JP2819823B2 - Light emitting element - Google Patents

Light emitting element

Info

Publication number
JP2819823B2
JP2819823B2 JP31540490A JP31540490A JP2819823B2 JP 2819823 B2 JP2819823 B2 JP 2819823B2 JP 31540490 A JP31540490 A JP 31540490A JP 31540490 A JP31540490 A JP 31540490A JP 2819823 B2 JP2819823 B2 JP 2819823B2
Authority
JP
Japan
Prior art keywords
light emitting
layer
injection layer
light
hole injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31540490A
Other languages
Japanese (ja)
Other versions
JPH04188597A (en
Inventor
悟 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP31540490A priority Critical patent/JP2819823B2/en
Publication of JPH04188597A publication Critical patent/JPH04188597A/en
Application granted granted Critical
Publication of JP2819823B2 publication Critical patent/JP2819823B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、誘起発光物質を用いた発光素子に関する。Description: TECHNICAL FIELD The present invention relates to a light emitting device using an induced light emitting substance.

〔従来の技術〕[Conventional technology]

従来の有機発光物質を用いた発光素子としては、正孔
注入層または電子注入層を有する多層構造の素子が知ら
れている(斎藤ら、化学と工業第42巻 第11号(1989)
p143など)。
As a conventional light emitting device using an organic light emitting material, a device having a multilayer structure having a hole injection layer or an electron injection layer is known (Saito et al., Chemistry and Industry Vol. 42, No. 11 (1989)).
p143).

発光層、正孔注入層、電子注入層の各有機層は、真空
蒸着により1000オングストローム以下の厚さの均一な薄
膜で形成されている。直流10ボルト程度の駆動電圧で、
1000cd/m2以上の発光輝度が得られている。
Each organic layer of the light emitting layer, the hole injection layer, and the electron injection layer is formed as a uniform thin film having a thickness of 1000 angstroms or less by vacuum deposition. With a driving voltage of about 10 VDC,
Light emission luminance of 1000 cd / m 2 or more is obtained.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかしこのように形成した発光素子は、印加電圧に対
する発光強度の閾値特性が急峻でなく、大容量表示を行
なうための時分割駆動ができない。また、絶縁破壊が起
こりやすく、素子の信頼性が低いなどの課題があった。
However, the light emitting element thus formed does not have a steep threshold characteristic of the light emission intensity with respect to the applied voltage, and cannot perform time division driving for performing large-capacity display. In addition, there is a problem that dielectric breakdown easily occurs and the reliability of the element is low.

そこで本発明は、印加電圧に対する発光強度の閾値特
性が急峻で大容量表示の時分割駆動が可能であり、絶縁
破壊が起こりにくく信頼性の高い発光素子の提供を目的
とする。
Therefore, an object of the present invention is to provide a highly reliable light emitting element which has a steep threshold characteristic of light emission intensity with respect to an applied voltage, enables time-division driving of large-capacity display, and is less likely to cause dielectric breakdown.

〔課題を解決するための手段〕[Means for solving the problem]

本発明の発光素子は、有機発光層と、正孔注入層およ
び電子注入層の少なくともどちらか一方を有する発光素
子において、前記正孔注入層または電子注入層が、高分
子絶縁体と高分子絶縁体内に分散した電荷移動物質から
構成される非線形電気伝導誘起層であることを特徴とす
る。
The light-emitting device of the present invention is a light-emitting device having an organic light-emitting layer and at least one of a hole injection layer and an electron injection layer, wherein the hole injection layer or the electron injection layer has a polymer insulator and a polymer insulator. It is characterized by being a non-linear electric conduction inducing layer composed of a charge transfer material dispersed in the body.

また、上記高分子絶縁体が、ポリジアルキルフマレー
トであることを特徴とする。
Further, the polymer insulator is a polydialkyl fumarate.

〔作 用〕(Operation)

本発明の上記の構成によれば、正孔注入層または電子
注入層が、非線形電気伝導誘起層を兼ねるため、印加電
圧に対する電流密度の非線形性を従来より大きくするこ
とができる。そのため電流密度にほぼ比例する発光強度
の、印加電圧に対する閾値特性を急峻にすることができ
る。
According to the above configuration of the present invention, since the hole injection layer or the electron injection layer also functions as the nonlinear electric conduction inducing layer, the non-linearity of the current density with respect to the applied voltage can be made larger than before. Therefore, it is possible to sharpen the threshold characteristic of the light emission intensity, which is substantially proportional to the current density, with respect to the applied voltage.

正孔注入層または電子注入層が、電気耐圧と機械的強
度に選れた高分子絶縁体と高分子絶縁体内に分散した電
荷移動物質から構成されれば、絶縁破壊が起こりにく
く、素子の信頼性を高めることができる。高分子絶縁体
としてポリジアルキルフマレートは、単独で用いた場
合、数百オングストロームの非常に薄い膜でも、電気絶
縁特性の優れた薄膜が得られる材料として知られてい
る。
If the hole injection layer or the electron injection layer is composed of a polymer insulator selected for its electric breakdown voltage and mechanical strength and a charge transfer material dispersed in the polymer insulator, dielectric breakdown is unlikely to occur, and the reliability of the device is reduced. Can be enhanced. Polydialkyl fumarate as a polymer insulator is known as a material that, when used alone, can provide a thin film having excellent electrical insulation properties even with a very thin film of several hundred angstroms.

以下、実施例により本発明の詳細を示す。 Hereinafter, the present invention will be described in detail with reference to examples.

〔実 施 例〕〔Example〕

(実施例1) 非線形電気伝導層に用いる高分子絶縁体は、ポリジイ
ソプロピルフマレート(以下本明細書ではPDiPFと略記
する)をもちいた。PDiPFは再沈澱によって精製したの
ち、正孔注入物質であるオキサジアゾール誘導体5重量
%と共にトルエンに溶解させ、0.5μmのフィルターを
通して原料溶液とした。
(Example 1) Polydiisopropyl fumarate (hereinafter abbreviated as PDiPF in the present specification) was used as a polymer insulator used for the nonlinear electric conductive layer. After purification by reprecipitation, PDiPF was dissolved in toluene together with 5% by weight of an oxadiazole derivative as a hole-injecting substance, and passed through a 0.5 μm filter to obtain a raw material solution.

第1図は本実施例における構成を模式的に示す発光素
子の断面図である。ここでは発光物質としてアントラセ
ンを用いたが、ピレン、ベンズアントラセン、ペリレ
ン、テトラセン、ナフタセン、コロネン、クマリン、シ
クロペンタジエン、キノリン、及びこれら有機発光物質
の誘導体などが同様に利用できる。基板としては、表面
を光学研磨したパイレックスガラス11を用い、ITOの導
電体膜をスパッターもしくは蒸着で形成し、フォトエッ
チングによって100μm幅にパターンを形成して陰極12
とした。
FIG. 1 is a cross-sectional view of a light emitting device schematically showing a configuration in the present embodiment. Here, anthracene was used as the light-emitting substance, but pyrene, benzanthracene, perylene, tetracene, naphthacene, coronene, coumarin, cyclopentadiene, quinoline, and derivatives of these organic light-emitting substances can also be used. As the substrate, Pyrex glass 11 whose surface is optically polished is used, a conductive film of ITO is formed by sputtering or vapor deposition, and a pattern having a width of 100 μm is formed by photoetching to form a cathode 12.
And

この基板上に、1000Åの膜厚となるように回転数と時
間を制御して、スピンコーターで前述のPDiPFの原料溶
液を塗布し、正孔注入機能を持つ非線形電気伝導誘起層
13とした。その上にアントラセンを真空蒸着により、50
0Åの膜厚で形成し発光層14とした。更に、クロムを真
空蒸着で形成した後、陰極と直交するよう100μm幅に
フォトエッチングパターン形成して正極15とし発光素子
が得られた。
The rotation speed and time are controlled to a thickness of 1000 mm on this substrate, and the above-mentioned PDiPF material solution is applied by a spin coater, and a nonlinear electric conduction inducing layer having a hole injection function is applied.
It was set to 13. Anthracene is deposited on top of this by vacuum evaporation.
The light emitting layer 14 was formed with a thickness of 0 °. Further, after chromium was formed by vacuum evaporation, a photo-etching pattern was formed in a width of 100 μm so as to be orthogonal to the cathode, and the cathode 15 was obtained to obtain a light emitting device.

電極間に電界を印加したところ10ボルト以上で急に電
流が流れはじめ、発光が観測された。また、50ボルトの
電圧を印加しても絶縁破壊は起きず、発光特性にも変化
はなかった、印加電圧に対する発光特性を第2図に示
す。発光強度の、印加電圧に対する閾値特性が急峻なた
め、400ラインでの時分割駆動が可能であった。
When an electric field was applied between the electrodes, a current began to flow suddenly at 10 V or more, and light emission was observed. FIG. 2 shows the light emission characteristics with respect to the applied voltage, in which no dielectric breakdown occurred even when a voltage of 50 V was applied, and the light emission characteristics did not change. Since the threshold characteristics of the light emission intensity with respect to the applied voltage were steep, time-division driving with 400 lines was possible.

(実施例2) 非線形電気伝導層を用いる高分子絶縁体は、ポリジte
rtブチルフマレート(以下本明細書ではPDtBFと略記す
る)をもちいた。PDtBFは再沈澱によって精製した後、
電子注入物質であるフタロシアニン誘導体2重量%と共
に四塩化炭素に溶解させ、0.5μmのフィルターを通し
て原料溶液とした。
Example 2 A polymer insulator using a non-linear electric conductive layer is
Rt butyl fumarate (hereinafter abbreviated as PDtBF in the present specification) was used. PDtBF is purified by reprecipitation,
It was dissolved in carbon tetrachloride together with 2% by weight of a phthalocyanine derivative as an electron injecting substance, and passed through a 0.5 μm filter to obtain a raw material solution.

表面を光学研磨したパイレックスガラス上にインジウ
ムの導電体膜をスパッターもしくは蒸着で形成し、フォ
トエッチングによって100μm幅にパターンを形成して
正極とした。その上に800Åの膜厚となるように回転数
と時間を制御して、スピンコーターで前述のPDtBFの原
料溶液を塗布し、電子注入機能をつ非線形電気伝導誘起
層とした。
A conductive film of indium was formed by sputtering or evaporation on Pyrex glass whose surface was optically polished, and a pattern having a width of 100 μm was formed by photoetching to obtain a positive electrode. The above-mentioned solution of PDtBF was applied thereon by controlling the number of revolutions and time so that the film thickness became 800 °, and a non-linear electric conduction inducing layer having an electron injection function was applied.

その上にキノリンの誘導体を真空蒸着により、800Å
の膜厚で形成し発光層とした。更に、ITOを真空蒸着で
形成した後、正極と直交するよう100μm幅にフォトエ
ッチングでパター形成して陰極とし発光素子が得られ
た。
A quinoline derivative is vacuum-deposited on the
To form a light emitting layer. Further, after ITO was formed by vacuum deposition, a pattern was formed by photoetching in a width of 100 μm so as to be orthogonal to the positive electrode, and a light emitting element was obtained as a cathode.

電極間に電界を印加したところ10ボルト以上で急に電
流が流れはじめ、発光が観測された。また、50ボルトの
電圧を印加しても絶縁破壊は起きず、発光特性にも変化
はなかった。発光強度の、印加電圧に対する閾値特性が
急峻なため、400ラインでの時分割駆動が可能であっ
た。
When an electric field was applied between the electrodes, a current began to flow suddenly at 10 V or more, and light emission was observed. Also, even when a voltage of 50 volts was applied, no dielectric breakdown occurred, and there was no change in the light emission characteristics. Since the threshold characteristics of the light emission intensity with respect to the applied voltage were steep, time-division driving with 400 lines was possible.

(実施例3) 非線形電気伝導層に用いる高分子絶縁体は、ポリジシ
クロヘキシルフマレート(以下本明細書ではPDcHFと略
記する)をもちいた。PDcHFは再沈澱によって精製した
のち、正孔注入物質であるトリフェニルアミン誘導体8
重量%と共にトルエンに溶解させ、0.5μmのフィルタ
ーを通して原料溶液とした。
(Example 3) Polydicyclohexyl fumarate (hereinafter abbreviated as PDcHF in the present specification) was used as a polymer insulator used for the nonlinear electric conductive layer. PDcHF was purified by reprecipitation, and then triphenylamine derivative 8
The raw material solution was dissolved in toluene together with the weight% and passed through a 0.5 μm filter.

表面を光学研磨したパイレックスガラス上にITOの導
電体膜をスパッターもしくは蒸着で形成し、フォトエッ
チングによって60μm幅にパターンを形成して陰極とし
た。その上に1200Åの膜厚となるように回転数と時間を
制御して、スピンコーターで前述のPDcHFの原料溶液を
塗布し、正孔注入機能を持つ非線形電気伝導誘起層とし
た。
A conductive film of ITO was formed by sputtering or vapor deposition on Pyrex glass whose surface was optically polished, and a pattern having a width of 60 μm was formed by photoetching to form a cathode. The above-mentioned solution of PDcHF was applied thereon by controlling the number of revolutions and time so that the film thickness became 1200 °, and a nonlinear electric conduction inducing layer having a hole injection function was applied by a spin coater.

その上にペリノン誘導体を真空蒸着により、800Åの
膜厚で形成し発光層とし、連続してペリレンテトラカル
ボキシル誘導体を真空蒸着により、800Åの膜厚で形成
し電子注入層とした。更に、クロムを真空蒸着で形成し
た後、陰極と直交するよう60μm幅にフォトエッチング
でパター形成して正極とし発光素子が得られた。
A perinone derivative was formed thereon by vacuum evaporation to a thickness of 800 ° to form a light emitting layer, and a perylene tetracarboxyl derivative was formed continuously by vacuum deposition to a thickness of 800 ° to form an electron injection layer. Further, after chromium was formed by vacuum evaporation, a pattern was formed by photoetching so as to be orthogonal to the cathode with a width of 60 μm to obtain a light emitting element as a positive electrode.

電極間に電界を印加したところ8ボルト以上で急に電
流が流れはじめ、発光が観測された。また、50ボルトの
電圧を印加しても絶縁破壊は起きず、発光特性にも変化
はなかった。発光強度の、印加電圧に対する閾値特性が
急峻なため、400ラインでの時分割駆動が可能であっ
た。
When an electric field was applied between the electrodes, a current began to flow suddenly at 8 V or more, and light emission was observed. Also, even when a voltage of 50 volts was applied, no dielectric breakdown occurred, and there was no change in the light emission characteristics. Since the threshold characteristics of the light emission intensity with respect to the applied voltage were steep, time-division driving with 400 lines was possible.

以上、実施例を述べたが発光物質、正孔注入物質、電
荷注入物質、絶縁性高分子、電極材料はここに述べた物
質に限らない。
Although the embodiments have been described above, the light emitting substance, the hole injection substance, the charge injection substance, the insulating polymer, and the electrode material are not limited to the substances described here.

〔発明の効果〕〔The invention's effect〕

以上述べたように本発明によれば、誘起発光層と、正
孔注入層および電子注入層の少なくともどちらか一方を
有する発光素子において、前記正孔注入層また電子注入
層が、高分子絶縁体と高分子絶縁体内に分散した電荷移
動物質から構成される非線形電気伝導誘起層であること
により、印加電圧に対する発光強度の閾値特性が急峻で
大容量表示の時分割駆動が可能であり、絶縁破壊が起こ
りにくく信頼性の高い発光素子を提供することができ
た。
As described above, according to the present invention, in a light-emitting element having an induced light-emitting layer and at least one of a hole injection layer and an electron injection layer, the hole injection layer or the electron injection layer is formed of a polymer insulator. And a non-linear electric conduction inducing layer composed of a charge transfer substance dispersed in a polymer insulator, the threshold characteristic of the emission intensity with respect to the applied voltage is steep, and time-division driving of large-capacity display is possible. It is possible to provide a highly reliable light emitting element in which occurrence of light is difficult.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明の実施例1における発光素子の構成を
模式的に表す断面図である。 第2図は、本発明の実施例1で作成した発光素子の印加
電圧に対する発光特性を表わす図である。 11……基板 12……陰極 13……正孔注入機能を持つ非線形電気伝導誘起層 14……発光層 15……正極 21……発光特性曲線
FIG. 1 is a cross-sectional view schematically illustrating a configuration of a light emitting device according to Example 1 of the present invention. FIG. 2 is a diagram showing a light emitting characteristic of the light emitting device prepared in Example 1 of the present invention with respect to an applied voltage. 11 ... Substrate 12 ... Cathode 13 ... Non-linear electric conduction inducing layer with hole injection function 14 ... Emitting layer 15 ... Positive electrode 21 ... Emission characteristic curve

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】有機発光層と、正孔注入層および電子注入
層の少なくともどちらか一方を有する発光素子におい
て、前記正孔注入層又またはは電子注入層が、高分子絶
縁体と高分子絶縁体内に分散した電荷移動物質から構成
される非線形電気伝導誘起層であることを特徴とする発
光素子。
1. A light emitting device having an organic light emitting layer and at least one of a hole injection layer and an electron injection layer, wherein the hole injection layer or the electron injection layer is composed of a polymer insulator and a polymer insulation layer. A light-emitting element comprising a non-linear electric conduction inducing layer composed of a charge transfer substance dispersed in a body.
【請求項2】上記高分子絶縁体が、ポリジアルキルフマ
レートであることを特徴とする請求項第1項記載の発光
素子。
2. The light emitting device according to claim 1, wherein said polymer insulator is a polydialkyl fumarate.
JP31540490A 1990-11-20 1990-11-20 Light emitting element Expired - Fee Related JP2819823B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31540490A JP2819823B2 (en) 1990-11-20 1990-11-20 Light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31540490A JP2819823B2 (en) 1990-11-20 1990-11-20 Light emitting element

Publications (2)

Publication Number Publication Date
JPH04188597A JPH04188597A (en) 1992-07-07
JP2819823B2 true JP2819823B2 (en) 1998-11-05

Family

ID=18064982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31540490A Expired - Fee Related JP2819823B2 (en) 1990-11-20 1990-11-20 Light emitting element

Country Status (1)

Country Link
JP (1) JP2819823B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3238064B2 (en) * 1996-02-05 2001-12-10 ティーディーケイ株式会社 Method of using low dielectric polymer material and method of using film, substrate and electronic component using the same

Also Published As

Publication number Publication date
JPH04188597A (en) 1992-07-07

Similar Documents

Publication Publication Date Title
US6099746A (en) Organic electroluminescent device and method for fabricating the same
US5798170A (en) Long operating life for polymer light-emitting diodes
JP2701738B2 (en) Organic thin film EL device
SU1327810A3 (en) Electroluminescent structure
US6509581B1 (en) Structure and fabrication process for an improved polymer light emitting diode
US5885498A (en) Organic light emitting device and method for producing the same
JP3316236B2 (en) EL device
US5965241A (en) Electroluminescent devices and processes using polythiophenes
JPH02213088A (en) Organic thin film el element and manufacture thereof
US5985417A (en) Polymer stabilized molecular whole transporting materials for organic electroluminescence displays
EP0865089A2 (en) Production process for organic electroluminescent light emitting devices
JP2819823B2 (en) Light emitting element
JP3284249B2 (en) Light emitting device manufacturing method
US5055360A (en) Thin film electroluminescent device
US20050156512A1 (en) Electroluminescent devices with at least one electrode having apertures and methods of using such devices
JPH04264189A (en) Electroluminescent element
US6194089B1 (en) Organic electroluminescent device with improved reliability
JP3244315B2 (en) Organic electroluminescent device
JP3893774B2 (en) Electroluminescent device and manufacturing method thereof
JPH11121172A (en) Organic el element
US6717356B1 (en) Organic electroluminescent device with trapezoidal walls
JP3828621B2 (en) Method for manufacturing organic EL light emitting device
KR19980081742A (en) Organic electroluminescent devices
KR102245143B1 (en) Transparent electrode and orgarnic electronic device using the same
RU2452140C2 (en) Voltage-controlled layer arrangement

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070828

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080828

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080828

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090828

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees