JPH04188597A - Light emitting element - Google Patents

Light emitting element

Info

Publication number
JPH04188597A
JPH04188597A JP2315404A JP31540490A JPH04188597A JP H04188597 A JPH04188597 A JP H04188597A JP 2315404 A JP2315404 A JP 2315404A JP 31540490 A JP31540490 A JP 31540490A JP H04188597 A JPH04188597 A JP H04188597A
Authority
JP
Japan
Prior art keywords
layer
light emitting
insulating body
highpolymer
positive hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2315404A
Other languages
Japanese (ja)
Other versions
JP2819823B2 (en
Inventor
Satoru Miyashita
悟 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP31540490A priority Critical patent/JP2819823B2/en
Publication of JPH04188597A publication Critical patent/JPH04188597A/en
Application granted granted Critical
Publication of JP2819823B2 publication Critical patent/JP2819823B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Luminescent Compositions (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To provide a steep threshold curve for the light emission intensity and make dielectric breakdown hardly occur by constructing a positive hole implantation layer or an electron implantation layer in the form of a non-linear electric conductive inducing later which is composed of a highpolymer insulating body and an electric charge moving substance dispersed in this highpolymer insulating body. CONSTITUTION:A base board is made of pylex glass 11, and a pattern is formed on an ITO electroconductive substance film to yield a cathode 12, and a crude solution of polydiisopropyl fumarate is applied to this base board 11. Thus a non-linear electric conduction inducing layer 13 is formed which is provided with a positive hole implantation function, and thereover anthracene is attached by vacuum evaporation to form a light emitting layer 14, and further thereover Cr is attached by vacuum evaporation, followed by pattern formation to make a pos. electrode 15. Thus a light emitting element is accomplished. In this manner, the positive hole implantation layer or electron implantation layer works also as a non-linear electric conduction inducing layer 13 and, further, they are composed of a highpolymer insulating body and an electric charge moving substance dispersed in this insulating body having excellent withstand voltage and mechanical strength, so that the light emission intensity threshold curve for the impression voltage can be made steep, and dielectric breakdown hardly occurs.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、有機発光物質を用いた発光素子に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a light emitting device using an organic light emitting substance.

〔従来の技術1 従来の有機発光物質を用いた発光素子としては、正孔注
入層または電子注入層を有する多層構造の素子が知られ
ている(斎藤ら、化学と工業第42巻 第11号(19
89)p143  など)。
[Prior art 1 As a conventional light-emitting device using an organic light-emitting substance, a multilayer structure device having a hole injection layer or an electron injection layer is known (Saito et al., Kagaku to Kogyo Vol. 42, No. 11) (19
89) p143 etc.).

発光層、正孔注入層、電子注入層の各有機層は、真空蒸
着により1000オングストローム以下の厚さの均一な
薄膜で形成されている。直流10ボルト程度の駆動電圧
で、1ooOcd/rn’以上の発光輝度が得られてい
る。
Each of the organic layers including the light emitting layer, the hole injection layer, and the electron injection layer is formed into a uniform thin film having a thickness of 1000 angstroms or less by vacuum deposition. At a driving voltage of about 10 volts DC, a luminance of 1ooOcd/rn' or more is obtained.

[発明が解決しようとする課B] しかしこのように形成した発光素子は、印加電圧に対す
る発光強度の閾値特性が急峻でなく、大容量表示を行な
うための時分割駆動ができない。
[Problem B to be Solved by the Invention] However, the light-emitting element formed in this manner does not have a steep threshold characteristic of light emission intensity with respect to applied voltage, and cannot be driven in a time-division manner for large-capacity display.

また、絶縁破壊が起こりやすく、素子の信頼性が低いな
どの課題があった。
Further, there were problems such as dielectric breakdown easily occurring and device reliability being low.

そこで本発明は、印加電圧に対する発光強度の閾値特性
が急峻で大容量表示の時分割駆動が可能であり、絶縁破
壊が起こりにくく信頼性の高い発光素子の提供を目的と
する。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a highly reliable light-emitting element that has a steep threshold characteristic of emission intensity with respect to an applied voltage, is capable of time-division driving for large-capacity display, and is resistant to dielectric breakdown.

[課題を解決するための手段] 本発明の発光素子は、有機発光層と、正孔注入層および
電子注入層の少なくともどちらか一方を有する発光素子
において、前記正孔注入層または電子注入層が、高分子
絶縁体と高分子絶縁体内に分散した電荷移動物質から構
成される非線形電気伝導誘起層であることを特徴とする
[Means for Solving the Problems] The light emitting device of the present invention has an organic light emitting layer and at least one of a hole injection layer and an electron injection layer, wherein the hole injection layer or the electron injection layer is , is characterized by a nonlinear electrical conduction inducing layer composed of a polymer insulator and a charge transfer substance dispersed within the polymer insulator.

また、上記高分子絶縁体が、ポリジアルキルフマレート
であることを特徴とする。
Further, the polymer insulator is characterized in that it is polydialkyl fumarate.

[作 用] 本発明の上記の構成によれば、正孔注入層または電子注
入層が、非線形電気伝導誘起層を兼ねるため、En加電
圧に対する電流密度の非線形性を従来より大きくするこ
とができる。そのため電流密度にほぼ比例する発光強度
の、印加電圧に対する閾値特性を急峻にすることができ
る。
[Function] According to the above configuration of the present invention, since the hole injection layer or the electron injection layer also serves as the nonlinear electrical conduction inducing layer, the nonlinearity of the current density with respect to the En applied voltage can be made larger than before. . Therefore, the threshold characteristic of the emission intensity, which is approximately proportional to the current density, with respect to the applied voltage can be made steep.

正孔注入層または電子注入層が、電気耐圧と機械的強度
に優れた高分子絶縁体と高分子絶縁体内に分散した電荷
移動物質から構成されれば、絶縁破壊が起こりに<(、
素子の信頼性を高めることができる。高分子絶縁体とし
てポリジアルキルフマレートは、単独で用いた場合、数
百オングストロームの非常に薄い膜でも、電気絶縁特性
の優れた薄膜が得られる材料として知られている。
If the hole injection layer or electron injection layer is composed of a polymeric insulator with excellent electrical withstand voltage and mechanical strength, and a charge transfer substance dispersed within the polymeric insulator, dielectric breakdown will not occur.
The reliability of the device can be improved. Polydialkyl fumarate is known as a material that, when used alone as a polymeric insulator, can provide a thin film with excellent electrical insulation properties even if it is a very thin film of several hundred angstroms.

以下、実施例により本発明の詳細を示す。Hereinafter, the details of the present invention will be shown by examples.

[実 施 例1 (実施例1) 非線形電気伝導層に用いる高分子絶縁体は、ポリジイソ
プロピルフマレート(以下本明細書ではPDiPFと略
記する)をもちいた。P D i P’Fは再沈澱によ
って精製したのち、正孔注入物質であるオキサジアゾー
ル誘導体5重量%と共にトルエンに溶解させ、05μm
のフィルターを通して原料溶液とした。
[Example 1 (Example 1) Polydiisopropyl fumarate (hereinafter abbreviated as PDiPF in this specification) was used as the polymer insulator used for the nonlinear electrically conductive layer. After P D i P'F was purified by reprecipitation, it was dissolved in toluene together with 5% by weight of an oxadiazole derivative, which is a hole-injecting substance.
The raw material solution was obtained through a filter.

第1図は本実施例における構成を模式的に示す発光素子
の断面図である。ここでは発光物質としてアントラセン
を用いたが、ピレン、ベンズアントラセン、ペリレン、
テトラセン、ナフタセン、コロネン、クマリン、シクロ
ペンタジェン、キノリン、及びこれら有機発光物質の誘
導体などが同様に利用できる。基板としては、表面を光
学研磨したパイレックスガラス11を用い、ITOの導
電体膜をスパッターもしくは蒸着で形成し、フォトエツ
チングによって100μm幅にパターンを形成して陰極
12とした。
FIG. 1 is a cross-sectional view of a light emitting element schematically showing the configuration in this example. Here, anthracene was used as a luminescent substance, but pyrene, benzanthracene, perylene,
Tetracene, naphthacene, coronene, coumarin, cyclopentadiene, quinoline, and derivatives of these organic light-emitting substances can similarly be used. A Pyrex glass 11 with an optically polished surface was used as a substrate, and a conductive film of ITO was formed by sputtering or vapor deposition, and a pattern with a width of 100 μm was formed by photoetching to form a cathode 12.

この基板上に、1000人の膜厚となるように回転数と
時間を制御して、スピンコーターで前述のPDiPFの
原料溶液を塗布し、正孔注入機能を持つ非線形電気伝導
誘起層13とした。その上にアントラセンを真空蒸着に
より、500人の膜厚で形成し発光層14とした。更に
、クロムを真空蒸着で形成した後、陰極と直交するよう
100μm幅にフォトエツチングでパターン形成して正
極15とし発光素子が得られた。
On this substrate, the above-mentioned PDiPF raw material solution was applied with a spin coater by controlling the rotation speed and time so that the film thickness was 1000 nm, thereby forming a nonlinear electrical conduction inducing layer 13 having a hole injection function. . Anthracene was formed thereon to a thickness of 500 nm by vacuum evaporation to form the light-emitting layer 14. Furthermore, after forming chromium by vacuum evaporation, a pattern was formed by photoetching to a width of 100 μm perpendicular to the cathode to form a positive electrode 15, and a light emitting device was obtained.

電極間に電界を印加したところ10ボルト以上で急に電
流が流れはじめ、発光が観測された。また、50ポルト
の電圧を印加しても絶縁破壊は起きず、発光特性にも変
化はなかった。印加電圧に対する発光特性を第2図に示
す。発光強度の、印加電圧に対する閾値特性が急峻なた
め、400ラインでの時分割駆動が可能であった。
When an electric field was applied between the electrodes, a current suddenly began to flow at 10 volts or more, and light emission was observed. Further, even when a voltage of 50 volts was applied, no dielectric breakdown occurred and there was no change in the light emitting characteristics. FIG. 2 shows the luminescence characteristics with respect to the applied voltage. Since the threshold characteristic of the emitted light intensity with respect to the applied voltage was steep, time-division driving of 400 lines was possible.

(実施例2) 非線形電気伝導層に用いる高分子絶縁体は、ポリジte
rtブチルフマレート(以下本明細書ではPDtBFと
略記する)をもちいた、PDtBFは再沈澱によって精
製した後、電子注入物質であるフタロシアニン誘導体2
重量%と共に四塩化炭素に溶解させ、0.5μmのフィ
ルターを通して原料溶液とした。
(Example 2) The polymer insulator used for the nonlinear electrically conductive layer was polyte
Using rt-butyl fumarate (hereinafter abbreviated as PDtBF), PDtBF is purified by reprecipitation and then purified with phthalocyanine derivative 2, which is an electron injection substance.
It was dissolved in carbon tetrachloride together with % by weight and passed through a 0.5 μm filter to obtain a raw material solution.

表面を光学研磨したパイレックスガラス上にインジウム
の導電体膜をスパッターもしくは蒸着で形成し、フォト
エツチングによって100um幅にパターンを形成して
正極とした。その上に800人の膜厚となるように回転
数と時間を制御して、スピンコーターで前述のPDtB
Fの原料溶液を塗布し、電子注入機能を持つ非線形電気
伝導誘起層とした。
An indium conductive film was formed by sputtering or vapor deposition on Pyrex glass whose surface had been optically polished, and a pattern with a width of 100 um was formed by photoetching to form a positive electrode. On top of that, the above-mentioned PDtB was coated with a spin coater, controlling the rotation speed and time so that the film thickness was 800 mm.
A raw material solution of F was applied to form a nonlinear electrical conduction inducing layer with an electron injection function.

その上にキノリンの誘導体を真空蒸着により。On top of that, a quinoline derivative is deposited by vacuum evaporation.

800人の膜厚で形成し発光層とした。更に、ITOを
真空蒸着で形成した後、正極と直交するよう1100L
L幅にフォトエツチングでバター形成して陰極とし発光
素子が得られた。
A light-emitting layer was formed with a thickness of 800 mm. Furthermore, after forming ITO by vacuum evaporation, 1100L of ITO was deposited perpendicularly to the positive electrode.
A light-emitting device was obtained by forming butter on the L width by photoetching and using it as a cathode.

電極間に電界を印加したところIOボルト以上で急に電
流が流れはじめ、発光が観測された。また、50ボルト
の電圧を印加しても絶縁破壊は起きず、発光特性にも変
化はなかった。発光強度の、印加電圧に対する閾値特性
が急峻なため、400ラインでの時分割駆動が可能であ
った。
When an electric field was applied between the electrodes, a current suddenly began to flow above IO volts, and light emission was observed. Furthermore, even when a voltage of 50 volts was applied, no dielectric breakdown occurred and there was no change in the light emitting characteristics. Since the threshold characteristic of the emitted light intensity with respect to the applied voltage was steep, time-division driving of 400 lines was possible.

(実施例3) 非線形電気伝導層に用いる高分子絶縁体は、ポリジシク
ロへキシルフマレート(以下本明細書ではPDcHFと
略記する)をもちいた、PDcHFは再沈澱によって精
製したのち、正孔注入物質であるトリフェニルアミン誘
導体8重量%と共にトルエンに溶解させ、05μmのフ
ィルターを通して原料溶液とした。
(Example 3) Polydicyclohexyl fumarate (hereinafter abbreviated as PDcHF) was used as the polymer insulator used in the nonlinear electrically conductive layer. PDcHF was purified by reprecipitation and then used as a hole injection substance. It was dissolved in toluene together with 8% by weight of a triphenylamine derivative, and passed through a 05 μm filter to obtain a raw material solution.

表面を光学研磨したパイレックスガラス上に工TOの導
電体膜をスパッターもしくは蒸着で形成し、フォトエツ
チングによって60Lim幅にパターンを形成して陰極
とした。その上に1200Aの膜厚となるように回転数
と時間を制御して、スピンコーターで前述のPDcHF
の原料溶液を塗布し、正孔注入機能を持つ非線形電気伝
導誘起層とした。
A conductive film of TO was formed by sputtering or vapor deposition on Pyrex glass whose surface had been optically polished, and a pattern with a width of 60L was formed by photoetching to form a cathode. On top of that, the above-mentioned PDcHF was coated with a spin coater, controlling the rotation speed and time so that the film thickness was 1200A.
A raw material solution was applied to form a nonlinear electrical conduction inducing layer with a hole injection function.

その上にペリノン誘導体を真空蒸着により、800人の
膜厚で形成し発光層とし、連続してペリレンテトラカル
ボキシル誘導体を真空蒸着により、800人の膜厚で形
成し電子注入層とした。
Thereon, a perinone derivative was formed by vacuum evaporation to a thickness of 800 nm to form a light-emitting layer, and subsequently a perylene tetracarboxyl derivative was formed by vacuum evaporation to a thickness of 800 nm to form an electron injection layer.

更に、クロムを真空蒸着で形成した後、陰極と直交する
よう60μm幅にフォトエツチングでバター形成して正
極とし発光素子が得られた。
Further, chromium was formed by vacuum evaporation, and then butter was formed by photoetching to a width of 60 μm perpendicular to the cathode to serve as a cathode, and a light emitting device was obtained.

電極間に電界を印加したところ8ボルト以上で急に電流
が流れはじめ、発光が観測された。また、50ポルトの
電圧を印加しても絶縁破壊は起きず、発光特性にも変化
はなかった6発光強度の、印加電圧に対する閾値特性が
急峻なため、400ラインでの時分割駆動が可能であっ
た。
When an electric field was applied between the electrodes, a current suddenly began to flow at 8 volts or higher, and light emission was observed. In addition, even when a voltage of 50 volts was applied, no dielectric breakdown occurred, and there was no change in the emission characteristics.Because the threshold characteristics of the 6 emission intensities with respect to the applied voltage are steep, time-division driving of 400 lines is possible. there were.

以上、実施例を述べたが発光物質、正孔注入物質、電荷
注入物質、絶縁性高分子、電極材料はここに述べた物質
に限らない。
Although examples have been described above, the light emitting substance, hole injection substance, charge injection substance, insulating polymer, and electrode material are not limited to the substances described here.

[発明の効果] 以上述べたように本発明によれば、有機発光層と、正孔
注入層および電子注入層の少なくともどちらか一方を有
する発光素子において、前記正孔注入層また電子注入層
が、高分子絶縁体と高分子絶縁体内に分散した電荷移動
物質から構成される非線形電気伝導誘起層であることに
より、印加電圧に対する発光強度の閾値特性が急峻で大
容量表示の時分割駆動が可能であり、絶縁破壊が起こり
にくく信頼性の高い発光素子を提供することができた。
[Effects of the Invention] As described above, according to the present invention, in a light emitting element having an organic light emitting layer and at least one of a hole injection layer and an electron injection layer, the hole injection layer or the electron injection layer is , a nonlinear electrical conduction inducing layer composed of a polymeric insulator and a charge transfer material dispersed within the polymeric insulator, has a steep threshold characteristic of luminescence intensity with respect to applied voltage, making it possible to time-divisionally drive large-capacity displays. Therefore, it was possible to provide a highly reliable light-emitting element in which dielectric breakdown does not easily occur.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は1本発明の実施例1における発光素子の構成を
模式的に表す断面図である。 第2図は、本発明の実施例1で作成した発光素子の印加
電圧に対する発光特性を表わす図である。 11・・・基板 12・・・陰極 13・ ・正札注入機能を持つ非線形電気伝導誘起層 14・・・発光層 15・・・正極 21・・・発光特性曲線 以上 出願人 セイコーエプソン株式会社
FIG. 1 is a sectional view schematically showing the structure of a light emitting element in Example 1 of the present invention. FIG. 2 is a diagram showing the light emission characteristics of the light emitting device produced in Example 1 of the present invention with respect to applied voltage. 11...Substrate 12...Cathode 13...Nonlinear electrical conduction inducing layer with front plate injection function 14...Light emitting layer 15...Cathode 21...Light emission characteristic curve and above Applicant: Seiko Epson Corporation

Claims (2)

【特許請求の範囲】[Claims] (1)有機発光層と、正孔注入層および電子注入層の少
なくともどちらか一方を有する発光素子において、前記
正孔注入層又または電子注入層が、高分子絶縁体と高分
子絶縁体内に分散した電荷移動物質から構成される非線
形電気伝導誘起層であることを特徴とする発光素子。
(1) In a light emitting element having an organic light emitting layer and at least one of a hole injection layer and an electron injection layer, the hole injection layer or the electron injection layer is dispersed within a polymer insulator and a polymer insulator. 1. A light emitting device characterized by having a nonlinear electrical conduction inducing layer made of a charge transfer material.
(2)上記高分子絶縁体が、ポリジアルキルフマレート
であることを特徴とする請求項第1項記載の発光素子。
(2) The light emitting device according to claim 1, wherein the polymeric insulator is polydialkyl fumarate.
JP31540490A 1990-11-20 1990-11-20 Light emitting element Expired - Fee Related JP2819823B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31540490A JP2819823B2 (en) 1990-11-20 1990-11-20 Light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31540490A JP2819823B2 (en) 1990-11-20 1990-11-20 Light emitting element

Publications (2)

Publication Number Publication Date
JPH04188597A true JPH04188597A (en) 1992-07-07
JP2819823B2 JP2819823B2 (en) 1998-11-05

Family

ID=18064982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31540490A Expired - Fee Related JP2819823B2 (en) 1990-11-20 1990-11-20 Light emitting element

Country Status (1)

Country Link
JP (1) JP2819823B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0788118A1 (en) * 1996-02-05 1997-08-06 TDK Corporation Low dielectric polymer and film, substrate and electronic part using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0788118A1 (en) * 1996-02-05 1997-08-06 TDK Corporation Low dielectric polymer and film, substrate and electronic part using the same

Also Published As

Publication number Publication date
JP2819823B2 (en) 1998-11-05

Similar Documents

Publication Publication Date Title
JPH1050478A (en) Organic field emission element and manufacture thereof
WO2005122648A1 (en) Organic electroluminescence device and its driving method
JPH03269995A (en) Manufacture of electric field luminescence element
JPH01245087A (en) Organic electroluminescence element
JPH02213088A (en) Organic thin film el element and manufacture thereof
US5903101A (en) Optical element and method of manufacturing the same
JPH08185983A (en) Organic electroluminescent element
US6312837B1 (en) Optical element and method of manufacturing the same
JPH04264189A (en) Electroluminescent element
CN110429185B (en) Electroluminescent device and manufacturing method and application thereof
JPH04188597A (en) Light emitting element
JPH0493389A (en) Organic luminescent element
US6194089B1 (en) Organic electroluminescent device with improved reliability
JPH11191491A (en) Organic electroluminescent device
JPH11191489A (en) Organic electroluminescent device
JPH07119409B2 (en) Organic thin film EL device
JPH07228865A (en) Organic thin-film luminescent element
JPH113049A (en) Light emitting element
JPH02267888A (en) Electroluminescence display element
JPH10255980A (en) Organic thin film luminescent element
JPH11204265A (en) Organic thin film luminescent element
JP3755692B2 (en) Organic thin film light emitting device
JP2712634B2 (en) Organic thin film EL device
JPH05125360A (en) Organic thin-film luminous element
JP3531349B2 (en) Light emitting element

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070828

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080828

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080828

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090828

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees