JPH041962B2 - - Google Patents

Info

Publication number
JPH041962B2
JPH041962B2 JP12802583A JP12802583A JPH041962B2 JP H041962 B2 JPH041962 B2 JP H041962B2 JP 12802583 A JP12802583 A JP 12802583A JP 12802583 A JP12802583 A JP 12802583A JP H041962 B2 JPH041962 B2 JP H041962B2
Authority
JP
Japan
Prior art keywords
resin
layer
thermoplastic
conductive
resin layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12802583A
Other languages
Japanese (ja)
Other versions
JPS6020407A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP58128025A priority Critical patent/JPS6020407A/en
Publication of JPS6020407A publication Critical patent/JPS6020407A/en
Publication of JPH041962B2 publication Critical patent/JPH041962B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、熱可塑性樹脂導電性プラスチツクフ
イルムに関し、さらに詳しくは、熱可塑性樹脂に
カーボンブラツクを50重量部以上含有した熱可塑
性導電性樹脂層を含み、その両面或いは片面に該
熱可塑性導電性樹脂層とは相溶性が悪く剥離性の
良好な樹脂を共押出し、冷却固化後、剥離性の良
好な樹脂層を剥すことよりなるその表面抵抗値
が、105Ω/スクウエヤ以下である導電性プラス
チツクフイルムに関する。 一般に、熱可塑性樹脂フイルムは、表面低抗値
が高く、他方、耐水性、耐薬品性、加工性の良好
な特徴を有するが、導電性プラスチツクフイルム
は、各種の電子部品や電子部品容器等に使用され
ており、その表面低抗値が105Ω/スクウエヤ以
下である熱可塑性樹脂導電性プラスチツクフイル
ムが要求されている。熱可塑性樹脂導電性プラス
チツクフイルムを得る方法として、熱可塑性樹脂
に帯電防止剤若くはカーボンブラツク等の導電材
料を練り込み、押出しフイルム成形する方法が知
られている。帯電防止剤の場合は、実際には表面
抵抗値を1011Ω/スクウエヤまでしか低下させる
ことができず、満足する導電性プラスチツクフイ
ルムは得られない。また、カーボンブラツクや金
属微粉末の導電材料を添加する場合は、帯電防止
効果の持続性および表面低抗値の面から見れば、
非常に有効な方法であるが、多量の導電材料の添
加が必要であり、このような混合物を連続的に押
出す際に、押出成形時の流動特性の低下が著し
く、冷却固化時に、溶融樹脂が破断し、良好なフ
イルムを得ることが困難である。また、このよう
な押出し流動特性を改良する方法として、多量の
流動パラフインや、他の鉱物油、種々の滑剤等の
添加剤を添加する方法もあるが、これらの方法に
おいても熱可塑性樹脂にカーボンブラツクを50重
量部以上含有する導電性プラスチツクフイルム
は、押出し冷却固化時に、溶融樹脂が破断し、良
好な導電性プラスチツクフイルムを得ることがで
きない。 本発明は、かかる欠点を解決したものであり、
熱可塑性樹脂100重量部に対しカーボンブラツク
50重量部以上添加し表面抵抗値が105/スクウエ
ヤ以下である熱可塑性導電性樹脂層及びその片面
又は両面に該熱可塑性導電性樹脂層とは相溶性が
悪く剥離性の良好な樹脂層とを共押出し、2層又
は3層とし、冷却固化後該剥離性の良好な樹脂層
を剥離することを特徴とする導電性プラスチツク
フイルムの製造方法であり、更には基材用熱可塑
性樹脂の片面又は両面に、熱可塑性樹脂100重量
部に対しカーボンブラツク50重量部以上添加し表
面抵抗値が105/スクウエヤ以下である熱可塑性
導電性樹脂層及び該熱可塑性導電性樹脂層とは相
溶性が悪く剥離性の良好な樹脂層とをこの順に積
層されるように共押出し、3層又は5層とし、冷
却固化後該剥離性の良好な樹脂層を剥離すること
を特徴とする導電性プラスチツクフイルムの製造
方法である。 以下本発明をさらに詳細に説明する。 本発明において、カーボンブラツクを50重量部
以上含有し、その表面低抗値が105Ω/スクウエ
ヤ以下である熱可塑性導電性樹脂(A)層、剥離性の
良好な樹脂(B)層、基材用熱可塑性樹脂(C)層におい
て、共押出しするときの層構成は、(B)/(A)/(B)、
(B)/(A)/(C)、(C)/(A)/(B)、(B)/(A)/(C)/(A)/
(B)等
であり、各樹脂層の厚みは、使用される電子部品
の要求性能により、厚薄適宜決められ、剥離性の
良好な樹脂(B)層、基材用熱可塑性樹脂(C)層等を共
押出しすることにより、カーボンブラツクを50重
量部以上含有する熱可塑性導電性樹脂(A)層の冷却
固化時の溶融樹脂破断を防ぐものであり、冷却固
化後(B)層を剥離し、その表面低抗値が105Ω/ス
クウエヤ以下である導電性プラスチツクフイルム
を得るものであり、従つて、(B)層剥離後得られる
導電性プラスチツクフイルム層構成は、(A)、(A)/
(C)、(C)/(A)、(A)/(C)/(A)等であり、(A)層の表面

抗値が105Ω/スクウエヤ以下である導電性プラ
スチツクフイルムとなる。 本発明に用いるカーボンブラツクを50重量部以
上含有し、その表面抵抗値が105Ω/スクウエヤ
以下である熱可塑性導電性樹脂(A)は、ポリプロピ
レン、高密度ポリエチレン、低密度ポリエチレ
ン、ポリブテン−1等のオレフインのホモポリマ
ー、エチレン−酢酸ビニル共重合体、エチレンエ
チルアクリレート共重合体、エチレンプロピレン
共重合体をはじめとするエチレン−α−オレフイ
ン共重合体等のエチレン系共重合体或いは、プロ
ピレン系共重合体、エチレンピロピレンゴム、エ
チレンプロピレンジエン化合物等ゴムのエラスト
マー及びポリスチレン系ポリマー等である。ま
た、これらの樹脂或いはエラストマーの2種以上
の混合物及びこれらの樹脂或いはエラストマーに
対して他の樹脂或いはエラストマーを混合した混
合物を用いることもできる。剥離性の良好な樹脂
(B)層としては、熱可塑性導電性樹脂(A)層と相容性
の悪い押出し成形可能な樹脂であり、ポリスチレ
ン系樹脂、ポリメチルペンテン系樹脂、ポリカー
ボネート樹脂、ポリアミド系樹脂或いはこれらの
共重合体樹脂或いは他の樹脂との混合物等を用い
ることもできる。基材用熱可塑性樹脂(C)層は、カ
ーボンブラツクを50重量部以上含有する熱可塑性
導電性樹脂(A)層と接着させるために、熱可塑性導
電性樹脂(A)層と相容性の良好な押圧し成形可能な
樹脂であり、(A)層のカーボンブラツクを50重量部
以上含有させる以前の熱可塑性樹脂と同種或いは
同系列の樹脂を選定することが望ましい。 本発明において、熱可塑性樹脂に、カーボンブ
ラツクを50重量部以上含有し、その表面低抗値が
105Ω/スクウエヤ以下である熱可塑性導電性樹
脂(A)層、剥離性の良好な樹脂(B)層、基材用熱可塑
性樹脂(C)層等の押出流動特性を一致させるのが望
ましいが、熱可塑性導電性樹脂(A)層として用いる
樹脂は、その表面抵抗値が105Ω/スクウエヤ以
下になるように、カーボンブラツクを50重量部以
上含有させるので、押出加工時の流動特性が悪く
なる傾向があり、(A)層を押出し成形する共押出し
成形用ダイスの内部形状を樹脂が流れ易くするた
めに、工夫を加える事も必要の場合はあるが、(B)
層及び(C)層の厚み比率調整により、共押出し冷却
固化後、剥離性の良好な樹脂層を剥離することに
より、カーボンブラツクを50重量部以上含有し、
その表面低抗値が105Ω/スクウエヤ以下である
導電性プラスチツクフイルムを得ることができ
る。 本発明の導電性プラスチツクフイルムにおい
て、剥離性の良好な樹脂(B)層を剥すことよりなる
熱可塑性導電性樹脂(A)層の表面は、押出用ダイス
リツプの微妙な傷あともなく、得られる導電性プ
ラスチツクフイルムの表面は鏡面となる。さら
に、機械的強さ、剛性、耐衝撃性のような物性が
特に必要な場合には、基材用熱可塑性樹脂(C)層、
熱可塑性導電性樹脂(A)層、剥離性の良好な樹脂(B)
層等の共押出しを行い、(C)層及び(A)層の接着した
導電性プラスチツクフイルムを得ることができ、
上記のような物性が、それ程強く要求されない場
合には、熱可塑性導電性樹脂(A)層、剥離性の良好
な樹脂(B)層等の共押出しを行い、(A)層の導電性プ
ラシチツクフイルムを得ることができる。 本発明に用いる導電材料であるカーボンブラツ
クとしては、チヤンネル式、フアーネス式、アセ
チレン式、サーマル式によつて製造される各種カ
ーボンブラツクが含まれ、その添加量は50重量部
以上であり、望ましくは50〜150重量部であり、
その他抗酸化剤、潤滑剤、無機充填剤、着色剤、
難燃剤、その他の各種添加剤を加えることも可能
である。 次に、本発明品を製造するには、まず、熱可塑
性導電性樹脂は、熱可塑性樹脂、カーボンブラツ
ク、各種添加剤等を、バンバリーミキサー、コニ
ーダー、押出機等の各種混練機によつて混練して
ペレツトとし、次いで、熱可塑性導電性樹脂、剥
離性の良好な樹脂或いは熱可塑性導電性樹脂、剥
離性の良好な樹脂、基材用熱可塑性樹脂等を、そ
れぞれ2台或いは3台の押出機に供給し、三層ダ
イス或いは五層ダイスより押出し、積層の一体化
にて共押出しを行い、冷却固化時の溶融樹脂破断
を防ぐと同時に冷却固化後、剥離性の良好な樹脂
層を剥離し、その表面抵抗値が105Ω/スクウエ
ヤ以下である導電性プラスチツクフイルムを製造
するものである。このような、共押出し方法で得
られた本発明の導電性プラスチツクフイルムの肉
厚は、0.005〜3.0mmであり、0.01mm以下の薄肉フ
イルムの製造も可能である。 以下本発明の実施例により、さらに詳細に説明
する。 第1表及び第2表に本発明の実施例及び比較例
を示す。第1表及び第2表に示した実施例No.1〜
No.9及び比較例No.1〜No.3の熱可塑性導電性樹脂
配合組成物を口径30m/mの2軸混練機にて造粒
をする。その後、2台或いは3台の押出機にて、
熱可塑性導電性樹脂(A)、剥離性の良好な樹脂(B)、
基材用熱可塑性樹脂(C)等を各々溶融混練し、温度
210℃のTダイ共押出しダイス内で合流させ、リ
ツプから溶融共押出しを行なう。リツプの真下
に、直径60cmφ、冷却温度80℃の冷却ロールにて
溶融樹脂を冷却固化させる。「共押出時、フイル
ム層構成及び厚み」の調整は、押出機の回転数及
び冷却固化ロールの引取り速度を各々調整するこ
とにより、実施例及び比較例に記載の如く調整す
る。その後、剥離性の良好な樹脂(B)層を剥離し、
「剥離後の導電性プラスチツクフイル層構成及び
厚み」に記載の如くの単層或いは複合の導電性プ
ラスチツクフイルムを得る。その後、「導電性プ
ラスチツクフイルム表面抵抗値(Ω/スクウエ
ヤ)」を測定するが、表面抵抗値測定は、10cm×
12cmフイルム試料にて行ない、端子処理は、両端
部1cm×10cm部を銀ペイント塗布乾燥後、ホイー
ストンブリツヂ抵抗測定機にて、両端子間の抵抗
値を測定し、その抵抗値が105Ω以下のものを良
好とする。また、「押出し冷却固化時の破断の有
無」を観察し、破断の無いものを良好とし、破断
の有るものは、導電性プラスチツクフイルムが得
られないので不良である。総合評価は、押出し冷
却固化時の破断が無く、得られた導電性プラスチ
ツクフイルム表面抵抗値が105Ω/スクウエヤ以
下であるものを良好とし、両者のいずれかを満足
しないものを不良とする。 実施例No.1〜No.9では、押出し冷却固化時の破
断もなく、導電性プラスチツクフイルムが得ら
れ、その表面抵抗値が105Ω/スクウエヤ以下で
あり、良好である。 比較例No.1及びNo.2は、熱可塑性導電性樹脂の
単層押出しであり、いずれも、押出し冷却固化時
に破断し、導電性プラスチツクフイルムは得られ
ず、比較例No.3は、カーボンブラツク含有量50重
量部未満であり、得られた導電性プラスチツクフ
イルムの表面抵抗値は、105Ω/スクウエヤ以下
には、ならなく、いずれも不良である。
The present invention relates to a thermoplastic resin conductive plastic film, and more specifically, the present invention relates to a thermoplastic resin conductive plastic film, and more specifically, the thermoplastic resin layer includes a thermoplastic conductive resin layer containing 50 parts by weight or more of carbon black, and the thermoplastic conductive resin film is coated on both or one side of the thermoplastic resin layer. A conductive plastic whose surface resistance value is 10 5 Ω/square or less is obtained by coextruding a resin that has poor compatibility with the layer and has good peelability, and then peeling off the resin layer that has good peelability after cooling and solidifying. Regarding film. In general, thermoplastic resin films have a high surface resistance value and good water resistance, chemical resistance, and processability, but conductive plastic films are used for various electronic components and electronic component containers. There is a demand for a thermoplastic resin conductive plastic film having a surface resistance value of 10 5 Ω/square or less. As a method for obtaining a thermoplastic resin conductive plastic film, a method is known in which an antistatic agent or a conductive material such as carbon black is kneaded into a thermoplastic resin and then extruded to form a film. In the case of antistatic agents, the surface resistance value can actually be reduced only to 10 11 Ω/square, and a satisfactory conductive plastic film cannot be obtained. In addition, when adding conductive materials such as carbon black or fine metal powder, from the viewpoint of sustainability of antistatic effect and low surface resistance value,
Although this method is very effective, it requires the addition of a large amount of conductive material, and when such a mixture is continuously extruded, the flow characteristics during extrusion molding are significantly reduced, and when the mixture is cooled and solidified, the molten resin is broken, making it difficult to obtain a good film. In addition, as a method of improving such extrusion flow characteristics, there is a method of adding large amounts of additives such as liquid paraffin, other mineral oils, and various lubricants, but these methods also add carbon to the thermoplastic resin. When a conductive plastic film contains 50 parts by weight or more of black, the molten resin breaks during extrusion, cooling, and solidification, making it impossible to obtain a good conductive plastic film. The present invention solves these drawbacks,
Carbon black per 100 parts by weight of thermoplastic resin
A thermoplastic conductive resin layer containing 50 parts by weight or more and a surface resistance of 10 5 /square or less, and a resin layer on one or both sides of which is incompatible with the thermoplastic conductive resin layer and has good peelability. This is a method for producing a conductive plastic film, which is characterized by coextruding to form two or three layers, and peeling off the resin layer with good peelability after cooling and solidifying. Or, on both sides, a thermoplastic conductive resin layer containing 50 parts by weight or more of carbon black per 100 parts by weight of the thermoplastic resin and having a surface resistance value of 10 5 /square or less, and which is not compatible with the thermoplastic conductive resin layer. A conductive plastic film characterized in that a resin layer with poor peelability and a resin layer with good peelability are co-extruded so as to be laminated in this order to form 3 or 5 layers, and after cooling and solidification, the resin layer with good peelability is peeled off. This is a manufacturing method. The present invention will be explained in more detail below. In the present invention, a thermoplastic conductive resin (A) layer containing 50 parts by weight or more of carbon black and having a surface resistance value of 10 5 Ω/square or less, a resin (B) layer with good peelability, and a base layer. In the thermoplastic resin (C) layer for materials, the layer structure when coextruding is (B)/(A)/(B),
(B)/(A)/(C), (C)/(A)/(B), (B)/(A)/(C)/(A)/
(B), etc., and the thickness of each resin layer is determined as appropriate depending on the required performance of the electronic components used, and the resin (B) layer with good peelability and the thermoplastic resin (C) layer for the base material. By co-extruding the thermoplastic conductive resin (A) containing 50 parts by weight or more of carbon black, the molten resin is prevented from breaking during cooling and solidification, and after cooling and solidification, the (B) layer is peeled off. , to obtain a conductive plastic film whose surface resistance value is 10 5 Ω/square or less. Therefore, the conductive plastic film layer structure obtained after (B) layer peeling is as follows: (A), (A) )/
(C), (C)/(A), (A)/(C)/(A), etc., and the surface resistance value of the (A) layer is 10 5 Ω/square or less. Become. The thermoplastic conductive resin (A) containing 50 parts by weight or more of carbon black and having a surface resistance of 10 5 Ω/square or less used in the present invention is polypropylene, high-density polyethylene, low-density polyethylene, polybutene-1 Ethylene-based copolymers such as olefin homopolymers such as ethylene-vinyl acetate copolymers, ethylene-ethyl acrylate copolymers, ethylene-propylene copolymers, and ethylene-α-olefin copolymers; These include copolymers, elastomers of rubber such as ethylene propylene rubber and ethylene propylene diene compounds, and polystyrene polymers. Furthermore, mixtures of two or more of these resins or elastomers, and mixtures of these resins or elastomers with other resins or elastomers can also be used. Resin with good peelability
The (B) layer is an extrusion moldable resin that is incompatible with the thermoplastic conductive resin (A) layer, and may be polystyrene resin, polymethylpentene resin, polycarbonate resin, polyamide resin, or a combination thereof. Polymer resins or mixtures with other resins can also be used. The base thermoplastic resin (C) layer is made of a thermoplastic conductive resin (A) layer compatible with the thermoplastic conductive resin (A) layer in order to adhere to the thermoplastic conductive resin (A) layer containing 50 parts by weight or more of carbon black. It is desirable to select a resin that is good in press moldability and is the same type or series as the thermoplastic resin used before containing 50 parts by weight or more of carbon black in layer (A). In the present invention, the thermoplastic resin contains 50 parts by weight or more of carbon black, and its surface resistance value is
It is desirable to match the extrusion flow characteristics of the thermoplastic conductive resin (A) layer with a resistance of 10 5 Ω/square or less, the resin (B) layer with good peelability, and the base thermoplastic resin (C) layer. However, the resin used as the thermoplastic conductive resin (A) layer contains 50 parts by weight or more of carbon black so that the surface resistance value is 10 5 Ω/square or less, so the flow characteristics during extrusion processing are improved. (B)
By adjusting the thickness ratio of the layer and (C) layer, after coextrusion, cooling and solidifying, and peeling off the resin layer with good peelability, a carbon black containing 50 parts by weight or more,
A conductive plastic film whose surface resistance value is less than 10 5 Ω/square can be obtained. In the conductive plastic film of the present invention, the surface of the thermoplastic conductive resin (A) layer obtained by peeling off the resin (B) layer with good releasability is free from subtle scratches from the die slip for extrusion, and the resulting conductive film is The surface of the plastic film becomes a mirror surface. Furthermore, if physical properties such as mechanical strength, rigidity, and impact resistance are particularly required, a thermoplastic resin (C) layer for the base material,
Thermoplastic conductive resin (A) layer, resin with good peelability (B)
By coextruding the layers, etc., it is possible to obtain a conductive plastic film in which the (C) layer and (A) layer are bonded.
If the above-mentioned physical properties are not so strongly required, coextrusion of a thermoplastic conductive resin (A) layer, a resin (B) layer with good peelability, etc. is performed, and the conductive plastic of the (A) layer is You can get tick film. Carbon black, which is a conductive material used in the present invention, includes various carbon blacks manufactured by channel type, furnace type, acetylene type, and thermal type, and the amount added is 50 parts by weight or more, and preferably 50 to 150 parts by weight,
Other antioxidants, lubricants, inorganic fillers, colorants,
It is also possible to add flame retardants and other various additives. Next, in order to manufacture the product of the present invention, first, the thermoplastic conductive resin is prepared by kneading the thermoplastic resin, carbon black, various additives, etc. using various kneading machines such as a Banbury mixer, co-kneader, and extruder. Then, a thermoplastic conductive resin, a resin with good peelability, a thermoplastic conductive resin, a resin with good peelability, a thermoplastic resin for base material, etc. are extruded using two or three extruders, respectively. The resin is fed into a machine and extruded through a three-layer die or a five-layer die, and co-extrusion is performed by integrating the layers to prevent molten resin from breaking during cooling and solidification. At the same time, after cooling and solidification, the resin layer with good peelability is peeled off. The present invention is to produce a conductive plastic film having a surface resistance value of 10 5 Ω/square or less. The conductive plastic film of the present invention obtained by such a coextrusion method has a thickness of 0.005 to 3.0 mm, and it is also possible to produce a thin film of 0.01 mm or less. The present invention will be explained in more detail below using examples. Tables 1 and 2 show examples and comparative examples of the present invention. Example No. 1~ shown in Table 1 and Table 2
The thermoplastic conductive resin compositions of No. 9 and Comparative Examples No. 1 to No. 3 were granulated using a twin-screw kneader with a diameter of 30 m/m. Then, using two or three extruders,
Thermoplastic conductive resin (A), resin with good peelability (B),
Each thermoplastic resin (C) etc. for the base material is melted and kneaded, and the temperature
They are merged in a T-die coextrusion die at 210°C, and melt coextruded from the lip. Directly below the lip, the molten resin is cooled and solidified using a cooling roll with a diameter of 60 cm and a cooling temperature of 80°C. The "film layer structure and thickness during coextrusion" are adjusted as described in Examples and Comparative Examples by adjusting the rotational speed of the extruder and the take-up speed of the cooling solidification roll, respectively. After that, the resin (B) layer with good peelability is peeled off,
A single-layer or composite conductive plastic film as described in "Conductive plastic film layer structure and thickness after peeling" is obtained. After that, the "conductive plastic film surface resistance value (Ω/square)" is measured.
This was done on a 12cm film sample, and the terminal treatment was done by applying silver paint on both ends of the 1cm x 10cm area and drying it, then measuring the resistance between both terminals using a Wheatstone Bridge resistance measuring machine.The resistance value was 10. A value of 5 Ω or less is considered good. In addition, the "presence or absence of breakage during extrusion, cooling and solidification" was observed, and those with no breakage were considered good, and those with breakage were considered poor because a conductive plastic film could not be obtained. For the overall evaluation, a conductive plastic film with no breakage during extrusion cooling and solidification and a surface resistance value of 10 5 Ω/square or less is considered good, and a film that does not satisfy either of the two is judged poor. In Examples No. 1 to No. 9, conductive plastic films were obtained without breakage during extrusion cooling and solidification, and their surface resistance values were 10 5 Ω/square or less, which was good. Comparative Examples No. 1 and No. 2 are single-layer extrusions of thermoplastic conductive resin, and both break when the extrusion is cooled and solidified, and no conductive plastic film is obtained, and Comparative Example No. 3 is a carbon The black content was less than 50 parts by weight, and the surface resistance of the resulting conductive plastic film was not less than 10 5 Ω/square, which was poor.

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 熱可塑性樹脂100重量部に対しカーボンブラ
ツク50重量部以上添加し表面抵抗値が105/スク
ウエヤ以下である熱可塑性導電性樹脂層及びその
片面又は両面に該熱可塑性導電性樹脂層とは相溶
性が悪く剥離性の良好な樹脂層とを共押出し、2
層又は3層とし、冷却固化後該剥離性の良好な樹
脂層を剥離することを特徴とする導電性プラスチ
ツクフイルムの製造方法。 2 基材用熱可塑性樹脂の片面又は両面に、熱可
塑性樹脂100重量部に対しカーボンブラツク50重
量部以上添加し表面抵抗値が105/スクウエヤ以
下である熱可塑性導電性樹脂層及び該熱可塑性導
電性樹脂層とは相溶性が悪く剥離性の良好な樹脂
層とをこの順に積層されるように共押出し、3層
又は5層とし、冷却固化後該剥離性の良好な樹脂
層を剥離することを特徴とする導電性プラスチツ
クフイルムの製造方法。
[Scope of Claims] 1. A thermoplastic conductive resin layer containing 50 parts by weight or more of carbon black per 100 parts by weight of a thermoplastic resin and having a surface resistance value of 10 5 /square or less, and a thermoplastic conductive resin layer on one or both sides of the layer. Co-extrusion with a resin layer that has poor compatibility with the resin layer and has good releasability,
1. A method for producing a conductive plastic film, which comprises forming a layer or three layers, and peeling off the resin layer having good peelability after cooling and solidifying. 2. A thermoplastic conductive resin layer containing 50 parts by weight or more of carbon black per 100 parts by weight of the thermoplastic resin and having a surface resistance value of 10 5 /square or less on one or both sides of the thermoplastic resin for the base material, and the thermoplastic resin. A resin layer that has poor compatibility with the conductive resin layer and has good peelability is coextruded so as to be laminated in this order to form 3 or 5 layers, and after cooling and solidification, the resin layer with good peelability is peeled off. A method for producing a conductive plastic film characterized by the following.
JP58128025A 1983-07-15 1983-07-15 Conductive plastic film Granted JPS6020407A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58128025A JPS6020407A (en) 1983-07-15 1983-07-15 Conductive plastic film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58128025A JPS6020407A (en) 1983-07-15 1983-07-15 Conductive plastic film

Publications (2)

Publication Number Publication Date
JPS6020407A JPS6020407A (en) 1985-02-01
JPH041962B2 true JPH041962B2 (en) 1992-01-16

Family

ID=14974626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58128025A Granted JPS6020407A (en) 1983-07-15 1983-07-15 Conductive plastic film

Country Status (1)

Country Link
JP (1) JPS6020407A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6182611A (en) * 1984-09-29 1986-04-26 住友ベークライト株式会社 Manufacture of highly electroconductive film
JP5975778B2 (en) * 2012-08-01 2016-08-23 大倉工業株式会社 Method for producing conductive film
JP6043607B2 (en) * 2012-11-30 2016-12-14 大倉工業株式会社 Method for producing conductive film

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54143487A (en) * 1978-04-28 1979-11-08 Shinetsu Polymer Co Production of conductive molded elastomer article
JPS5586793A (en) * 1978-12-25 1980-06-30 Sekisui Chem Co Ltd Discharge recording material
JPS57141807A (en) * 1981-02-25 1982-09-02 Shinetsu Polymer Co Method of producing low pitch connector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54143487A (en) * 1978-04-28 1979-11-08 Shinetsu Polymer Co Production of conductive molded elastomer article
JPS5586793A (en) * 1978-12-25 1980-06-30 Sekisui Chem Co Ltd Discharge recording material
JPS57141807A (en) * 1981-02-25 1982-09-02 Shinetsu Polymer Co Method of producing low pitch connector

Also Published As

Publication number Publication date
JPS6020407A (en) 1985-02-01

Similar Documents

Publication Publication Date Title
EP0144642B1 (en) A multi-layer film or sheet material
JPH0220417B2 (en)
JPS6233051B2 (en)
JPS6241529B2 (en)
JP2000318095A (en) Multilayered film
JPH041962B2 (en)
EP1364775B1 (en) Polymeric films
JP3276818B2 (en) Conductive composite plastic sheet and container
JP3209393B2 (en) Conductive composite plastic sheet and container
JP3270386B2 (en) Surface conductive polyolefin sheet
JP3324683B2 (en) Conductive composite plastic sheet
JP4141570B2 (en) Surface conductive polyolefin sheet
JPH0475603B2 (en)
JP3231119B2 (en) Heat resistant conductive carrier tape
JP4533564B2 (en) Molding
JP3202553B2 (en) Conductive composite plastic sheet and container
JPS6137300B2 (en)
JPH0317662B2 (en)
JP2001334611A (en) Conductive composite plastic sheet and container
JP3414796B2 (en) Method for producing cellulose diacetate resin film
JPH0550391B2 (en)
JPH0859855A (en) Biaxially stretched polyolefin film
KR102116009B1 (en) Multilayer film comprising polyalkylene carbonate and manufacturing method of the same
JPH058097B2 (en)
JP3324682B2 (en) Manufacturing method of conductive composite plastic sheet