the same.
一般に、X線露光用マスクは、X線を透過させ
る軽元素を成分とする厚さ数μmの保持膜の上
に、X線を吸収する金などの重金属によつてパタ
ーンを形成した構造を有している。X線を透過さ
せる保持膜としては、X線に対する吸収が小さ
く、薄膜状でも強度が大きく、また、タワミ、シ
ワ等の変形が少ないことが要請される。 In general, an X-ray exposure mask has a structure in which a pattern is formed using a heavy metal such as gold that absorbs X-rays on a holding film several μm thick containing a light element that transmits X-rays. are doing. A holding film that transmits X-rays is required to have low absorption of X-rays, high strength even in a thin film form, and little deformation such as deflection and wrinkles.
従来、X線を透過させる保持膜の材料として
は、ポリイミド等の有機材料かシリコン(Si)単
結晶、窒化シリコン(SiNx)、酸化シリコン
(SiO2)、炭化シリコン(SiC)、窒化ホウ素
(BN)等の無機材料が用いられてきた。これら
材料のうち有機物薄膜はX線の吸収が小さい炭素
(C)、水素(H)が主成分とするものの、剛性がないた
め湿気等によつてたわんでパターン変形を起す欠
点があり、一方、無機物薄膜はパターン変形はほ
とんど無いが、X線吸収係数が有機物薄膜よりや
や大きい欠点があつた。 Conventionally, materials for holding films that transmit X-rays include organic materials such as polyimide, single crystal silicon (Si), silicon nitride (SiNx), silicon oxide (SiO 2 ), silicon carbide (SiC), and boron nitride (BN). ) and other inorganic materials have been used. Among these materials, organic thin films are made of carbon, which has low absorption of X-rays.
(C), hydrogen (H) is the main component, but because it lacks rigidity, it has the disadvantage of bending due to moisture etc., causing pattern deformation.On the other hand, inorganic thin films have almost no pattern deformation, but have an X-ray absorption coefficient There was a drawback that the film was slightly larger than that of the organic thin film.
この発明は、以上に鑑み、保持膜の主成分とし
て非晶質シリコン(a−Si)を採用し、従来の無
機物保持膜と同程度の強度と安定性を有し、かつ
X線の吸収係数が従来の無機物より小さいX線露
光用マスクおよびその製造方法を提供する目的で
なされたものである。以下、この発明について説
明する。 In view of the above, this invention adopts amorphous silicon (a-Si) as the main component of the retention film, has strength and stability comparable to conventional inorganic retention films, and has an X-ray absorption coefficient. This invention was made for the purpose of providing an X-ray exposure mask smaller than conventional inorganic materials and a method for manufacturing the same. This invention will be explained below.
X線露光に用いられる5〜100Åの波長領域の
X線に対する吸収係数は、その物質を構成する原
子固有の吸収係数に密度を掛けたもので決定され
ることが知られている。したがつて、従来用いら
れている単結晶シリコン(a−Si)薄膜の代り
に、この発明の水素等を添加した非晶質シリコン
(a−Si:H)を用いれば、原子固有のX線吸収
は単結晶シリコン(c−Si)と同程度であるが、
密度において単結晶シリコン(c−Si)より約20
%小さいので、X線に対する吸収係数も小さくな
ることが期待できる。 It is known that the absorption coefficient for X-rays in the wavelength range of 5 to 100 Å used for X-ray exposure is determined by multiplying the absorption coefficient specific to the atoms constituting the substance by the density. Therefore, if the amorphous silicon (a-Si:H) to which hydrogen etc. of the present invention is added is used instead of the conventionally used single crystal silicon (a-Si) thin film, X-rays unique to atoms can be The absorption is comparable to that of single crystal silicon (c-Si), but
Approximately 20% lower density than single crystal silicon (c-Si)
%, it can be expected that the absorption coefficient for X-rays will also be small.
まず、水素を添加した非晶質シリコン(a−
Si:H)膜を保持膜とするX線露光用マスクの製
造方法について説明する。 First, amorphous silicon (a-
A method for manufacturing an X-ray exposure mask using a Si:H) film as a holding film will be described.
第1図aに示すように、単結晶シリコン基板1
の表面に熱酸化によつて厚さ0.1μm程度の酸化シ
リコン(SiO2)膜2をつけ、その上にシランを
用いたグロー放電法によつて水素を添加した非晶
質シリコン(a−Si:H)膜3を4μmの厚さに堆
積させる。その表面に金/チタンの二重層4を厚
さ0.1μm蒸着し、さらにその上にプラズマCVD
法によつて窒化シリコン(SiNx)膜5を1μm堆
積させる。この表面に電子ビームレジスト層(ポ
リメタアクリル酸メチル:PMMA)6を塗布し
て電子ビーム描画装置によりパターンを形成す
る。この電子ビームレジスト層6を保護膜として
反応性スパツタエツチングによつて窒化シリコン
(SiNx)膜5を部分的に除去し、金/チタン層4
をベースとして成長させた金メツキ層7でパター
ンを形成したものが第1図bに示されている。次
いで、反応性スパツタエツチングによつて残つた
窒化シリコン(SiNx)膜5とその下の金/チタ
ン層4を除去し、単結晶シリコン基板1の裏面に
窓あけ用のパターンをレジスト膜8によつて形成
した状態が第1図cに示されている。表面を樹脂
で保護して裏面から水酸化カリウム(KOH)に
よつて単結晶シリコン基板1をエツチングする
と、第1図dに示す状態になり、次いで、酸化シ
リコン(SiO2)膜2を弗酸で除去すると、第1
図eに示す構造となり、マスクが完成する。な
お、酸化シリコン(SiO2)膜2を単結晶シリコ
ン基板1と水素を添加した非晶質シリコン(a−
Si:H)膜3の間に介在させたのは水酸化カリウ
ム(KOH)によつて水素を添加した非晶質シリ
コン(a−Si:H)膜3までエツチングされない
ようにするためである。 As shown in FIG. 1a, a single crystal silicon substrate 1
A silicon oxide (SiO 2 ) film 2 with a thickness of about 0.1 μm is applied to the surface of the silicon oxide (SiO 2 ) film 2 by thermal oxidation, and on top of that is amorphous silicon (a-Si :H) Deposit film 3 to a thickness of 4 μm. A gold/titanium double layer 4 with a thickness of 0.1 μm is deposited on the surface, and then plasma CVD is applied on top of it.
A silicon nitride (SiNx) film 5 is deposited to a thickness of 1 μm by a method. An electron beam resist layer (polymethyl methacrylate: PMMA) 6 is applied to this surface, and a pattern is formed using an electron beam drawing device. Using this electron beam resist layer 6 as a protective film, the silicon nitride (SiNx) film 5 is partially removed by reactive sputter etching, and the gold/titanium layer 4 is removed.
A pattern formed of a gold plating layer 7 grown on the basis of is shown in FIG. 1b. Next, the remaining silicon nitride (SiNx) film 5 and the underlying gold/titanium layer 4 are removed by reactive sputter etching, and a pattern for opening a window is formed in the resist film 8 on the back surface of the single crystal silicon substrate 1. The resulting state is shown in FIG. 1c. When the surface is protected with a resin and the single crystal silicon substrate 1 is etched from the back side with potassium hydroxide ( KOH ), the state shown in FIG. If you remove it with , the first
The structure shown in Figure e is obtained, and the mask is completed. Note that silicon oxide (SiO 2 ) film 2 is combined with single crystal silicon substrate 1 and hydrogen-doped amorphous silicon (a-
The reason for interposing the Si:H) film 3 is to prevent the amorphous silicon (a-Si:H) film 3 to which hydrogen is added by potassium hydroxide (KOH) from being etched.
このa−Si:H保持膜のX線透過率を単結晶Si
ならびに多結晶Siの保持膜の場合と比較した。単
結晶Siの保持膜を有するマスクの作成法は、文献
(Journal of Vacuum Science and
Technology,Vol.10(1973年)No.6 p 913〜
917)によるものと同じく、ホウ素を高濃度に添
加した単結晶Si保持膜を形成するものであり、一
方、多結晶Siの保持膜を有するマスクの作成法
は、特開昭53−13879号公報に記載されたものと
同じくモノシラン(SiH4)の熱分解によつて気
相成長させた多結晶Si保持膜を形成するものであ
つて、いずれも保持膜の厚さをa−Si:H保持膜
と同じ4μmとして比較を行つた。 The X-ray transmittance of this a-Si:H holding film is expressed as
and a comparison was made with the case of a polycrystalline Si holding film. The method for making a mask with a single-crystal Si holding film is described in the literature (Journal of Vacuum Science and
Technology, Vol.10 (1973) No.6 p.913~
917), a monocrystalline Si retaining film doped with boron at a high concentration is formed.On the other hand, a method for making a mask having a polycrystalline Si retaining film is described in Japanese Patent Laid-Open No. 13879/1983. The polycrystalline Si retaining film is grown in a vapor phase by thermal decomposition of monosilane (SiH 4 ), similar to that described in Comparisons were made with the same thickness as the membrane, 4 μm.
このようにして作成した3種類のマスクを通し
て、Al−Kα線のX線(波長8.3Å、マスク面入射
強度0.8mW/cm2)を、Siウエハ上に厚さ1μmに
塗布したポジ型レジストEBR−9に照射した場
合について、各種保持膜を透過した上記X線によ
つて上記レジスト層が底部まで完全に露光され、
現像段階で完全に除去されるに要する露光時間を
比較したところ、a−Si:H保持膜のマスクの場
合は35秒、単結晶Siおよび多結晶Si保持膜のマス
クの場合は等しく40秒であつて、a−Si:H保持
膜のマスクによれば他の2種類のマスクを用いる
場合に比べて露光時間を12%短縮できることがわ
かつた。 Through the three types of masks created in this way, Al-Kα X-rays (wavelength 8.3 Å, mask surface incident intensity 0.8 mW/cm 2 ) were applied to a Si wafer to a thickness of 1 μm to form a positive resist EBR. -9, the resist layer is completely exposed to the bottom by the X-rays that have passed through the various holding films;
Comparing the exposure time required for complete removal in the development stage, it was 35 seconds for the a-Si:H retention film mask, and 40 seconds for the monocrystalline Si and polycrystalline Si retention film masks. It was found that the exposure time could be reduced by 12% using the a-Si:H retaining film mask compared to the use of the other two types of masks.
上記の露光時間から推定すると、a−Si:H保
持膜のX線(波長8.3Å)吸収係数は1.52×103cm
-1であるのに対し、単結晶Siおよび多結晶Siでは
1.83×103cm-1となり、この比はa−Si:Hの密度
1.9g/cm3と単結晶Siの密度2.3g/cm3との比に一
致する。したがつて、a−Si:H保持膜は単結晶
Si保持膜に比べて密度の小さいことに起因してX
線透過率を向上させることができ、また、多結晶
Si保持膜も透過率はSi結晶粒で決つているため、
単結晶Si保持膜と同等になるということができ
る。 Estimating from the above exposure time, the X-ray (wavelength 8.3 Å) absorption coefficient of the a-Si:H retention film is 1.52 × 10 3 cm
-1 , whereas for single crystal Si and polycrystalline Si
1.83×10 3 cm -1 , and this ratio is the density of a-Si:H.
This corresponds to the ratio of 1.9 g/cm 3 to the density of single crystal Si, 2.3 g/cm 3 . Therefore, the a-Si:H retention film is a single crystal
Due to the lower density compared to the Si retention film,
It can improve the linear transmittance and also polycrystalline
Since the transmittance of the Si retention film is determined by the Si crystal grains,
It can be said that it is equivalent to a single crystal Si holding film.
以上のようにa−Si:H保持膜のマスクによれ
ば、単結晶もしくは多結晶Siを保持膜に用いたマ
スクよりも露光時間を短縮することができ、しか
も、マスク支持膜の耐久性、安定性の点でもa−
Si:H保持膜は単結晶または多結晶Si保持膜に比
べ遜色がない。 As described above, the mask with the a-Si:H holding film can shorten the exposure time compared to the mask using single-crystal or polycrystalline Si as the holding film. Also in terms of stability a-
The Si:H retention film is comparable to single crystal or polycrystalline Si retention films.
上記の例は、水素を添加した非晶質シリコン
(a−Si:H)膜3について述べたが、水素の代
りに炭素(C)、窒素(N)、酸素(O)、弗素(F)等も
非晶質シリコン(a−Si:H)膜3に添加するこ
とができる。いずれの元素もシリコン(Si)より
原子量が小さいので、単結晶シリコン(c−Si)
に比べて原子固有のX線吸収係数が大きくなるこ
とはなく、しかも膜の密度は単結晶シリコン(c
−Si)より小さくなるので、上例と同じく吸収係
数の小さい保持膜を得ることができる。これらの
元素の添加によつて非晶質シリコン(a−Si)膜
の機械的強度が改良されることも判明しており、
それらの添加非晶質シリコン(a−Si)膜を数μ
mの厚さで成膜することは、太陽電池等に関連し
た非晶質シリコン(a−Si)膜の研究において確
立されているグロー放電法等の技術によつて可能
である。 The above example describes the amorphous silicon (a-Si:H) film 3 to which hydrogen is added, but carbon (C), nitrogen (N), oxygen (O), and fluorine (F) are used instead of hydrogen. etc. can also be added to the amorphous silicon (a-Si:H) film 3. Since both elements have smaller atomic weights than silicon (Si), single crystal silicon (c-Si)
The atomic specific X-ray absorption coefficient does not become larger than that of single-crystal silicon (c
-Si), it is possible to obtain a retention film with a small absorption coefficient as in the above example. It has also been found that the addition of these elements improves the mechanical strength of amorphous silicon (a-Si) films.
These doped amorphous silicon (a-Si) films are
It is possible to form a film with a thickness of m by a technique such as a glow discharge method that has been established in research on amorphous silicon (a-Si) films related to solar cells and the like.
なお、保持膜の作成にあたつては、第1図eに
示したような、酸化シリコン(SiO2)膜2の除
去は行わず、第1図dの段階に止めて、非晶質シ
リコン膜3が酸化シリコン(SiO2)膜2によつ
て裏打ちされた構造として強じん性を増やしたマ
スクとすることもできるのは明らかである。 In addition, when creating the retaining film, the silicon oxide (SiO 2 ) film 2 is not removed as shown in FIG. 1e, but is stopped at the stage shown in FIG. It is clear that the membrane 3 can also be structured to be backed by a silicon oxide ( SiO2 ) membrane 2 to provide a mask with increased toughness.
以上説明したように、この発明によるX線露光
用マスクは非晶質シリコンを保持膜の主成分とし
ているので、十分な強度と安定性を有し、かつ露
光時間を短縮することができる利点がある。 As explained above, since the X-ray exposure mask according to the present invention has amorphous silicon as the main component of the holding film, it has sufficient strength and stability, and has the advantage of being able to shorten the exposure time. be.
また、この発明によるX線露光用マスクの製造
方法は、基板表面に酸化膜を設け、この上に非晶
質シリコンに水素等を添加した成分からなる非晶
質シリコン薄膜を設け、この上に金属パターンを
形成後、前記酸化膜を障壁として裏面よりエツチ
ングするようにしたので、非晶質シリコン薄膜が
エツチングされることがないため、製品の歩留り
を向上させることができる。さらに、上記の工程
後、酸化膜をエツチングで除去するようにしたの
で、マスク透過率をさらに向上させることができ
る。 Further, in the method of manufacturing an X-ray exposure mask according to the present invention, an oxide film is provided on the surface of the substrate, an amorphous silicon thin film made of a component such as amorphous silicon to which hydrogen or the like is added is provided, and then After the metal pattern is formed, it is etched from the back side using the oxide film as a barrier, so that the amorphous silicon thin film is not etched, so that the yield of products can be improved. Furthermore, since the oxide film is removed by etching after the above steps, the mask transmittance can be further improved.
第1図はこの発明のX線露光用マスクの製造方
法を説明するための図で、第1図aは単結晶シリ
コン(c−Si)基板に酸化膜(SiO2)、水素を添
加した非晶質シリコン(a−Si:H)膜、金/チ
タン層、窒化シリコン(SiNx)膜、電子ビーム
レジストPMMA膜を形成した図、第1図bは窒
化シリコン(SiNx)膜を部分的に除去し、金/
チタン層をベースにして成長させた金メツキ層で
パターン形成した図、第1図cは窒化シリコン
(SiNx)膜とその下の金/チタン層を除去し、単
結晶シリコン基板の裏面に窓あけ用パターンを形
成した図、第1図dは水酸化カリウム(KOH)
により単結晶シリコン(c−Si)基板にエツチン
グを行つた状態の図、第1図eは弗酸で酸化シリ
コン膜を除去し、マスクを完成した図である。
図中、1は単結晶シリコン(c−Si)基板、2
は熱酸化膜、3は水素を添加した非晶質シリコン
(a−Si:H)膜、4は金/チタン層、5は窒化
シリコン(SiNx)膜、6は電子ビームレジスト
PMMA層、7は金メツキ層、8はレジスト膜で
ある。
FIG. 1 is a diagram for explaining the method of manufacturing an X-ray exposure mask of the present invention, and FIG . Figure 1b shows the formation of a crystalline silicon (a-Si:H) film, gold/titanium layer, silicon nitride (SiNx) film, and electron beam resist PMMA film, with the silicon nitride (SiNx) film partially removed. Gold/
Figure 1c shows a pattern formed using a gold plating layer grown on a titanium layer as a base. The silicon nitride (SiNx) film and the underlying gold/titanium layer are removed, and a window is opened on the back side of the single-crystal silicon substrate. Figure 1 d shows potassium hydroxide (KOH).
FIG. 1E shows a completed mask after removing the silicon oxide film with hydrofluoric acid. In the figure, 1 is a single crystal silicon (c-Si) substrate, 2
is a thermal oxide film, 3 is an amorphous silicon (a-Si:H) film added with hydrogen, 4 is a gold/titanium layer, 5 is a silicon nitride (SiNx) film, and 6 is an electron beam resist.
A PMMA layer, 7 a gold plating layer, and 8 a resist film.
Claims (1)
弗素の諸元素の少なくとも一つを添加した成分か
ら成る少なくとも一層の薄膜を保持膜として設
け、この保持膜上に金属パターンを形成したこと
を特徴とするX線露光用マスク。 2 基板表面に酸化膜を設け、非晶質シリコンに
水素、炭素、窒素、酸素、弗素の諸元素の少なく
とも一つを添加した成分から成る少なくとも一層
の非晶質シリコン薄膜を、前記酸化膜上に堆積す
る工程と、該非晶質シリコン薄膜表面上に金属パ
ターンを形成する工程と、前記酸化膜を障壁とし
て裏面より基板の少なくとも一部領域をエツチン
グにより除去する工程とを含むことを特徴とする
X線露光用マスクの製造方法。 3 基板表面に酸化膜を設け、非晶質シリコンに
水素、炭素、窒素、酸素、弗素の諸元素の少なく
とも一つを添加した成分から成る少なくとも一層
の非晶質シリコン薄膜を、前記酸化膜上に堆積す
る工程と、該非晶質シリコン薄膜表面上に金属パ
ターンを形成する工程と、前記酸化膜を障壁とし
て裏面より基板の少なくとも一部領域をエツチン
グにより除去する工程と、裏面に露出した部分の
酸化膜をエツチングにより除去する工程とを含む
ことを特徴とするX線露光用マスクの製造方法。[Claims] 1 Amorphous silicon containing hydrogen, carbon, nitrogen, oxygen,
1. An X-ray exposure mask characterized in that at least one thin film made of a component to which at least one of various elements of fluorine is added is provided as a holding film, and a metal pattern is formed on this holding film. 2. An oxide film is provided on the surface of the substrate, and at least one amorphous silicon thin film made of amorphous silicon to which at least one of the elements hydrogen, carbon, nitrogen, oxygen, and fluorine is added is deposited on the oxide film. forming a metal pattern on the surface of the amorphous silicon thin film; and removing at least a partial region of the substrate from the back surface using the oxide film as a barrier. A method for manufacturing an X-ray exposure mask. 3. An oxide film is provided on the surface of the substrate, and at least one amorphous silicon thin film made of amorphous silicon to which at least one of the elements hydrogen, carbon, nitrogen, oxygen, and fluorine is added is deposited on the oxide film. forming a metal pattern on the surface of the amorphous silicon thin film; removing at least a partial region of the substrate from the backside using the oxide film as a barrier; 1. A method for manufacturing an X-ray exposure mask, comprising the step of removing an oxide film by etching.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57025153A JPS58141528A (en) | 1982-02-18 | 1982-02-18 | X-ray rexposing mask and preparation thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57025153A JPS58141528A (en) | 1982-02-18 | 1982-02-18 | X-ray rexposing mask and preparation thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58141528A JPS58141528A (en) | 1983-08-22 |
JPH0419696B2 true JPH0419696B2 (en) | 1992-03-31 |
Family
ID=12158064
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57025153A Granted JPS58141528A (en) | 1982-02-18 | 1982-02-18 | X-ray rexposing mask and preparation thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58141528A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5051326A (en) * | 1989-05-26 | 1991-09-24 | At&T Bell Laboratories | X-Ray lithography mask and devices made therewith |
JP4649780B2 (en) * | 2001-06-20 | 2011-03-16 | 凸版印刷株式会社 | Stencil mask, manufacturing method thereof and exposure method |
FR2853418B1 (en) * | 2003-04-01 | 2005-08-19 | Commissariat Energie Atomique | OPTICAL DEVICE WITH REINFORCED MECHANICAL STABILITY OPERATING IN THE EXTREME ULTRAVIOLET AND LITHOGRAPHY MASK COMPRISING SUCH A DEVICE |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS541625A (en) * | 1977-06-06 | 1979-01-08 | Mitsubishi Electric Corp | Electrostatic recording head pressing mechanism |
-
1982
- 1982-02-18 JP JP57025153A patent/JPS58141528A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS541625A (en) * | 1977-06-06 | 1979-01-08 | Mitsubishi Electric Corp | Electrostatic recording head pressing mechanism |
Also Published As
Publication number | Publication date |
---|---|
JPS58141528A (en) | 1983-08-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6730364B2 (en) | Extreme ultraviolet lithography pellicle and manufacturing method thereof | |
JP2823276B2 (en) | Method for manufacturing X-ray mask and apparatus for controlling internal stress of thin film | |
TWI398723B (en) | Pellicle and method of manufacturing pellicle | |
KR20190053706A (en) | Pellicle for Extreme Ultraviolet Lithography | |
US4171489A (en) | Radiation mask structure | |
US5291536A (en) | X-ray mask, method for fabricating the same, and pattern formation method | |
KR20190053766A (en) | Pellicle for Extreme Ultraviolet(EUV) Lithography and Method for fabricating the same | |
JPH0864524A (en) | Preparation of x-ray absorption mask | |
US5702849A (en) | Mask for transferring a pattern for use in a semiconductor device and method of manufacturing the same | |
US4998267A (en) | X-ray lithography carbon mask and method of manufacturing the same | |
JPH02213118A (en) | Manafacture of sicmask supporting member for radiation lithography mask | |
US4634643A (en) | X-ray mask and method of manufacturing the same | |
JPH0419696B2 (en) | ||
Yang et al. | Structure of interfaces in amorphous silicon/silicon nitride superlattices determined by in situ optical reflectance | |
Schmidt et al. | Selective growth of SiGe nanostructures by low pressure VPE | |
JPH10229043A (en) | X-ray mask blank, its manufacture and manufacture of x-ray mask | |
JP3032262B2 (en) | X-ray mask manufacturing method | |
EP0424375B1 (en) | Monolithic channeling mask having amorphous/single crystal construction | |
JPH10161300A (en) | X-ray mask blank, x-ray mask and pattern transfer method | |
Lee et al. | Stress relaxation in plasma deposited tungsten nitride/tungsten bilayer | |
JPS5923104B2 (en) | Manufacturing method for soft X-ray exposure mask | |
Oda et al. | Materials and fabrication processes for highly accurate X-Ray Masks | |
Celler et al. | Formation of monolithic masks for 0.25 μm x‐ray lithography | |
JP2791196B2 (en) | X-ray mask structure, method of manufacturing the same, and X-ray exposure method | |
JP2525773B2 (en) | Semiconductor device and manufacturing method thereof |