JPH04196315A - Formation of fine contact hole of semiconductor device - Google Patents

Formation of fine contact hole of semiconductor device

Info

Publication number
JPH04196315A
JPH04196315A JP2323324A JP32332490A JPH04196315A JP H04196315 A JPH04196315 A JP H04196315A JP 2323324 A JP2323324 A JP 2323324A JP 32332490 A JP32332490 A JP 32332490A JP H04196315 A JPH04196315 A JP H04196315A
Authority
JP
Japan
Prior art keywords
contact hole
polysilicon
oxide film
silicon oxide
etched
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2323324A
Other languages
Japanese (ja)
Inventor
Yasuharu Miyagawa
宮川 康陽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP2323324A priority Critical patent/JPH04196315A/en
Publication of JPH04196315A publication Critical patent/JPH04196315A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Drying Of Semiconductors (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To make it possible to form a fine contact hole by a method wherein a resist pattern, larger than the target contact hole diameter, is formed on a polysilicon layer, the polysilicon layer is etched in taper form, and a silicon oxide film is anisotropically etched using the above-mentioned taper. CONSTITUTION:After polysilicon 3 has been deposited on a silicon oxide film 2, a resist pattern 4, which is larger than the target contact hole l2, is formed and the polysilicon pattern 4 is etched in taper shape using the resist 4 as a mask. Also, the silicon oxide film 2 is anisotropically etched, and the contact hole is etched using the above-mentioned taper. As a result, the contact hole, having the diameter of 0.5mum or smaller, can be formed even when the existing i-line stepper is utilized by combining the thickness of the polysilicon and the condition of etching.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は半導体装置、特に半導体記憶装置における微
細コンタクトホールの形成方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for forming fine contact holes in semiconductor devices, particularly semiconductor memory devices.

(従来技術) 半導体記憶装置の高集積度化にはコンタクトホール径の
縮小が必要不可欠であり代表的な半導体記憶装置である
4メガビツトダイナミツクランダムアクセスメモリー(
4MbDRAM )では0.8μm程度、16 MbD
RAMでは0.5μm程度、さらに64MbDRAMで
は0.35μm程度のコンタクトホールが要求されてい
る。
(Prior art) Reducing the contact hole diameter is essential for increasing the degree of integration of semiconductor storage devices, and 4 megabit dynamic random access memory (4 megabit dynamic random access memory), which is a typical semiconductor storage device, is essential.
4MbDRAM) is about 0.8μm, 16MbD
A contact hole of about 0.5 μm is required for a RAM, and a contact hole of about 0.35 μm is required for a 64 Mb DRAM.

従来のコンタクトホールの形成は第2図に示すように半
導体基板、例えばシリコン基板上のワード線1を覆うシ
リコン酸化膜2上にレノスト3を塗布しく第2図a)、
レジスト3を縮小投影型露光機(ステッパー)で露光し
た後、有機溶媒などで現像除去しく第2図b)、レジス
ト3をマスクにシリコン酸化膜をフルオロカーボンプラ
ズマなどにより異方的にエツチングしく第2図C)、レ
ジストを02プラズマなどにより除去する(第2図d)
ことによシ行われている。
A conventional contact hole is formed by coating a silicon oxide film 2 covering a word line 1 on a semiconductor substrate, for example, a silicon substrate, with renost 3, as shown in FIG. 2.
After exposing the resist 3 using a reduction projection type exposure machine (stepper), the silicon oxide film is anisotropically etched using fluorocarbon plasma or the like using the resist 3 as a mask and removed by developing with an organic solvent (see Fig. 2b). Figure C), remove the resist with 02 plasma etc. (Figure 2 d)
This is especially true.

ここでコンタクトホール径は第2図(b)の工程でほぼ
決定されてしまうので、微細コンタクトホールの形成に
は、レジストを微小寸法に露光現像することが必要であ
る。つまりステッパーの解像度は要求されるコンタクト
ホール径と同程度であることが必要である。
Here, since the diameter of the contact hole is almost determined by the process shown in FIG. 2(b), it is necessary to expose and develop the resist to a minute size in order to form a minute contact hole. In other words, the resolution of the stepper needs to be about the same as the required contact hole diameter.

チッパ−の解像度、λ:光源の波長、NA:レンズの開
口数、K:レノストプロセスにより決定される係数11
通常08)で表わされるので、0.5#1径のレジスト
パターンを形成するにはN A = 0.5程度の1M
ステッパー(波長365 urn )まだはN、h =
 0.4 程にのKrFエキシマレーザ−ステッパー(
波長248 nm )が必要とされている。
Chipper resolution, λ: wavelength of light source, NA: numerical aperture of lens, K: coefficient 11 determined by Rennost process
Normally, it is expressed as 08), so to form a resist pattern with a diameter of 0.5 #1, N A = 1M of about 0.5.
Stepper (wavelength 365 urn) still N, h =
0.4 KrF excimer laser stepper (
A wavelength of 248 nm) is required.

(発明が解決しようとする課題) しかし以上述べた方法のうちiiミスチッパ−id 0
.35μm径程度のレジストパターンを形成することは
できないので、この目的とする微細コンタクトホールを
形成できない。
(Problem to be solved by the invention) However, among the methods described above, ii mischipper-id 0
.. Since it is not possible to form a resist pattern with a diameter of approximately 35 μm, it is not possible to form the desired fine contact hole.

’1 タKrFエキシマレーザ−ステッパーでは、NA
=O855程度のレンズを用いることによシ0.35μ
m程度のパターンを形成することは可能だがKrFエキ
シマレーザ−の寿命が106シヨソト程度と短いので量
産には不向きであり、またエキシマレーザ−ステツノe
−の位置合わせ精度がコンタクトホール径と同程度の0
.3μmであるのでパターンずれの危険性が高い。
'1 For the KrF excimer laser stepper, the NA
=0.35μ by using a lens of about O855
Although it is possible to form a pattern with a length of approximately 10 mm, the lifespan of the KrF excimer laser is as short as 106 cm, making it unsuitable for mass production.
– positioning accuracy is about the same as the contact hole diameter.
.. Since it is 3 μm, there is a high risk of pattern displacement.

この発明は例えば16 MbDRAM以降の半導体記憶
装置で必要とされる05μm以下のコンタクトホール形
成方法を提供することを目的とする。
An object of the present invention is to provide a method for forming a contact hole of 05 μm or less, which is required in a semiconductor memory device of 16 Mb DRAM or later, for example.

(課題を解決するための手段) この発明は微細コンタクトホール形成方法においてシリ
コン酸化膜上にポリシリコンを堆積してから目標とする
コンタクトホール径よりも大きな寸法をもつレジス) 
ノPターンを形成しこのレジストをマスクとしてポリシ
リコンをテーパー状にエツチングし、かつシリコン酸化
膜を異方的にエツチングし、このテーパーを用いてコン
タクトホールのエツチングを行なうようにしたものであ
る。
(Means for Solving the Problems) This invention provides a micro contact hole forming method in which polysilicon is deposited on a silicon oxide film and then a resist having a size larger than the target contact hole diameter is formed.
The polysilicon is etched into a tapered shape using the resist as a mask, and the silicon oxide film is etched anisotropically. This taper is used to etch a contact hole.

(作用) この方法によればポリシリコン膜厚とエツチング条件を
組合せることにより0.5ミクロン以下の直径をもつコ
ンタクトホールを既存のi線ステッパーを利用しても形
成出来る。
(Function) According to this method, by combining the polysilicon film thickness and etching conditions, contact holes having a diameter of 0.5 microns or less can be formed even when using an existing i-line stepper.

(実施例) 第1図はこの発明の方法の一実施例を示す工程図である
(Example) FIG. 1 is a process diagram showing an example of the method of the present invention.

第1図において例えばシリコン基板であるウェハ上の配
線1例えばワード線1を覆うシリコン酸化膜2上にポリ
シリコン3を堆積する(第1図a)。
In FIG. 1, polysilicon 3 is deposited on a silicon oxide film 2 covering wiring 1, for example, word line 1, on a wafer, which is a silicon substrate, for example (FIG. 1a).

次にレジスト4をポリシリコン層3の上に形成しそれを
適当なマスクを用いて露光し現像する(第1図b)。次
にポリシリコン層3をテーパーエンチングする(第1図
C)。次にこのポリシリコン層3のチー・ぐ−を利用し
てシリコン酸化膜2を異方的にエツチングする(第1図
d)。そしてレジスト4を02プラズマなどで除去する
(第1図e)。
Next, a resist 4 is formed on the polysilicon layer 3, exposed using a suitable mask, and developed (FIG. 1b). Next, polysilicon layer 3 is taper-etched (FIG. 1C). Next, the silicon oxide film 2 is anisotropically etched using the silicone groove of the polysilicon layer 3 (FIG. 1d). Then, the resist 4 is removed using 02 plasma or the like (FIG. 1e).

から構成されている。なお第1図Cと第1図dの工程は
フルオロカーデンプラズマを用いた同一エツチング条件
で連続的に実行される。
It consists of Note that the steps shown in FIG. 1C and FIG. 1D are performed continuously under the same etching conditions using fluorocarbon plasma.

堆積ポリシリコン層3(第1図a)の膜厚d1およびレ
ジスト4(第1図b)の寸法11は、レジスト除去後の
ポリシリコンを除去する必要がある場合には、シリコン
基板やシリコン酸化膜に対する選択比が良好な条件で処
理すればよい。このようなエツチングは、例えば圧力3
50 m Torr 、エツチングガスHBr/He 
= 100 / 1008CCM 、高周波電源周波数
13.56 MHz高周波電源力250W、上部電極冷
媒温度40℃、下部電極冷媒温度40℃に設定した平行
平板型エツチング装置で可能である。
The thickness d1 of the deposited polysilicon layer 3 (FIG. 1a) and the dimension 11 of the resist 4 (FIG. 1b) are determined by the thickness d1 of the deposited polysilicon layer 3 (FIG. 1a) and the dimension 11 of the resist 4 (FIG. 1b). The treatment may be carried out under conditions that provide a good selectivity to the membrane. Such etching can be performed, for example, at a pressure of 3
50 m Torr, etching gas HBr/He
= 100/1008 CCM, a high frequency power supply frequency of 13.56 MHz, a high frequency power supply power of 250 W, an upper electrode coolant temperature of 40°C, and a lower electrode coolant temperature of 40°C.

目標とするコンタクトホール径12(第1図d)はエツ
チング条件に依存するし、11=12+2φ1/lan
θを満足する。但し、11はレノストマスクの径、dl
はポリシリコン層3の膜厚、θはテーパー角である。
The target contact hole diameter 12 (Fig. 1d) depends on the etching conditions, and is 11=12+2φ1/lan.
Satisfies θ. However, 11 is the diameter of the Lennost mask, dl
is the film thickness of the polysilicon layer 3, and θ is the taper angle.

例えば12=0.351tmのとき平行平板型のエツチ
ング装置でエツチング条件を圧力0.6 Torr 、
エツチングガスAr/CHF、、/CF4= 800/
 20/20 SCCM 。
For example, when 12 = 0.351 tm, the etching conditions are set to a pressure of 0.6 Torr using a parallel plate type etching device.
Etching gas Ar/CHF, /CF4=800/
20/20 SCCM.

高周波電源周波数380 kHz 、高周波電源室カフ
50W、電極間隔9 mm 、上部電極冷媒温度20℃
、下部電極冷媒温度−20℃とすると、ポリシリコンの
チー/F−角θが45°となるのでd1=0.1μmな
らば’1−CL 55 μm、  dl−0,2μm 
、ならばl 1=0.75μmと設定すればよい。
High frequency power supply frequency 380 kHz, high frequency power supply room cuff 50W, electrode spacing 9 mm, upper electrode refrigerant temperature 20°C
, if the lower electrode coolant temperature is -20°C, the Chi/F-angle θ of polysilicon is 45°, so if d1 = 0.1 μm, '1-CL 55 μm, dl-0.2 μm
, then it is sufficient to set l1=0.75 μm.

同様にt2= 0.35μmのとき平行平板型のエツチ
ング装置でエツチング条件を圧力1. OTorr 、
エツチングガスAr/CHF″3/C’F4= 800
/80/80.高周波電源周波数380 kHz 、高
周波電源型カフ50W。
Similarly, when t2 = 0.35 μm, the etching conditions were set to 1.5 μm using a parallel plate type etching device. OTorr,
Etching gas Ar/CHF″3/C’F4=800
/80/80. High frequency power supply frequency 380 kHz, high frequency power supply type cuff 50W.

電極間隔91II11、上部電極冷媒温度20℃、下部
電極冷媒温度−20℃とすると、ポリシリコンのテーパ
ー角θが55°となるのでd1= 0.1μmならば1
 = 0.481”rn −62−0,2amならばz
1= 0.62 μmと設定すればよい。
Assuming that the electrode spacing is 91II11, the upper electrode coolant temperature is 20°C, and the lower electrode coolant temperature is -20°C, the taper angle θ of polysilicon is 55°, so if d1 = 0.1 μm, then 1
= 0.481"rn -62-0.2am then z
It is sufficient to set 1=0.62 μm.

本実施例ではポリシリコンを堆積した後に第1図(b)
以降の一連の工程を実行して(・るが、ポリシリコンに
リン(P)などの不純物をドーピングした後に第1図(
b)以降の一連の工程を実行しても同様の効果を実現す
ることが可能である。
In this example, after depositing polysilicon, as shown in FIG.
After performing the following series of steps (see Figure 1), after doping polysilicon with impurities such as phosphorus (P),
b) It is possible to achieve the same effect by performing the following series of steps.

(発明の効果) 以上詳細に説明したようにこの発明によれば。(Effect of the invention) According to the present invention as described in detail above.

シリコン酸化膜上にポリシリコンを堆積した後目標とす
るコンタクト径より大きな寸法のレジストパターンを形
成し、ポリシリコンをテーパー状にエツチングし、かつ
シリコン酸化膜を異方的にエツチングする条件でコンタ
クトホールのエツチングを行なうようにしたので、ポリ
シリコン膜厚とエツチング条件を組合わせることによシ
、64MbDRAMなどの半導体記憶装置で要求される
・・−フミクロン以下の径をもつコンタクトホールを既
存のi線ステン・そ−を利用して形成することができる
After depositing polysilicon on the silicon oxide film, a resist pattern with dimensions larger than the target contact diameter is formed, and the polysilicon is etched into a tapered shape, and the contact hole is etched under the conditions that the silicon oxide film is etched anisotropically. By combining the polysilicon film thickness and etching conditions, contact holes with a diameter of less than a micron, which is required for semiconductor memory devices such as 64 Mb DRAM, can be formed using existing i-line etching methods. It can be formed using stainless steel.

これによりKrFエキシマレーザ−ステツノクーすどに
付随する実用上の問題点を解決して、実用性ノ高いコン
タクトホール形成プロセスを確立j ルことか期待でき
る。
It is hoped that this will solve the practical problems associated with the KrF excimer laser process and establish a highly practical contact hole forming process.

【図面の簡単な説明】[Brief explanation of the drawing]

第2図は従来のコンタクトホール形成方法を示す工程図
第1図は本発明の方法を示す工程図である。 1・・・配線、2・・・シリコン酸化膜、3・・・ポリ
シリコン層、4・・・レノスト。 −/−2 f−2 第1図(彷1) 3ポリシリコン 41ノシ゛°スト 第1図(拍2)
FIG. 2 is a process diagram showing a conventional contact hole forming method. FIG. 1 is a process diagram showing a method of the present invention. 1... Wiring, 2... Silicon oxide film, 3... Polysilicon layer, 4... Renost. -/-2 f-2 Figure 1 (Beat 1) 3 Polysilicon 41 Nose Shock Figure 1 (Beat 2)

Claims (1)

【特許請求の範囲】[Claims]  半導体基板に形成される層間絶縁用シリコン酸化膜上
にポリシリコン層を堆積し、目標とするコンタクト径よ
りも大きな寸法のレジストパターンをこのポリシリコン
層の上に形成し、それを用いて上記ポリシリコン層をテ
ーパー状にエッチングし、このテーパーを用いてシリコ
ン酸化膜を異方的にエッチングしてコンタクトホールを
形成することを特徴とする半導体装置の微細コンタクト
ホールの形成方法。
A polysilicon layer is deposited on a silicon oxide film for interlayer insulation formed on a semiconductor substrate, a resist pattern with a dimension larger than the target contact diameter is formed on this polysilicon layer, and this is used to deposit the polysilicon layer. 1. A method for forming a fine contact hole in a semiconductor device, which comprises etching a silicon layer into a tapered shape and using this taper to anisotropically etch a silicon oxide film to form a contact hole.
JP2323324A 1990-11-28 1990-11-28 Formation of fine contact hole of semiconductor device Pending JPH04196315A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2323324A JPH04196315A (en) 1990-11-28 1990-11-28 Formation of fine contact hole of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2323324A JPH04196315A (en) 1990-11-28 1990-11-28 Formation of fine contact hole of semiconductor device

Publications (1)

Publication Number Publication Date
JPH04196315A true JPH04196315A (en) 1992-07-16

Family

ID=18153522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2323324A Pending JPH04196315A (en) 1990-11-28 1990-11-28 Formation of fine contact hole of semiconductor device

Country Status (1)

Country Link
JP (1) JPH04196315A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100376978B1 (en) * 2000-12-26 2003-03-26 주식회사 하이닉스반도체 A method for forming a contact hole of a semiconductor device
DE10226604A1 (en) * 2002-06-14 2004-01-08 Infineon Technologies Ag Process for structuring a silicon layer
DE10226603A1 (en) * 2002-06-14 2004-01-08 Infineon Technologies Ag Method for structuring a silicon layer and its use for producing an integrated semiconductor circuit
US7041602B2 (en) 2003-01-31 2006-05-09 Oki Electric Industry Co., Ltd. Method of fabricating semiconductor device
US7169682B2 (en) 2004-01-29 2007-01-30 Sharp Kabushiki Kaisha Method for manufacturing semiconductor device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100376978B1 (en) * 2000-12-26 2003-03-26 주식회사 하이닉스반도체 A method for forming a contact hole of a semiconductor device
DE10226604A1 (en) * 2002-06-14 2004-01-08 Infineon Technologies Ag Process for structuring a silicon layer
DE10226603A1 (en) * 2002-06-14 2004-01-08 Infineon Technologies Ag Method for structuring a silicon layer and its use for producing an integrated semiconductor circuit
US6933240B2 (en) 2002-06-14 2005-08-23 Infineon Technologies Ag Method for patterning a layer of silicon, and method for fabricating an integrated semiconductor circuit
DE10226604B4 (en) * 2002-06-14 2006-06-01 Infineon Technologies Ag Method for structuring a layer
US7439186B2 (en) 2002-06-14 2008-10-21 Infineon Technologies Ag Method for structuring a silicon layer
US7041602B2 (en) 2003-01-31 2006-05-09 Oki Electric Industry Co., Ltd. Method of fabricating semiconductor device
US7169682B2 (en) 2004-01-29 2007-01-30 Sharp Kabushiki Kaisha Method for manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
US6071815A (en) Method of patterning sidewalls of a trench in integrated circuit manufacturing
US6074951A (en) Vapor phase etching of oxide masked by resist or masking material
US5876879A (en) Oxide layer patterned by vapor phase etching
US4919749A (en) Method for making high resolution silicon shadow masks
JPS63116430A (en) Method of forming mask
US5369061A (en) Method of producing semiconductor device using a hydrogen-enriched layer
US6953746B2 (en) Method of manufacturing a semiconductor apparatus with a tapered aperture pattern to form a predetermined line width
JP3088178B2 (en) Polysilicon film etching method
US6339251B2 (en) Wafer grooves for reducing semiconductor wafer warping
US6025250A (en) Methods including wafer grooves for reducing semiconductor wafer warping and related structure
JPH04196315A (en) Formation of fine contact hole of semiconductor device
JP3200455B2 (en) Method for manufacturing semiconductor memory device
US5346846A (en) Method of manufacturing a highly integrated semiconductor device
JP3585039B2 (en) Hole forming method
KR100367493B1 (en) Method for manufacturing semiconductor device
JPH06216006A (en) Manufacture of semiconductor device
JPH0458167B2 (en)
JPH05343535A (en) Method of forming fine wiring
KR100275934B1 (en) A method for forming fine concuctive line of semiconductor device
JPS6240723A (en) Manufacture of semiconductor device
JPH05206085A (en) Fine pattern formation
KR20000008910A (en) Manufacturing method of semiconductor components and the method of making the capacitor using the method
JPH06188365A (en) Manufacture of integrated circuit device
JP2811724B2 (en) Etching method
KR0172300B1 (en) Method of forming conduction film