JPH0419298A - Support structure for telescope for space navigating object - Google Patents
Support structure for telescope for space navigating objectInfo
- Publication number
- JPH0419298A JPH0419298A JP12333990A JP12333990A JPH0419298A JP H0419298 A JPH0419298 A JP H0419298A JP 12333990 A JP12333990 A JP 12333990A JP 12333990 A JP12333990 A JP 12333990A JP H0419298 A JPH0419298 A JP H0419298A
- Authority
- JP
- Japan
- Prior art keywords
- telescope
- pipe
- axial direction
- spacecraft
- support part
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000000452 restraining effect Effects 0.000 claims description 6
- 238000010521 absorption reaction Methods 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
Landscapes
- Telescopes (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は宇宙航行体に搭載する望遠鏡を支持する支持構
造に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a support structure for supporting a telescope mounted on a spacecraft.
従来、この種の望遠鏡の支持構造は、第4図に示すよう
に、下部支持部って望遠鏡1の打上げ時の荷重の大部分
を支え、また上部支持部8で軌道上て発生する望遠鏡1
と宇宙航行体の熱膨張率の違いによる歪を吸収する構造
となっていた。Conventionally, in the support structure of this type of telescope, as shown in FIG.
The structure was designed to absorb the strain caused by the difference in thermal expansion coefficient between the spacecraft and the spacecraft.
上述した従来の望遠鏡の支持構造では、上部支持部は軌
道上の熱歪を吸収できる弾性率を保持する為に打上げ時
の機械環境に耐えるのに必要な強度・剛性には寄与して
おらず、打上げ時に必要な強度・剛性の大部分を下部支
持部で受けもっているのて、下部支持部の重量が増大し
、望遠鏡全体の軽量化を困難にしていた。In the conventional telescope support structure described above, the upper support part does not contribute to the strength and rigidity necessary to withstand the mechanical environment during launch, in order to maintain an elastic modulus that can absorb thermal strain in orbit. Although most of the strength and rigidity required during launch is provided by the lower support, the weight of the lower support increases, making it difficult to reduce the weight of the entire telescope.
本発明の宇宙航行体用望遠鏡の支持構造は、上部支持部
において宇宙航行体と望遠鏡との間に設けられ軸方向の
強度・剛性が高く且つ該軸方向と直角方向には軌道上で
発生する前記宇宙航行体と前記望遠鏡の熱膨張率の違い
による歪を吸収する弾性率を有する支柱と、この支柱の
回りを囲むように前記宇宙航行体から垂設された中空形
状のパイプと、このパイプの前記望遠鏡側の端面に設け
られ該パイプの軸方向に伸縮自在で打上げ時には伸長し
て前記望遠鏡に拘束力を与え且つ軌道上では縮小して該
拘束力を解除するごとき圧電素子と、前記望遠鏡の下部
を前記宇宙航行体に固定する下部支持部とを備えている
。The support structure for a telescope for a spacecraft of the present invention is provided between the spacecraft and the telescope in the upper support part, has high strength and rigidity in the axial direction, and has high strength and rigidity in the direction perpendicular to the axial direction. A support having an elastic modulus that absorbs strain due to a difference in coefficient of thermal expansion between the spacecraft and the telescope, a hollow pipe suspended from the spacecraft so as to surround the support, and the pipe. a piezoelectric element provided on an end face on the telescope side of the pipe, the piezoelectric element being expandable in the axial direction of the pipe, expanding during launch to apply a restraining force to the telescope, and contracting during orbit to release the restraining force; and a lower support portion for fixing a lower portion of the spacecraft to the spacecraft.
次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.
第1図及び第2図は本発明の一実施例の要部断面を含む
正面図及び斜視図、第3図(a)及び(b)は本実施例
の打上げ時及び軌道上での状態を示す要部断面を含む正
面図である。Figures 1 and 2 are a front view and a perspective view including a cross section of essential parts of an embodiment of the present invention, and Figures 3 (a) and (b) show the state of this embodiment at launch and on orbit. FIG.
望遠鏡1と宇宙航行体2の間に設けられた支柱5は、軸
方向には高い強度剛性を有し、また軸方向と直角な横方
向には軌道上で発生する宇宙航行体2と望遠鏡1の熱膨
張率の違いによる歪を吸収できる弾性率を有している。The support 5 installed between the telescope 1 and the spacecraft 2 has high strength and rigidity in the axial direction, and supports the spacecraft 2 and the telescope 1 that occur on the orbit in the lateral direction perpendicular to the axial direction. It has an elastic modulus that can absorb the strain caused by the difference in the coefficient of thermal expansion.
宇宙航行体2から垂設されたバイブロは、支柱5を充分
なりリアランスを持って囲む中空円筒状をなし、宇宙航
行体2にねじで固定される。圧電素子7は、バイブロの
望遠鏡1側の端面に貼付けられ、バイブロの軸方向に伸
縮可能な中空円筒状をなしている。下部支持部4は望遠
鏡1と一体で、宇宙航行体2にねじで固定される。The vibro, which is suspended from the spacecraft 2, has a hollow cylindrical shape that surrounds the support column 5 with sufficient clearance, and is fixed to the spacecraft 2 with screws. The piezoelectric element 7 is attached to the end face of the vibro on the telescope 1 side, and has a hollow cylindrical shape that can be expanded and contracted in the axial direction of the vibro. The lower support part 4 is integral with the telescope 1 and is fixed to the spacecraft 2 with screws.
このような本実施例において、宇宙航行体2の打上げ時
には、第3図(a)に示す様に、バイブロの先端の圧電
素子7を軸方向に伸ばし、望遠鏡1を強く押しつけ固定
する。また軌道上では、第3図(b)に示す様に、圧電
素子7を軸方向に縮めて望遠鏡1への拘束力を解除し、
宇宙航行体2と望遠鏡1の熱膨張率の違いによって発生
する歪を支柱5により吸収するようになっている。In this embodiment, when the spacecraft 2 is launched, the piezoelectric element 7 at the tip of the vibro is extended in the axial direction, and the telescope 1 is firmly pressed and fixed, as shown in FIG. 3(a). In addition, while in orbit, as shown in FIG. 3(b), the piezoelectric element 7 is compressed in the axial direction to release the restraining force on the telescope 1.
The strut 5 absorbs strain caused by the difference in thermal expansion coefficient between the spacecraft 2 and the telescope 1.
このように本実施例によれば、上部支持部3が軌道上で
の熱歪を吸収する弾性を有し且つ打上げ時には高い拘束
力を発揮するので、下部支持部4を軽量化することがで
きる。In this way, according to this embodiment, the upper support part 3 has elasticity to absorb thermal strain on orbit and exerts a high restraining force during launch, so the lower support part 4 can be made lighter. .
以上説明したように本発明は、宇宙航行体用望遠鏡の支
持構造において、軌道上で発生する熱歪を吸収するのに
必要な弾性率を有し、また打上げ時には振動・衝撃環境
に耐え得る強度・剛性を受けもつことが可能な上部支持
部を構成することにより下部支持部を軽量化し、従って
望遠鏡全体の軽量化を計ることができる効果がある。As explained above, the present invention provides a support structure for a telescope for spacecraft that has an elastic modulus necessary to absorb thermal strain generated in orbit, and has enough strength to withstand the vibration and shock environment during launch. - By configuring the upper support part that can take on rigidity, the weight of the lower support part can be reduced, and the weight of the entire telescope can therefore be reduced.
第1図及び第2図は本発明の一実施例の要部断面を含む
正面図及び斜視図、第3図(a)及び(b)は本実施例
の打上げ時及び軌道上での状態を示す要部断面を含む正
面図、第4図は従来の宇宙航行体用望遠鏡の支持構造の
一例を示す斜視図である。
1・・・望遠鏡、2・・・宇宙抗体、3.8・・・上部
支持部、
4゜
9・・・下部支持部、
5・・・支柱、
6・・・パイプ、
7・・・圧電素子。Figures 1 and 2 are a front view and a perspective view including a cross section of essential parts of an embodiment of the present invention, and Figures 3 (a) and (b) show the state of this embodiment at launch and on orbit. FIG. 4 is a front view including a cross section of the main parts shown, and FIG. 4 is a perspective view showing an example of a support structure of a conventional spacecraft telescope. 1... Telescope, 2... Space antibody, 3.8... Upper support part, 4゜9... Lower support part, 5... Pillar, 6... Pipe, 7... Piezoelectricity element.
Claims (1)
れ軸方向の強度・剛性が高く且つ該軸方向と直角方向に
は軌道上で発生する前記宇宙航行体と前記望遠鏡の熱膨
張率の違いによる歪を吸収する弾性率を有する支柱と、
この支柱の回りを囲むように前記宇宙航行体から垂設さ
れた中空形状のパイプと、このパイプの前記望遠鏡側の
端面に設けられ該パイプの軸方向に伸縮自在で打上げ時
には伸長して前記望遠鏡に拘束力を与え且つ軌道上では
縮小して該拘束力を解除するごとき圧電素子と、前記望
遠鏡の下部を前記宇宙航行体に固定する下部支持部とを
備えることを特徴とする宇宙航行体用望遠鏡の支持構造
。The upper support part is provided between the spacecraft and the telescope, and has high strength and rigidity in the axial direction, and in the direction perpendicular to the axis, there is a difference in the coefficient of thermal expansion between the spacecraft and the telescope that occurs on the orbit. a strut having an elastic modulus that absorbs the strain caused by the
A hollow pipe is installed vertically from the spacecraft so as to surround this support, and a hollow pipe is provided on the end surface of the pipe on the telescope side, and is extendable and retractable in the axial direction of the pipe, so that it can be expanded and retracted at the time of launch. A piezoelectric element that applies a restraining force to the telescope and releases the restraining force by contracting in orbit, and a lower support part that fixes a lower part of the telescope to the spacecraft. Telescope support structure.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12333990A JPH0419298A (en) | 1990-05-14 | 1990-05-14 | Support structure for telescope for space navigating object |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12333990A JPH0419298A (en) | 1990-05-14 | 1990-05-14 | Support structure for telescope for space navigating object |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0419298A true JPH0419298A (en) | 1992-01-23 |
Family
ID=14858121
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12333990A Pending JPH0419298A (en) | 1990-05-14 | 1990-05-14 | Support structure for telescope for space navigating object |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0419298A (en) |
-
1990
- 1990-05-14 JP JP12333990A patent/JPH0419298A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3146014A (en) | Energy absorbing vehicle bumper assembly | |
US20140117600A1 (en) | High stiffness vibration damping apparatus, methods and systems | |
CN107867412A (en) | A kind of reusable landing buffer support of inverse triangle type airship | |
CA3043282A1 (en) | Deployable mast structure | |
JP2607805B2 (en) | Controllable engine mount | |
JPH0419298A (en) | Support structure for telescope for space navigating object | |
JP2000198500A (en) | Optimized strain energy-operated structure | |
JP3978861B2 (en) | Payload buffer support mechanism | |
JPH11174173A (en) | Kinematic mount for attenuation machine | |
US5390891A (en) | Apparatus for mounting equipment in a shock absorbing manner | |
JP3992410B2 (en) | Seismic isolation device for roof frame | |
WO1982004091A1 (en) | A vibration-damping device | |
JP2007315523A (en) | Base-isolation material | |
US3559769A (en) | Satellite wall structure particularly for supporting solar cell | |
CN112977894B (en) | Spacecraft buffer device | |
CN109681562B (en) | Reusable variable-load energy-absorbing strut based on inverted composite pipe | |
JPH01182642A (en) | Diaphragm type air spring | |
JPH04230477A (en) | Torsional vibration damper | |
JP3021031B2 (en) | 3-axis control type viscoelastic damper | |
KR101196072B1 (en) | Upper mounting for a macpherson strut | |
JP3576265B2 (en) | Buffer damper | |
JPH10317722A (en) | Damper device for structure | |
FR2284476A1 (en) | Vibration damped engine mounting for car - with support strut across tops of telescopic dampers to support engine on elastic bearings | |
JP2538619B2 (en) | Deployment Trust | |
KR20230054832A (en) | partition |