JP3576265B2 - Buffer damper - Google Patents

Buffer damper Download PDF

Info

Publication number
JP3576265B2
JP3576265B2 JP10560095A JP10560095A JP3576265B2 JP 3576265 B2 JP3576265 B2 JP 3576265B2 JP 10560095 A JP10560095 A JP 10560095A JP 10560095 A JP10560095 A JP 10560095A JP 3576265 B2 JP3576265 B2 JP 3576265B2
Authority
JP
Japan
Prior art keywords
damper
structures
torsional
metal
lever
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10560095A
Other languages
Japanese (ja)
Other versions
JPH08303055A (en
Inventor
浩 近藤
昌史 福本
良秀 村瀬
学 藤城
久徳 阿比留
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP10560095A priority Critical patent/JP3576265B2/en
Publication of JPH08303055A publication Critical patent/JPH08303055A/en
Application granted granted Critical
Publication of JP3576265B2 publication Critical patent/JP3576265B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、鋼製煙突における筒身と支持鉄塔、あるいは蒸気発生装置におけるボイラーとその支持架構等、二つの構造物の間に介装する緩衝ダンパーに関し、特に、構造物において、互いに相対変位を生ずる部位の間に介装する緩衝ダンパーに関する。
【0002】
【従来の技術】
図6は二つの構造物間に従来の緩衝ダンパーを配置した際の水平断面図、図7はその詳細図を示す。
【0003】
図6において、11が従来の緩衝ダンパーであり、一の構造物である円筒構造物Aの外面に巻回したリングフレーム3と、他の一の構造物である支持架構Bとの間に対称的に配置されている。
上記緩衝ダンパー11は、図7に示すように、構造物A側には構造物Aのリングフレーム3及び受台3aで支持されている。
そして、その下端16は、拘束板15でその回転が拘束され、上端が構造物Aに突設された1対の軸受18によって軸支された鋼管部材17と連結された金属管14と、基端が鋼管部材17に固定され、先端が支持架構B側へ伸びるレバーフアーム12とを備えている。
また、一方の支持架構B側には、支持架構B上に設置され、上記レバーアーム12に先端から垂設された棒体20を挟接する1対のストッパー13を備えており、構造物Aと支持架構B間に水平方向の相対変位が発生すると、レバーアーム12を介してねじりモーメントが金属管14へ伝達されて金属管14断面にはねじり変形が発生し、このねじり変形によって上記相対変位が吸収されるようになっている。
【0004】
この際、金属管14のねじり耐力は他部材のいかなる耐力よりも小さく設定されており、大地震時、このねじり耐力より大きいねじりモーメントを受けると金属管14断面が降伏し、その時発生する塑性変形によって構造物全体の振動エネルギーが吸収され、構造物の地震応答が低減される。
【0005】
【発明が解決しようとする課題】
前記のように、従来のこの種の緩衝ダンパーは、他部材より最も弱く設定された金属管14断面にねじりモーメントを作用させて塑性変形を生ぜしめ、この塑性変形によって構造物に作用する振動エネルギーを吸収して、構造物本体の損傷と破壊を抑止するもので、金属管14断面のねじり変形能(降伏点を越えて破壊するまでの塑性変形領域)が大きい程吸収される塑性変形エネルギーも大きくなる。
【0006】
従って、金属管14断面寸法は出来るだけ大きく設定したいが、他部材との強度上のバランスを考慮した設計が必要であるため、従来の緩衝ダンパーではねじり変形能を大きくする上で一定の限度があった。
【0007】
本発明は上記問題に鑑み、従来に比べて塑性変形エネルギー吸収能が増加する緩衝ダンパーを提供することを目的とする。
【0008】
【課題を解決するための手段】
前記目的を達成する本発明に係る緩衝ダンパーの構成は、相対する二つの構造物間に介装する緩衝ダンパーにおいて、各構造物側にその一端が該構造物に回動自在に支持された管体に連結され、他端が該構造物によって回動を拘束された金属管部と、その基端が上記管体に固定され、先端が対向する構造物側へ伸びるレバー部とで構成されたダンパー機構をそれぞれ設け、上記各金属管部のねじり耐力を他部材の何れの降伏耐力よりも小さく設定すると共に、上記各ダンパー機構のレバー部の先端同士を係合させてなることを特徴とする。
【0009】
【作用】
相対する二つの構造物間に水平方向相対変位が生ずると、各構造物側に設置されたダンパー機構のレバー部を介してそれぞれの金属管部に同じ大きさのねじりモーメントが作用してその各断面にねじり変形が発生し、この二つの断面のねじり変形(塑性変形)によって構造物間の相対変位が吸収されるようになり、従来に比べて塑性変形エネルギー吸収能力が倍増する。
【0010】
【実施例】
以下、本発明の好適な実施例を図面を参照して説明するが本発明はこれに限定されるものではない。
【0011】
図1は本発明の緩衝ダンパーを二つの構造物間に配置した場合の平面図、図2は緩衝ダンパーの構成を示す図1のII−部分図、図3はレバーアーム構造の第1実施例を示す図2のIII−III 矢視図、図4は同じく第2実施例を示す図2のIII−III 矢視図、図5は金属管の拘束状態を示す図2のV−V 矢視図である。
【0012】
図1及び図2に示すように、本実施例にかかる緩衝ダンパー21は、相対する二つの構造物A,B間に介装するものであり、その一端が該構造物A,Bに軸受5a,5bを介して回動自在に支持された管体としての鋼管部材2a,2bに連結されており、他端が該構造物A,Bによって回動を拘束された金属管1a,1bと、その基端が上記鋼管部材2a,2bに固定され、先端が対向する構造物側へ伸びるレバー部としてのレバーアーム10a,10bとで構成されたダンパー機構21a,21bをそれぞれ設けてなり、上記各金属管1a,1bのねじり耐力を他部材の何れの降伏耐力よりも小さく設定すると共に、上記各ダンパー機構21a、21bのレバーアーム10a,10bの先端同士を係合させて成り、上記二つの構造物A,B間の相対変位に基づく各金属管部の回転を制止するようにしてなるものである。
【0013】
すなわち、一方の構造物A側のダンパー機構21aは、図2に示すように、構造物Aに設けた受台9aで支持され、その下端が剛板3aを介して拘束板4aによって回転が拘束され、上端が構造物Aに突設された1対の軸受5aによって軸支された鋼管部材2aとフランジ6a,6bを介して連結された金属管1aと、その基端が鋼管部材2aに固定され、先端が構造物B側へ水平方向に伸びるレバーアーム10aより成っている。
【0014】
一方、構造物B側のダンパー機構21bは、上記同様、構造物Bに設けた受台9bで支持され、その下端が剛板3bを介して拘束板4bによって回転が拘束され、上端が構造物Bに突設された1対の軸受5bによって軸支された鋼管部材2bとフランジ7a,7bを介して連結された金属管1bと、その基端が鋼管部材2bに固定され、先端が構造物A側へ水平方向に伸びるレバーフレーム10bより成っている。
【0015】
そして、両構造物A,Bに設けた上記図中の左,右ダンパー機構21a,21bの各レバーフレーム10aと10bとは、図2に示すように、それぞれの先端部同士が係合している。
【0016】
図3はその係合状態に係る第1の実施例を示す。
同図に示すように、本実施例においては、上記一方の構造物B側のレバーフレーム10bはその断面が箱状に形成されており、その内部の開口部には他の一方の構造物A側であるレバーフレーム10aの先端部をゆるく嵌挿した構成としている。
これによって、両構造物A,B間に生ずる対向方向の相対水平変位は許容され、前後方向(図2の紙面垂直方向)の相対変位は阻止されるようになっている。
【0017】
また、図4は同じく係合状態に係る第2の実施例を示し、前述した上記一方の構造物B側の箱状レバーアーム10aの先端部の上・下壁を切除してレバーアーム10bを形成しており、その中央空間に構造物A側のレバーアーム10aをゆるく嵌挿した構成としている。
【0018】
図3及び図4に示す構成とすることによって、両構造物A,B間に生ずる対向方向の相対水平変位及び上下方向相対変位は許容され、前後方向(図2の紙面垂直方向)の相対変位のみ阻止されるようになっている。
【0019】
図5は、金属管の拘束状態を示す図2のIV−IV 矢視図である。
同図に示すように、ダンパー機構21の金属管1bの剛板3bと、これを支持する受台9b上の拘束板4bとの拘束状態の一例を示している。
4角状の剛板3bの各コーナ部に、該コーナ部と対応する形状の拘束板4bを配設したもので、これによって上記金属板1bの回転が拘束されるようになっている。
尚、一方の構造物側であるダンパー機構21の金属管1aも同様にしており、その説明は省略する。
【0020】
なお、上記両ダンパー機構の金属管1a,1bの強度は、ダンパー機構を構成するすべての他部材即ち、レバーアーム10a,10b、鋼管部材2a,2b、フランジ6a,6b及び7a,7b、拘束板4a,4b、剛板3a,3b等の強度より弱く設定されている。
【0021】
以下、本発明の緩衝ダンパーの作用を説明する。
【0022】
相対する二つの構造物A,B間に、前後方向(図2の紙面垂直方向)の相対水平変位が生ずると、互いに係合するレバーアーム10aと10bを介して構造物A側の鋼管部材2a及び構造物B側の鋼管部材2bにはそれぞれ同じ大きさのねじりモーメントが作用する。
このねじりモーメントは連結された金属管1a,1bに伝達されて金属管1a,1bに回転作用を与えるが、この回転は剛板3a,3bを介して拘束板4a,4bによって阻止され、これによって金属管1a,1b断面にはねじり変形が発生する。
【0023】
また、上記において、構造物A,B間の相対変位が更に増加しこれに伴って作用するねじりモーメントが増大すると、遂に金属管1a,1b断面が全断面せん断降伏として塑性変形するが、この時構造物A側の金属管1aと構造物B側の金属管1bそれぞれの断面に塑性変形が生じて、エネルギー吸収能力が倍増するようになり、大規模地震時等の構造物全体の振動応答が低減され、構造物の主要部材に対する損傷や破壊が阻止される。
【0024】
なお、大地震時等により金属管1a,1b断面の塑性変形が大きく進行した場合には鋼管部材2a,2bとを連続するフランジ6a,6bまたは7a,7bを解放することにより、新しい金属管と交換することができる。
【0025】
【発明の効果】
以上、詳細に説明したように、本発明の緩衝ダンパーによると、各構造物間に設けた各ダンパー機構のレバー部の先端同士を係合させて成り、上記二つの構造物間の相対変位に基づく各金属管部の回転を制止するようにしたことにより、相対する二つの構造物間に相対水平変位が生ずると、各構造物側に設けたダンパー機構のレバー部を介してそれぞれの金属管に同じ大きさのねじりモーメントが作用してその各断面に同じ大きさのねじり変形が発生し、この二つの断面に発生する倍増されたねじり変形(塑性変形)によって大地震時等の構造物の振動エネルギーが吸収され、構造物の主要部材の損傷や破壊が阻止されるという効果を奏する。
【図面の簡単な説明】
【図1】本発明の第1実施例に係る緩衝ダンパーの配置図である。
【図2】緩衝ダンパーの構成を示す図1のII−部分図である。
【図3】レバーアーム構造の第1実施例を示す図2のIII−III 矢視図である。
【図4】同じく第2実施例を示す図2のIII−III 矢視図である。
【図5】金属管の拘束状態を示す図2のV−V 矢視図である。
【図6】従来の緩衝ダンパー構造とその配置を示す図。
【図7】従来の緩衝ダンパー構造とその配置を示す図。
【符号の説明】
1a,1b 金属管
2a,2b 鋼管部材
3a,3b 剛板
4a,4b 拘束板
5a,5b 軸受
6a,6b,7a,7b フランジ
8a,8b リング
9a,9b 受台
10a,10b レバーアーム
21 緩衝ダンパー
A,B 構造物
[0001]
[Industrial applications]
The present invention relates to a buffer damper interposed between two structures, such as a tubular body and a supporting tower in a steel chimney, or a boiler and its supporting frame in a steam generator, and particularly, in a structure, relative displacement between the two structures. The present invention relates to a shock absorbing damper interposed between generated portions.
[0002]
[Prior art]
FIG. 6 is a horizontal sectional view when a conventional buffer damper is arranged between two structures, and FIG. 7 is a detailed view thereof.
[0003]
In FIG. 6, reference numeral 11 denotes a conventional buffer damper, which is symmetrical between a ring frame 3 wound around the outer surface of a cylindrical structure A as one structure and a support frame B as another structure. It is arranged in a way.
As shown in FIG. 7, the buffer damper 11 is supported on the structure A side by the ring frame 3 of the structure A and the pedestal 3a.
The lower end 16 has a metal pipe 14 connected to a steel pipe member 17 whose rotation is restrained by a restraining plate 15 and whose upper end is supported by a pair of bearings 18 projecting from the structure A. The lever arm 12 has an end fixed to the steel pipe member 17 and an end extending toward the support frame B.
In addition, on one support frame B side, a pair of stoppers 13 that are installed on the support frame B and sandwich the rod body 20 suspended from the tip of the lever arm 12 from the tip are provided. When a relative displacement in the horizontal direction occurs between the supporting frames B, a torsional moment is transmitted to the metal tube 14 via the lever arm 12, and a torsional deformation occurs in the cross section of the metal tube 14, and the relative displacement is caused by the torsional deformation. It is designed to be absorbed.
[0004]
At this time, the torsional strength of the metal tube 14 is set to be smaller than any other members. When a large earthquake receives a torsional moment greater than the torsional strength, the cross section of the metal tube 14 yields and the plastic deformation generated at that time occurs. As a result, the vibration energy of the entire structure is absorbed, and the seismic response of the structure is reduced.
[0005]
[Problems to be solved by the invention]
As described above, this type of conventional shock damper generates a plastic deformation by applying a torsional moment to the cross section of the metal tube 14 which is set to be weakest than other members, and the vibration energy acting on the structure due to the plastic deformation is generated. To prevent damage and destruction of the main body of the structure. The greater the torsional deformability of the cross section of the metal pipe 14 (the area of plastic deformation before breaking beyond the yield point), the greater the plastic deformation energy absorbed. growing.
[0006]
Therefore, it is desirable to set the cross-sectional dimension of the metal tube 14 as large as possible. However, since a design in consideration of the balance with the strength of other members is required, a certain limit is imposed on the conventional buffer damper in order to increase the torsional deformability. there were.
[0007]
The present invention has been made in view of the above problems, and an object of the present invention is to provide a shock absorbing damper having an increased plastic deformation energy absorbing capacity as compared with the related art.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, a buffer damper according to the present invention has a structure in which, in a buffer damper interposed between two opposing structures, one end of each of the structures is rotatably supported by the structure. A metal tube portion connected to the body and the other end of which is restrained from rotating by the structure, and a lever portion whose base end is fixed to the tube body and whose distal end extends toward the opposing structure. A damper mechanism is provided, the torsional strength of each of the metal pipes is set to be smaller than the yield strength of any of the other members, and the ends of the levers of each of the damper mechanisms are engaged with each other. .
[0009]
[Action]
When a horizontal relative displacement occurs between two opposing structures, the same magnitude of torsional moment acts on each of the metal pipes via the lever portion of the damper mechanism installed on each structure side, and each of the metal tubes has a corresponding torsion moment. A torsional deformation occurs in the cross section, and the relative displacement between the structures is absorbed by the torsional deformation (plastic deformation) of the two cross sections, so that the plastic deformation energy absorbing capacity is doubled as compared with the related art.
[0010]
【Example】
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited thereto.
[0011]
FIG. 1 is a plan view of a case where the shock absorbing damper of the present invention is disposed between two structures, FIG. 2 is a II-part view of FIG. 1 showing the structure of the shock absorbing damper, and FIG. 3 is a first embodiment of the lever arm structure. FIG. 4 is a view taken in the direction of arrows III-III in FIG. 2, FIG. 4 is a view taken in the direction of arrows III-III in FIG. 2 showing the second embodiment, and FIG. 5 is a view taken in the direction of arrow VV in FIG. FIG.
[0012]
As shown in FIGS. 1 and 2, the buffer damper 21 according to the present embodiment is interposed between two opposing structures A and B, and one end of the damper 21 is attached to the structures A and B by a bearing 5 a. , 5b are connected to steel pipe members 2a, 2b as rotatably supported pipe bodies, and the other ends thereof are metal pipes 1a, 1b whose rotation is restricted by the structures A, B, Damper mechanisms 21a, 21b each having a base end fixed to the steel pipe member 2a, 2b and a lever arm 10a, 10b as a lever portion extending at the distal end toward the opposing structure are provided, respectively. The two structures are formed by setting the torsional strength of the metal tubes 1a and 1b smaller than the yield strength of any of the other members and engaging the tips of the lever arms 10a and 10b of the damper mechanisms 21a and 21b with each other. Things A, B It is made so as to stop the rotation of each metal pipe section based on the relative displacement.
[0013]
That is, as shown in FIG. 2, the damper mechanism 21a on one side of the structure A is supported by a receiving table 9a provided on the structure A, and its lower end is restrained from rotating by a restraining plate 4a via a rigid plate 3a. The steel pipe member 2a is supported at its upper end by a pair of bearings 5a projecting from the structure A, the metal pipe 1a is connected to the steel pipe member 2a via flanges 6a and 6b, and the base end is fixed to the steel pipe member 2a. And a lever arm 10a having a tip extending horizontally to the structure B side.
[0014]
On the other hand, the damper mechanism 21b on the structure B side is supported by the receiving table 9b provided on the structure B, the lower end thereof is restricted in rotation by the restraining plate 4b via the rigid plate 3b, and the upper end is the structure B, a metal pipe 1b pivotally supported by a pair of bearings 5b and a metal pipe 1b connected via flanges 7a and 7b, a base end of which is fixed to the steel pipe member 2b, and a tip of which is a structure. It consists of a lever frame 10b extending horizontally to the A side.
[0015]
Then, as shown in FIG. 2, the respective leading ends of the lever frames 10a and 10b of the left and right damper mechanisms 21a and 21b provided in the structures A and B are engaged with each other. I have.
[0016]
FIG. 3 shows a first embodiment according to the engaged state.
As shown in the drawing, in the present embodiment, the cross section of the lever frame 10b on the one structure B side is formed in a box shape, and the other internal structure A is formed in the opening inside thereof. The distal end of the lever frame 10a on the side is loosely fitted.
Thereby, relative horizontal displacement in the facing direction generated between the two structures A and B is allowed, and relative displacement in the front-back direction (vertical direction on the paper surface of FIG. 2) is prevented.
[0017]
FIG. 4 shows a second embodiment according to the engagement state, in which the upper and lower walls of the distal end of the box-shaped lever arm 10a on the above-mentioned one structure B side are cut off to remove the lever arm 10b. The lever A 10a on the side of the structure A is loosely fitted in the central space.
[0018]
With the configuration shown in FIGS. 3 and 4, the relative horizontal displacement in the facing direction and the relative displacement in the vertical direction that occur between the structures A and B are allowed, and the relative displacement in the front-rear direction (perpendicular to the plane of FIG. 2). Only to be blocked.
[0019]
FIG. 5 is a view taken in the direction of arrows IV-IV in FIG. 2 showing the restrained state of the metal tube.
As shown in the figure, an example of a restrained state of a rigid plate 3b of a metal tube 1b of a damper mechanism 21 and a restraint plate 4b on a receiving stand 9b supporting the same is shown.
At each corner of the rectangular rigid plate 3b, a restraining plate 4b having a shape corresponding to the corner is disposed, whereby the rotation of the metal plate 1b is restrained.
The same applies to the metal tube 1a of the damper mechanism 21 which is one of the structures, and a description thereof will be omitted.
[0020]
The strength of the metal pipes 1a and 1b of both damper mechanisms is determined by the strength of all other members constituting the damper mechanism, ie, the lever arms 10a and 10b, the steel pipe members 2a and 2b, the flanges 6a and 6b, and the restraining plates. 4a, 4b, and the strength of the rigid plates 3a, 3b are set to be weaker.
[0021]
Hereinafter, the operation of the buffer damper of the present invention will be described.
[0022]
When a relative horizontal displacement occurs between the two opposing structures A and B in the front-rear direction (perpendicular to the plane of FIG. 2), the steel pipe member 2a on the side of the structure A via the lever arms 10a and 10b engaged with each other. The same magnitude of torsional moment acts on the steel pipe member 2b on the structure B side.
This torsional moment is transmitted to the connected metal tubes 1a, 1b and gives a rotating action to the metal tubes 1a, 1b. This rotation is prevented by the restraining plates 4a, 4b via the rigid plates 3a, 3b, whereby Torsional deformation occurs in the cross section of the metal tubes 1a and 1b.
[0023]
In the above, when the relative displacement between the structures A and B further increases and the torsional moment acting accordingly increases, the cross section of the metal tubes 1a and 1b finally undergoes plastic deformation as full-section shear yielding. Plastic deformation occurs in the cross section of each of the metal tube 1a on the structure A side and the metal tube 1b on the structure B side, so that the energy absorption capacity is doubled, and the vibration response of the entire structure during a large-scale earthquake or the like is reduced. And damage or destruction to major components of the structure is prevented.
[0024]
When the plastic deformation of the cross section of the metal pipes 1a and 1b greatly progresses due to a large earthquake or the like, a new metal pipe is formed by releasing the flange 6a, 6b or 7a, 7b connecting the steel pipe members 2a, 2b. Can be exchanged.
[0025]
【The invention's effect】
As described in detail above, according to the shock absorbing damper of the present invention, the tip of the lever portion of each damper mechanism provided between the structures is engaged with each other, and the relative displacement between the two structures is When the relative horizontal displacement occurs between two opposing structures by suppressing the rotation of each metal tube based on the respective metal tubes, each metal tube is connected via a lever portion of a damper mechanism provided on each structure side. The same magnitude of torsional moment acts on each section, resulting in the same magnitude of torsional deformation on each section. The doubled torsional deformation (plastic deformation) occurring on these two sections causes the structural Vibration energy is absorbed, and the effect is obtained that damage or destruction of the main members of the structure is prevented.
[Brief description of the drawings]
FIG. 1 is a layout view of a buffer damper according to a first embodiment of the present invention.
FIG. 2 is a II-partial view of FIG. 1 showing a configuration of a buffer damper.
FIG. 3 is a view taken in the direction of arrows III-III in FIG. 2 showing the first embodiment of the lever arm structure.
FIG. 4 is a view taken in the direction of arrows III-III in FIG. 2 showing the second embodiment.
FIG. 5 is a view taken in the direction of arrows VV in FIG. 2 showing a restrained state of the metal tube.
FIG. 6 is a diagram showing a conventional buffer damper structure and its arrangement.
FIG. 7 is a diagram showing a conventional buffer damper structure and its arrangement.
[Explanation of symbols]
1a, 1b Metal tube 2a, 2b Steel tube member 3a, 3b Rigid plate 4a, 4b Restraining plate 5a, 5b Bearing 6a, 6b, 7a, 7b Flange 8a, 8b Ring 9a, 9b Receiving stand 10a, 10b Lever arm 21 Buffer damper A , B structure

Claims (1)

相対する二つの構造物間に介装する緩衝ダンパーにおいて、
各構造物側にその一端が該構造物に回動自在に支持された管体に連結され、他端が該構造物によって回動を拘束された金属管部と、
その基端が上記管体に固定され、先端が対向する構造物側へ伸びるレバー部とで構成されたダンパー機構をそれぞれ設け、
上記各金属管部のねじり耐力を他部材の何れの降伏耐力よりも小さく設定すると共に、
上記各ダンパー機構のレバー部の先端同士を係合させてなることを特徴とする緩衝ダンパー。
In a buffer damper interposed between two opposing structures,
A metal pipe portion having one end connected to a tube rotatably supported by the structure, and the other end restrained from rotating by the structure, on each structure side;
The base end is fixed to the above-mentioned pipe body, and the tip end is provided with a damper mechanism composed of a lever portion extending toward the facing structure side, respectively.
While setting the torsional proof strength of each of the metal pipe parts smaller than the yield strength of any other member,
A damper characterized by engaging the tips of the lever portions of the respective damper mechanisms.
JP10560095A 1995-04-28 1995-04-28 Buffer damper Expired - Lifetime JP3576265B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10560095A JP3576265B2 (en) 1995-04-28 1995-04-28 Buffer damper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10560095A JP3576265B2 (en) 1995-04-28 1995-04-28 Buffer damper

Publications (2)

Publication Number Publication Date
JPH08303055A JPH08303055A (en) 1996-11-19
JP3576265B2 true JP3576265B2 (en) 2004-10-13

Family

ID=14411998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10560095A Expired - Lifetime JP3576265B2 (en) 1995-04-28 1995-04-28 Buffer damper

Country Status (1)

Country Link
JP (1) JP3576265B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109025451B (en) * 2017-05-17 2020-04-07 大连大学 Double-torsion anti-destabilization method
CN108004909B (en) * 2017-12-08 2023-10-03 广州大学 Shock insulation limiting device of gear and crank connecting rod combined mechanism
CN111794085B (en) * 2020-07-17 2021-08-31 河北工业大学 Variable cross-section yielding L-shaped metal damper

Also Published As

Publication number Publication date
JPH08303055A (en) 1996-11-19

Similar Documents

Publication Publication Date Title
JP3576265B2 (en) Buffer damper
JP2733917B2 (en) Damping device
JP4120740B2 (en) Earthquake resistant building
JP2004019271A (en) Vibration-damping structural member
JP2002221252A (en) Vibration-resistant damper
JPH0743003B2 (en) Dynamic vibration absorber
JP2501274Y2 (en) Freestanding steel chimney structure
JPH08285208A (en) Damping support structure of boiler
JPH1129908A (en) Vibration control method of suspension bridge girder, and the suspension bridge
JP2939067B2 (en) Structure damping device
JPS599828B2 (en) Earthquake-resistant equipment for furnace structures
JP3277803B2 (en) Seismic control frame of refuse incineration plant
JP3254322B2 (en) Seismic isolation device
JP2939066B2 (en) Structure damping device
JP2715710B2 (en) Eccentric brace structure with vibration suppression function
JP2543005Y2 (en) Steel structure
SU1361045A1 (en) Bumper
JPS5832038Y2 (en) Combination vibration absorber
JP3724938B2 (en) Vibration control structure
JP5582624B2 (en) Vibration control device
JP3068302B2 (en) Pendulum damping device
JPH0510659U (en) Vibration energy absorber attached to building frame
JPS645171Y2 (en)
JP3176820U (en) Vibration control device
JPH02232478A (en) Connection structure of structural members in structure

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040707

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110716

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120716

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term