JP3978861B2 - Payload buffer support mechanism - Google Patents

Payload buffer support mechanism Download PDF

Info

Publication number
JP3978861B2
JP3978861B2 JP11197598A JP11197598A JP3978861B2 JP 3978861 B2 JP3978861 B2 JP 3978861B2 JP 11197598 A JP11197598 A JP 11197598A JP 11197598 A JP11197598 A JP 11197598A JP 3978861 B2 JP3978861 B2 JP 3978861B2
Authority
JP
Japan
Prior art keywords
payload
pedestal
vibration
support mechanism
pedestals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11197598A
Other languages
Japanese (ja)
Other versions
JPH11301599A (en
Inventor
昭宏 柏崎
寿幸 鈴木
裕一 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP11197598A priority Critical patent/JP3978861B2/en
Publication of JPH11301599A publication Critical patent/JPH11301599A/en
Application granted granted Critical
Publication of JP3978861B2 publication Critical patent/JP3978861B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/64Systems for coupling or separating cosmonautic vehicles or parts thereof, e.g. docking arrangements
    • B64G1/641Interstage or payload connectors

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Vibration Prevention Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、J−1改良型ロケットと称されるペイロード打上用ロケット内に設けられるペイロード(人工衛星)をペイロードアダプター側に支持するペイロード緩衝支持機構に関するものである。
【0002】
【従来の技術】
J−1改良型ロケットと称されるペイロード(人工衛星)打上用ロケットは、図3に示すように、一段ロケット1の先端に設けられた分割自在なフェアリング2,2内に、二段ロケット3を収容した多段ロケットであり、その二段ロケット3の先端部にペイロードアダプター4と称される支持部材を介してペイロード5を備えた構成をしている。
【0003】
そして、図4に示すように、先ず(1)一段ロケット1側のエンジンを着火して一段ロケット1全体を上空の所定の高さまで打ち上げた後、(2)その一段ロケット1の先端のフェアリング2,2を左右に開いて二段ロケット3を露出させ、次に(3)この二段ロケット3のエンジンを着火して一段ロケット1から分離し、(4)この二段ロケット3側のエンジンの燃焼によって自ら推進して軌道上に達した後、(5)その先端部に搭載されたペイロード5をペイロードアダプター4から分離して軌道上に投入することでペイロード5の打ち上げが達成されるようになっている。
【0004】
【発明が解決しようとする課題】
ところで、図5に示すように、このペイロード5は、複数の支持脚6,6…によってペイロードアダプター4上に剛に接続されるようになっているため、打ち上げ時の振動や振動が支持脚6,6…を介してペイロード5側に直接加わることとなり、その結果、ペイロード5内部の機器等に悪影響を与えるおそれがあるといった問題がある。
【0005】
すなわち、上述したように、打ち上げ時には一段ロケット1及び二段ロケット3の推進力により、ペイロード5全体にその高さ方向に大きな振動が加わると同時に、推進時の空気との摩擦等により、ロケット自体に横方向の振動が加わってペイロード5にロッキング(揺れ)が発生することが考えられる。
【0006】
そこで、本発明はこのような課題を有効に解決するために案出されたものであり、その目的は、ペイロードに加わる振動やロッキングを効果的に緩衝することができる新規なペイロード緩衝支持機構を提供するものである。
【0007】
【課題を解決するための手段】
上記課題を解決するために本発明は、ペイロード打上用ロケットに収容されるペイロードを、二段ロケットの先端部にペイロードアダプターを介して分離可能に支持すると共に、打上時にこのペイロードに加わる振動とロッキングを緩衝するペイロード緩衝支持機構において、上記ペイロードの下面周縁部に複数の台座が設けられると共に、その各台座面が、ペイロードの中心部からそれぞれ放射状に斜め下方に向くように切り取られて形成され、他方、ペイロードアダプターの上面周縁部側に複数の台座が設けられると共に、その各台座面が、上記ペイロード側の各台座の各台座面とそれぞれ平行に対向するようにペイロードの中心部方向に傾斜して形成され、これらペイロード側とペイロードアダプター側の各台座面間に、これら台座面間を接続すると共に上記ペイロードの中心方向に伸縮する緩衝体を設けてなるものである。
【0008】
すなわち、本発明の構成にあっては、各台座と緩衝体によってペイロードを傾斜支持するようになっているため、打ち上げ時にペイロードに加わる軸方向の振動とその径方向に発生する振動は勿論、ロッキング荷重の全てが緩衝体に加わることとなる。従って、そのときにこの緩衝体が傾斜方向にそれぞれ伸縮することでそれら振動、荷重を同時に抑制することが可能となる。
【0011】
【発明の実施の形態】
次に、本発明を実施する好適一形態を添付図面を参照しながら説明する。
【0012】
図1及び図2は本発明に係るペイロード緩衝支持機構の実施の形態を示したものである。尚、図中5は上述したペイロード,4は同じくこのペイロード5を支持するペイロードアダプターであり、それぞれ円柱状及び台形状に形成した場合を示したものである。
【0013】
図示するように、このペイロード緩衝支持機構は、ペイロード5の下面周縁部側に設けられた4つの台座7,7,7,7と、これら台座7,7,7,7とそれぞれ対になるようにペイロードアダプター4の上面周縁部側に設けられた4つの台座8,8,8,8と、これら台座7,7,7,7と台座8,8,8,8間にそれぞれ設けられた4つの緩衝体9,9,9,9とから構成されている。
【0014】
また、このペイロード5の下面周縁部に設けられた4つの台座7,7,7,7(図1では3つの台座7,7,7しか示されていないが、実際には中央部の台座7の奧に残り一つの台座7が隠れた状態となっている)の各台座面7a,7a,7a,7aは、ペイロード5の中心部からそれぞれ放射状に斜め下方に向くように切り取られて形成されている。
【0015】
一方、ペイロードアダプター4の上面周縁部側に設けられた4つの台座8,8,8,8(同じく図1では3つの台座8,8,8,8しか示されていないが、実際には中央部の台座8の奧に残り一つの台座8が隠れた状態となっている)の各台座面8a,8a,8a,8aは、上記ペイロード5側の各台座7,7,7,7の各台座面7a,7a,7a,7aとそれぞれ平行に対向するようにペイロード5の中心部方向に傾斜して形成されている。
【0016】
また、緩衝体9,9,9,9は、筒状をした金属製のワイヤメッシュバネ又は防振ゴム(天然ゴム,合成ゴム)から構成されており、これら台座7,8間を連結すると共にそれ自身が自在に変形伸縮することで各台座7,8間に加わる振動を効果的に緩衝するようになっている。
【0017】
以上の構成において、ロケットの推進力等によって図1に示すようにペイロードアダプター4からペイロード5側に軸方向の大きな振動が加わった場合には、その振動がペイロードアダプター4の台座8,8,8,8側からペイロード5の台座7,7,7,7側に伝わる際に、これら各緩衝体9,9,9,9がそれぞれペイロード5の中心方向に収縮し、これら各緩衝体9,9,9,9の収縮によって振動が効果的に緩衝されることになる。
【0018】
一方、ロケット推進時における空気との摩擦によってペイロードアダプター4又はペイロード5側に径方向の振動が加わった場合には、その振動も台座7,7,7,7、台座8,8,8,8を介して他方に相互に伝達されるため、振動方向に位置するいずれかの緩衝体9,9,9,9がそれぞれペイロード5の中心方向に同時に収縮,伸張することでペイロード5の径方向に発生する振動が効果的に緩衝されることになる。
【0019】
さらに、上記軸方向の振動力及び径方向の振動が複雑に組合わされてロッキング(揺れ)が発生した場合も、ペイロード5の傾斜方向に位置するいずれかの緩衝体9,9,9,9がそれぞれペイロード5の中心方向に同時に収縮,伸張するようになるため、このようなロッキングも同時に効果的に緩衝されることになる。
【0020】
すなわち、本発明の構成にあっては、台座7,8と緩衝体9によってペイロード5を傾斜支持するようになっているため、あらゆる方向の振動,荷重が緩衝体9側に伝わるようになっている。そのため、この緩衝体9が傾斜方向にそれぞれ伸縮することでペイロード5に加わる軸方向の振動と、その径方向に発生する振動は勿論ロッキングをも同時に抑制することが可能となり、その結果、ロケット打上時に発生するあらゆる方向へのペイロード5の振動を効果的に緩衝してペイロード5の内部機器への悪影響を未然に防止することが可能となる。尚、図1ではこの緩衝体9等の中心軸はペイロード5の重心方向に向くように傾斜されているが、この傾斜角はペイロード5の重心位置及び緩衝体9(防振ゴム)の縦ばねと横ばねとの比から決まってくるため、常にペイロード5の重心方向に正確に傾斜させるものとは限られず、ペイロード5の形状,大きさ,構造等によってその傾斜角は微妙に変更されることになる。また、本実施の形態では、台座及び緩衝体9をそれぞれ4組設けた場合で説明したが、これらの数は少なくとも3組以上、設置してあれば、その数は本実施の形態に限定されるものではない。
【0021】
ここで、緩衝体9として金属製のワイヤメッシュバネ又は防振ゴム(天然ゴム,合成ゴム)を用いた理由としては、現実に地上で実績があるため、その特性に実績があり、構造がシンプルで信頼性が高く、ダンパ等の緩衝機構を付設する必要がなく、軽量で安価であるからである。尚、ワイヤメッシュバネは、防振ゴムに比べて防振特性(15Hz程度以上)がやや劣ると共にバネ定数が非線形で傾斜角の決定が難しい等の点があるが、使用温度範囲が広いといった長所を有している。一方、防振ゴムはワイヤメッシュバネに比べて低温時の特性が悪化(−30℃が限界)するため、別個ヒートアップ手段が必要となるが、防振特性(5Hz程度以上)に優れているといった長所を有している。
【0030】
【発明の効果】
以上要するに本発明によれば、ペイロードに加わる径方向及び軸方向の振動は勿論、ペイロードに発生するロッキングも効果的に抑制することができるため、振動やロッキングによるペイロード内部機器への悪影響を未然に防止することができる等といった優れた効果を発揮する。
【図面の簡単な説明】
【図1】 本発明の実施の一形態を示す側面図である。
【図2】 図1中A部を示す部分拡大図である。
【図3】 ペイロード打上用ロケットの構成を示す全体概略図である。
【図4】 ペイロードの打上げ工程の一例を示す説明図である。
【図5】 従来のペイロードとペイロードアダプターの支持機構を示す斜視図である。
【符号の説明】
4 ペイロードアダプター
5 ペイロード
7,8 台座
9 緩衝体
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a payload buffer support mechanism that supports a payload (artificial satellite) provided in a payload launching rocket called a J-1 improved rocket on the payload adapter side.
[0002]
[Prior art]
As shown in FIG. 3 , a payload (artificial satellite) launching rocket called a J-1 improved rocket has a two-stage rocket in a splittable fairing 2, 2 provided at the tip of the first-stage rocket 1. 3, and a structure in which a payload 5 is provided at a tip portion of the two-stage rocket 3 via a support member called a payload adapter 4.
[0003]
Then, as shown in FIG. 4 , first (1) the engine on the first stage rocket 1 side is ignited and the entire first stage rocket 1 is launched to a predetermined height above the sky, and (2) the fairing at the tip of the first stage rocket 1 2 and 2 are opened to the left and right to expose the two-stage rocket 3. Next, (3) the engine of the two-stage rocket 3 is ignited and separated from the first-stage rocket 1, and (4) the engine on the two-stage rocket 3 side. (5) The payload 5 mounted at its tip is separated from the payload adapter 4 and inserted into the orbit so that the launch of the payload 5 can be achieved. It has become.
[0004]
[Problems to be solved by the invention]
Incidentally, as shown in FIG. 5 , since the payload 5 is rigidly connected to the payload adapter 4 by a plurality of support legs 6, 6... , 6... Are directly added to the payload 5 side, and as a result, there is a problem that there is a possibility of adversely affecting the devices inside the payload 5.
[0005]
That is, as described above, during launch, the propulsion force of the first rocket 1 and the second rocket 3 applies a large vibration to the entire payload 5 in the height direction, and at the same time, due to friction with the air during propulsion, the rocket itself It is considered that a lateral vibration is applied to the payload 5 to cause rocking (swing).
[0006]
Therefore, the present invention has been devised in order to effectively solve such problems, and its purpose is to provide a novel payload buffer support mechanism capable of effectively buffering vibrations and locking applied to the payload. It is to provide.
[0007]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention supports a payload housed in a payload launching rocket so as to be separable at the tip of a two-stage rocket via a payload adapter, and also adds vibration and locking applied to the payload during launching. In the payload buffering support mechanism for buffering, a plurality of pedestals are provided at the peripheral edge of the lower surface of the payload, and each pedestal surface is formed by being cut off radially from the center of the payload so as to face obliquely downward, respectively, On the other hand, a plurality of pedestals are provided on the peripheral edge side of the upper surface of the payload adapter, and each pedestal surface is inclined toward the center of the payload so as to face each pedestal surface of each pedestal on the payload side in parallel. These pedestal surfaces are formed between the pedestal surfaces of the payload side and the payload adapter side. Those formed by providing a cushion that expands and contracts in the direction of the center of the payload with connecting.
[0008]
That is, in the configuration of the present invention, since the payload is inclined and supported by each pedestal and the buffer, the axial vibration applied to the payload at the time of launch and the vibration generated in the radial direction are of course locked. All of the load will be applied to the buffer. Accordingly, at this time, the shock absorbers can be simultaneously expanded and contracted in the inclination direction to simultaneously suppress the vibration and load.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Next, a preferred embodiment for carrying out the present invention will be described with reference to the accompanying drawings.
[0012]
1 and 2 illustrates an embodiment of a payload buffer support mechanism according to the present invention. In the figure, reference numeral 5 denotes the above-described payload, and 4 denotes a payload adapter that similarly supports the payload 5, and shows a case where the payload adapter is formed in a columnar shape and a trapezoidal shape, respectively.
[0013]
As shown in the figure, this payload buffering support mechanism is paired with four pedestals 7, 7, 7, 7 provided on the periphery of the lower surface of the payload 5, and these pedestals 7, 7, 7, 7, respectively. The four pedestals 8, 8, 8, 8 provided on the periphery of the upper surface of the payload adapter 4, and 4 provided between these pedestals 7, 7, 7, 7 and pedestals 8, 8, 8, 8, respectively. It is composed of two buffer bodies 9, 9, 9, 9.
[0014]
Further, four pedestals 7, 7, 7, 7 (only three pedestals 7, 7, 7 are shown in FIG. 1 are provided on the peripheral edge of the lower surface of the payload 5, but in reality, the pedestal 7 in the center portion is shown. Each of the pedestal surfaces 7a, 7a, 7a, 7a is formed by being cut off radially from the center of the payload 5 so as to face obliquely downward. ing.
[0015]
On the other hand, four pedestals 8, 8, 8, and 8 (only three pedestals 8, 8, 8, and 8 are shown in FIG. Each of the pedestal surfaces 8a, 8a, 8a, 8a is in a state in which the remaining one pedestal 8 is hidden in the cage of the pedestal 8). The pedestal surfaces 7a, 7a, 7a, 7a are formed so as to be inclined toward the central portion of the payload 5 so as to face each other in parallel.
[0016]
The shock absorbers 9, 9, 9, 9 are made of a metal metal wire mesh spring or vibration-proof rubber (natural rubber, synthetic rubber), and connect the bases 7, 8 together. By itself deforming and expanding freely, vibration applied between the pedestals 7 and 8 is effectively buffered.
[0017]
In the above configuration, when a large axial vibration is applied from the payload adapter 4 to the payload 5 as shown in FIG. 1 due to the propulsive force of the rocket, the vibration is caused by the pedestals 8, 8, 8 of the payload adapter 4. , 8 side to the pedestal 7, 7, 7, 7 side of the payload 5, these buffer bodies 9, 9, 9, 9 contract in the center direction of the payload 5, respectively, and these buffer bodies 9, 9 , 9, 9, the vibration is effectively buffered.
[0018]
On the other hand, when radial vibrations are applied to the payload adapter 4 or the payload 5 side due to friction with air during rocket propulsion, the vibrations are also pedestals 7, 7, 7, 7, and pedestals 8, 8, 8, 8 Since one of the buffer bodies 9, 9, 9, 9 positioned in the vibration direction simultaneously contracts and expands in the central direction of the payload 5, the radial direction of the payload 5 The generated vibration is effectively buffered.
[0019]
Furthermore, even when the axial vibration force and the radial vibration are combined in a complicated manner to cause rocking (swing), any of the buffer bodies 9, 9, 9, 9 positioned in the inclination direction of the payload 5 Since each of them contracts and expands simultaneously in the center direction of the payload 5, such locking is also effectively buffered at the same time.
[0020]
That is, in the configuration of the present invention, the payload 5 is inclined and supported by the pedestals 7 and 8 and the buffer body 9, so that vibrations and loads in all directions are transmitted to the buffer body 9 side. Yes. Therefore, it is possible to simultaneously suppress the rocking of the axial vibration applied to the payload 5 and the vibration generated in the radial direction by expanding and contracting each of the buffer bodies 9 in the inclination direction. It is possible to effectively buffer the vibration of the payload 5 in every direction that sometimes occurs to prevent the payload 5 from adversely affecting the internal devices. In FIG. 1, the central axis of the buffer body 9 and the like is inclined so as to be directed in the direction of the center of gravity of the payload 5, but the inclination angle depends on the position of the center of gravity of the payload 5 and the vertical spring of the buffer body 9 (vibration isolation rubber). Is determined by the ratio of the spring and the horizontal spring, so it is not always limited to tilt accurately in the direction of the center of gravity of the payload 5, and the tilt angle is slightly changed depending on the shape, size, structure, etc. of the payload 5 become. Further, in this embodiment, the case where four sets of pedestals and buffer bodies 9 are provided has been described. However, if at least three sets of these are installed, the number is limited to the present embodiment. It is not something.
[0021]
Here, the reason for using a metal wire mesh spring or anti-vibration rubber (natural rubber, synthetic rubber) as the buffer body 9 is that it has actually been proven on the ground, so its characteristics have been proven and the structure is simple. This is because it is highly reliable, does not require a shock absorber such as a damper, and is light and inexpensive. In addition, the wire mesh spring has a slightly inferior anti-vibration property (about 15 Hz or more) compared with the anti-vibration rubber, and has a non-linear spring constant and it is difficult to determine the inclination angle. have. On the other hand, anti-vibration rubber deteriorates its properties at low temperatures compared to wire mesh springs (-30 ° C is the limit), so a separate heat-up means is required, but it has excellent anti-vibration properties (about 5 Hz or more). It has the following advantages.
[0030]
【The invention's effect】
In short, according to the present invention, not only the radial and axial vibrations applied to the payload, but also the locking generated in the payload can be effectively suppressed. Excellent effects such as being able to be prevented are exhibited.
[Brief description of the drawings]
FIG. 1 is a side view showing an embodiment of the present invention .
FIG. 2 is a partially enlarged view showing a portion A in FIG.
FIG. 3 is an overall schematic view showing a configuration of a payload launching rocket.
FIG. 4 is an explanatory diagram showing an example of a payload launching process.
FIG. 5 is a perspective view showing a conventional support mechanism for a payload and a payload adapter.
[Explanation of symbols]
4 Payload adapter 5 Payload 7, 8 Base 9 Buffer

Claims (2)

ペイロード打上用ロケットに収容されるペイロードを、二段ロケットの先端部にペイロードアダプターを介して分離可能に支持すると共に、打上時にこのペイロードに加わる振動とロッキングを緩衝するペイロード緩衝支持機構において、上記ペイロードの下面周縁部に複数の台座が設けられると共に、その各台座面が、ペイロードの中心部からそれぞれ放射状に斜め下方に向くように切り取られて形成され、他方、ペイロードアダプターの上面周縁部側に複数の台座が設けられると共に、その各台座面が、上記ペイロード側の各台座の各台座面とそれぞれ平行に対向するようにペイロードの中心部方向に傾斜して形成され、これらペイロード側とペイロードアダプター側の各台座面間に、これら台座面間を接続すると共に上記ペイロードの中心方向に伸縮する緩衝体を設けてなることを特徴とするペイロード緩衝支持機構。  In the payload buffer support mechanism for supporting the payload accommodated in the payload launching rocket in a detachable manner at the tip of the two-stage rocket via a payload adapter, and buffering the vibration and locking applied to the payload at the launch, A plurality of pedestals are provided on the peripheral edge of the lower surface of each of the plurality of pedestals, and each pedestal surface is formed by being cut radially and obliquely downward from the center of the payload. Of the pedestal, and each pedestal surface is inclined in the direction of the center of the payload so as to face each pedestal surface of each pedestal on the payload side in parallel. The pedestal surfaces are connected between the pedestal surfaces and the payload Payload buffer support mechanism characterized by comprising providing a cushion that expands and contracts in the center direction. 上記緩衝体が筒状に形成されたワイヤメッシュバネ又は防振ゴムであることを特徴とする請求項1に記載のペイロード緩衝支持機構。  The payload buffering support mechanism according to claim 1, wherein the buffer body is a wire mesh spring or an anti-vibration rubber formed in a cylindrical shape.
JP11197598A 1998-04-22 1998-04-22 Payload buffer support mechanism Expired - Fee Related JP3978861B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11197598A JP3978861B2 (en) 1998-04-22 1998-04-22 Payload buffer support mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11197598A JP3978861B2 (en) 1998-04-22 1998-04-22 Payload buffer support mechanism

Publications (2)

Publication Number Publication Date
JPH11301599A JPH11301599A (en) 1999-11-02
JP3978861B2 true JP3978861B2 (en) 2007-09-19

Family

ID=14574831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11197598A Expired - Fee Related JP3978861B2 (en) 1998-04-22 1998-04-22 Payload buffer support mechanism

Country Status (1)

Country Link
JP (1) JP3978861B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102372094A (en) * 2010-08-17 2012-03-14 上海卫星工程研究所 Shell type adapter

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4078712B2 (en) * 1998-06-10 2008-04-23 株式会社Ihi Payload anti-vibration device
US6371412B1 (en) * 1999-11-11 2002-04-16 Honeywell International Inc. Method and apparatus for reducing acoustic coupling
JP4632112B2 (en) * 2001-07-09 2011-02-16 独立行政法人 宇宙航空研究開発機構 Satellite launch method
US8727279B2 (en) 2007-08-28 2014-05-20 Raytheon Company Method and system for controlling swaying of an object
JP2012131410A (en) * 2010-12-22 2012-07-12 Mitsubishi Heavy Ind Ltd Adaptor and payload-launching rocket
CN104373503B (en) * 2014-10-28 2016-03-16 上海卫星工程研究所 The micro-vibration convergence type isolation mounting of satellite flywheel
CN105134874B (en) * 2015-07-31 2017-06-09 上海卫星工程研究所 Satellite flywheel vibration isolation and surge combination formula support
FR3061751B1 (en) * 2017-01-09 2020-01-10 Centre National D'etudes Spatiales CIRCULAR SOFTENER DEVICE BASED ON A TORSION BAR CONCEPT
CN108177799B (en) * 2017-11-20 2020-08-21 首都航天机械公司 Discrete point type bearing frameless structure satellite adapter and assembling method thereof
JP7046702B2 (en) * 2018-04-26 2022-04-04 三菱重工業株式会社 Damping support structure
CN110203402B (en) * 2019-05-27 2020-12-18 上海宇航系统工程研究所 Storage box bearing support with explosion-proof buffering function

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6250299A (en) * 1985-08-28 1987-03-04 宇宙開発事業団 Artificial satellite support system in rocket
JPS62174982U (en) * 1986-04-28 1987-11-06
JPH02100803U (en) * 1989-01-31 1990-08-10
JP2681690B2 (en) * 1989-04-28 1997-11-26 日本航空電子工業 株式会社 Isotropic anti-vibration equipment
US5305981A (en) * 1991-10-31 1994-04-26 Honeywell Inc. Multiaxis vibration isolation system
JPH05193599A (en) * 1992-01-21 1993-08-03 Nec Eng Ltd Buffer mechanism for electric unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102372094A (en) * 2010-08-17 2012-03-14 上海卫星工程研究所 Shell type adapter

Also Published As

Publication number Publication date
JPH11301599A (en) 1999-11-02

Similar Documents

Publication Publication Date Title
JP3978861B2 (en) Payload buffer support mechanism
JP6480013B2 (en) Stackable satellite and method of stacking stackable satellites
US8678323B2 (en) Launch lock assemblies including axial gap amplification devices and spacecraft isolation systems including the same
CA2633802C (en) Elastomer-based modular multi-axis vibration/shock isolation device
US6290183B1 (en) Three-axis, six degree-of-freedom, whole-spacecraft passive vibration isolation system
EP2711300B1 (en) Launch lock assemblies with reduced preload and spacecraft isolation systems including the same
US6199801B1 (en) Whole-spacecraft passive isolation devices
US20130134257A1 (en) Resilient aircraft engine mounts and aircraft engine mounting systems including the same
Denoyer et al. Recent achievements in vibration isolation systems for space launch and on-orbit applications
US3028138A (en) Anti-vibration mountings
JP2952257B2 (en) Attenuation instrument kinematic mount
WO2004098998A1 (en) Momentum stabilized launch vehicle upper stage
CN115265293A (en) Rocket booster connection structure
Smet et al. Managing reaction wheel microvibration on a high resolution EO small spacecraft
JP6697488B2 (en) Lightweight passive attenuator for spacecraft
Johnson et al. Softride vibration and shock isolation systems that protect spacecraft from launch dynamic environments
US20200002028A1 (en) Shock absorber for an object placed in a medium subjected to vibrations and corresponding shock absorber system
JP4211131B2 (en) Payload damping mechanism
KR102325955B1 (en) Vibration isolation apparatus
Khorrami et al. Three-degree-of-freedom adaptive-passive isolator for launch vehicle payloads
Thomas et al. Launch vehicle payload adapter design with vibration isolation features
RU2293689C2 (en) Space head module for isolated and cluster launch of satellites
JP4183074B2 (en) Unfolding structure holding and releasing mechanism
US6223849B1 (en) Device for mounting a component
JP5795014B2 (en) Reflector support mechanism

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070618

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130706

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees