JPH04187704A - Manufacture of aluminum powder compression compact - Google Patents

Manufacture of aluminum powder compression compact

Info

Publication number
JPH04187704A
JPH04187704A JP2316563A JP31656390A JPH04187704A JP H04187704 A JPH04187704 A JP H04187704A JP 2316563 A JP2316563 A JP 2316563A JP 31656390 A JP31656390 A JP 31656390A JP H04187704 A JPH04187704 A JP H04187704A
Authority
JP
Japan
Prior art keywords
aluminum powder
gas
powder
aluminum
nitriding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2316563A
Other languages
Japanese (ja)
Other versions
JP2868889B2 (en
Inventor
Akira Yoshino
明 吉野
Haruo Senbokutani
仙北谷 春男
Masaaki Tawara
正昭 田原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Sanso Co Ltd
Original Assignee
Daido Sanso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Sanso Co Ltd filed Critical Daido Sanso Co Ltd
Priority to JP2316563A priority Critical patent/JP2868889B2/en
Priority to PCT/JP1991/001599 priority patent/WO1992008560A1/en
Publication of JPH04187704A publication Critical patent/JPH04187704A/en
Application granted granted Critical
Publication of JP2868889B2 publication Critical patent/JP2868889B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/072Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with aluminium
    • C01B21/0722Preparation by direct nitridation of aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/145Chemical treatment, e.g. passivation or decarburisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • C22C32/0068Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only nitrides

Abstract

PURPOSE:To manufacture this compact excellent in mechanical property by forming a hard nitriding layer on the surface of aluminum powder after aluminum powder is brought into contact with gaseous fluorine gas in a heating condition, then brought into contact with nitriding gas in the heating condition. CONSTITUTION:A gas treating room 9 is heated to a prescribed temp. by the heater 3, mixed gas of N2 and NF3 in a gas cylinder 16 is brown up into the treating room 9 from the gas outlet 5a of a tip end of the gas introducing pipe 5. Simultaneously, aluminum powder 11 in the powder tank 7 is supplied and dropped through supplying pipe 8 and forming a thin fluoride film AlF3 on aluminum powder and stagnated in the powder housing box 10. Then by using the treating room similar to the treatment room 9, the powder is heated to a nitriding temp. and aluminum powder 11 is treated with gaseous ammonia to reduce or destroy fluoride film and nitride layer is formed on aluminum powder 11. By this means, thick hard nitride layer is formed and aluminum compact excellent in strength and toughness is manufactured by the direct compression.

Description

【発明の詳細な説明】 〔産業上の利用分野] この発明は、アルミニウム粉末加圧成形品の製法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing an aluminum powder press-molded product.

〔従来の技術] 最近、自動車部品のシャーシ等には、その強度、靭性等
を高めるため、アルミニウム粉末を熱間静水圧成形法に
より成形したものが用いられている。この熱間静水圧成
形法は、第3図に概念図として示されるヒップ()1.
1.P、)装置20を用いて行われる。すなわち、その
炉本体21内に所望の形状(例えば、自動車部品のシャ
ーシ等の形状)をした薄い金属容器26を配装する。上
記金属容器26には、チタン粉末、マグネシウム粉末等
を混合したアルミニウム粉末11が真空封入されている
。ついで、上記金属容器26に対して、ヒータ25によ
る1000°C以上の温度下で、アルゴンガス等の不活
性ガスを圧入することにより100MPa以上の圧力を
かけ、内部のアルミニウム粉末11を金属容器26と同
形状に加圧成形し、アルミニウム合金製品を得ることが
行われている。22は上側蓋、23は下側蓋である。
[Prior Art] Recently, in order to improve the strength, toughness, etc. of automobile parts such as chassis, aluminum powder formed by hot isostatic pressing has been used. This hot isostatic pressing method is based on the hip () 1.
1. P,) is carried out using the apparatus 20. That is, a thin metal container 26 having a desired shape (for example, the shape of a chassis of an automobile part) is arranged within the furnace body 21. Aluminum powder 11 mixed with titanium powder, magnesium powder, etc. is vacuum sealed in the metal container 26. Next, an inert gas such as argon gas is injected into the metal container 26 at a temperature of 1000° C. or more using a heater 25 to apply a pressure of 100 MPa or more to the metal container 26 to release the aluminum powder 11 inside the metal container 26. Aluminum alloy products are obtained by pressure forming into the same shape as the aluminum alloy. 22 is an upper lid, and 23 is a lower lid.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記金属容器26に、各種粉末を混合し
たアルミニウム粉末11を真空封入する前に、アルミニ
ウム粉末11の表面に生成された酸化皮膜を除去する必
要があり、このため各種粉末を混合したアルミニウム粉
末11を加熱することが行われている。ところが、上記
アルミニウム粉末11に混合する粉末として、溶融温度
の低い粉末を用いる場合には、上記加熱により溶融温度
の低い粉末が溶融して、アルミニウム粉末11の表面に
付着し、酸化皮膜を除去することができなくなり、上記
H,1,P、装置20にかけて得られたアルミニウム合
金製品は強度、靭性等において劣るという問題がある。
However, before vacuum-sealing the aluminum powder 11 mixed with various powders into the metal container 26, it is necessary to remove the oxide film formed on the surface of the aluminum powder 11. 11 is being heated. However, when a powder with a low melting temperature is used as the powder to be mixed with the aluminum powder 11, the powder with a low melting temperature is melted by the heating and adheres to the surface of the aluminum powder 11, removing the oxide film. There is a problem in that the aluminum alloy products obtained by the H, 1, P and apparatus 20 described above are inferior in strength, toughness, etc.

この発明は、このような事情に鑑みなされたもので、強
度、靭性に優れたアルミニウム合金製品を得ることがで
きるアルミニウム粉末加圧成形品の製法の提供をその目
的とする。
The present invention was made in view of the above circumstances, and an object of the present invention is to provide a method for producing an aluminum powder press-molded product that can produce an aluminum alloy product with excellent strength and toughness.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的を達成するため、この発明のアルミニウム粉
末加圧成形品の製法は、アルミニウム粉末をフッ素系ガ
スに加熱状態で接触させ、つぎに、このアルミニウム粉
末を窒化ガスに加熱状態で接触させてアルミニウム粉末
の表面層に硬質の窒化層を形成し、この窒化層を形成し
たアルミニウム粉末を直接加圧成形して加圧成形品にす
るという構成をとる。
In order to achieve the above object, the method for manufacturing an aluminum powder press-molded product of the present invention involves contacting aluminum powder with a fluorine-based gas in a heated state, and then bringing the aluminum powder into contact with a nitriding gas in a heated state. The structure is such that a hard nitrided layer is formed on the surface layer of aluminum powder, and the aluminum powder with the nitrided layer formed thereon is directly press-molded to form a press-molded product.

〔作用〕[Effect]

すなわち、この発明のアルミニウム粉末加圧成形品の製
法は、アルミニウム粉末を加圧成形する前に、アルミニ
ウム粉末をフッ素系ガスに加熱状態で接触させてその表
面にフッ化膜を生成した後、窒化ガスに加熱状態で接触
させて上記フッ化膜を除去すると同時に、その除去跡(
アルミニウム粉末の表面層)を硬質の窒化層に形成する
ようにしている。この方法は、窒化処理に先立ってフッ
化処理をすることにより、アルミニウム粉末の表面を清
浄化すると同時に活性化するため、窒化層を均一にかつ
かなり深く迄形成することができ、耐久性に冨む硬質窒
化層の層厚を均一にかつ厚くできるようになる。このよ
うにすると、加圧成形時にはアルミニウム粉末の表面に
は酸化皮膜が形成されておらず、しかも、硬質窒化層が
形成されていることから、得られる加圧成形品は靭性、
特に強度に優れたものになる。
That is, in the method for producing an aluminum powder press-molded product of the present invention, before press-molding the aluminum powder, the aluminum powder is brought into contact with a fluorine-based gas in a heated state to form a fluoride film on its surface, and then nitrided. The fluoride film is removed by contacting it with gas in a heated state, and at the same time, the removal trace (
The surface layer of aluminum powder is formed into a hard nitrided layer. This method cleans the surface of the aluminum powder and activates it at the same time by performing fluoridation treatment prior to nitriding treatment, so it is possible to form a uniform and fairly deep nitrided layer, resulting in increased durability. The thickness of the hard nitride layer can be made uniform and thick. In this way, an oxide film is not formed on the surface of the aluminum powder during pressure molding, and a hard nitride layer is formed, so the resulting pressure molded product has good toughness and
It becomes especially strong.

つぎに、この発明について詳しく説明する。Next, this invention will be explained in detail.

この発明のフッ化処理に使用するフッ素系ガスとは、N
F3 、BF3 、CF4.HF、SFb 。
The fluorine gas used in the fluorination treatment of this invention is N
F3, BF3, CF4. HF, SFb.

F2から選ばれた少なくとも一つのフッ素源成分をNz
等の不活性ガス中に含有させたもののことをいう。これ
らフッ素源成分の中でも、反応性。
At least one fluorine source component selected from F2 is Nz
It refers to a substance contained in an inert gas such as Among these fluorine source components, the most reactive.

取扱い性等の面でNF、が最も優れており実用的である
NF is the most excellent and practical in terms of ease of handling.

この発明の製法は、先に述べたように、上記フッ素系ガ
スに、アルミニウム粉末(アルミニウム単独もしくはこ
れにチタン粉末、マグネシウム粉末等の他の金属粉末を
混合したもの)を、例えばNF、の場合、250〜40
0″Cの温度で接触させてアルミニウム粉末の表面をフ
ッ化処理した後、公知の窒化用ガス例えばアンモニアを
用いて窒化処理(または浸炭窒化処理)を行う。このよ
うなフッ素系ガスにおけるNF、等のフッ素源成分の濃
度は、例えば1000〜1100000ppであり、好
ましくは20000〜70000ppm、より好ましい
のは30000〜50000ppmである。このような
フッ素系ガスとの接触時間は、アルミニウム粉末の種類
、アルミニウム粉末に混合される粉末の種類、加熱温度
等に応じて適当な時間を選べばよく、通常は数分である
As mentioned above, in the production method of the present invention, for example, in the case of NF, aluminum powder (aluminum alone or mixed with other metal powders such as titanium powder or magnesium powder) is added to the fluorine-based gas. , 250-40
After fluoridating the surface of the aluminum powder by contacting it at a temperature of 0''C, nitriding (or carbonitriding) is performed using a known nitriding gas such as ammonia. The concentration of fluorine source components such as An appropriate time may be selected depending on the type of powder to be mixed, heating temperature, etc., and is usually several minutes.

この発明の製法をより具体的に説明すると、アルミニう
ム粉末を、例えば第1図に示す熱処理炉1内に設けたガ
ス処理室9内に導入して、フッ素系ガスに接触させる。
To explain the manufacturing method of the present invention more specifically, aluminum powder is introduced into a gas treatment chamber 9 provided in a heat treatment furnace 1 shown in FIG. 1, for example, and brought into contact with a fluorine-based gas.

上記炉1は、外殻2内に設けたヒータ3の内側に内容器
4を入れたビット炉で、炉1外から排気管6が内容器4
内に挿入されるとともに、ガス導入管5が内容器4内を
通ってガス処理室9の下側から室内に、粉末出口管8が
内容器4内を通ってガス処理室9の上側から室内にそれ
ぞれ挿入されている。また、上記ガス導入管5にはボン
ベ15.16から流量計17.バルブ18等を経由して
ガスが供給される。図中、13は真空ポンプ、14は除
害装置である。
The above-mentioned furnace 1 is a bit furnace in which an inner container 4 is placed inside a heater 3 provided in an outer shell 2, and an exhaust pipe 6 is connected to the inner container 4 from outside the furnace 1.
At the same time, the gas introduction pipe 5 passes through the inner container 4 and enters the room from the lower side of the gas processing chamber 9, and the powder outlet pipe 8 passes through the inner container 4 and enters the room from the upper side of the gas processing chamber 9. are inserted in each. Further, the gas introduction pipe 5 is connected to a flow meter 17. from a cylinder 15.16. Gas is supplied via valve 18 and the like. In the figure, 13 is a vacuum pump, and 14 is an abatement device.

この構成において、上記ガス処理室9内を所定の反応温
度に加熱し、上記ガス導入管5の先端にあけたガス出口
5aからフッ素系ガス、例えばNF3とN2ガスの混合
ガスを吹き上げる。また、粉末貯槽7に設けた開閉弁(
図示せず)を開弁じて、粉末貯槽7内のアルミニウム粉
末11を粉末出口管8に供給して、その下端の粉末出口
8aからガス処理室9内に落下させる。上記N F ’
sは250〜400 ”Cの温度で活性基のフッ素を発
生し、アルミニウム粉末との衝突でアルミニウム粉末1
1の表面の有機、無機系の汚染を除去すると同時に、こ
のフッ素がアルミニウム粉末11の表面のAl2O3、
に1(OH)3等の酸化物と次式に示すように反応し、
アルミニウム粉末11の表面に、ごく薄いフッ化膜A 
I F 3を形成する。
In this configuration, the inside of the gas processing chamber 9 is heated to a predetermined reaction temperature, and a fluorine-based gas, for example, a mixed gas of NF3 and N2 gas, is blown up from the gas outlet 5a provided at the tip of the gas introduction pipe 5. In addition, the on-off valve provided in the powder storage tank 7 (
A valve (not shown) is opened to supply the aluminum powder 11 in the powder storage tank 7 to the powder outlet pipe 8, and drop it into the gas processing chamber 9 from the powder outlet 8a at the lower end. Above N F'
s generates active group fluorine at a temperature of 250 to 400"C, and upon collision with aluminum powder, aluminum powder 1
At the same time as removing organic and inorganic contamination on the surface of aluminum powder 11, this fluorine removes Al2O3,
reacts with an oxide such as 1(OH)3 as shown in the following formula,
A very thin fluoride film A is placed on the surface of the aluminum powder 11.
Form IF3.

A2□03+6F→2.IIF、+3/20□Al (
OH) z +3 F−+Affi F:l + 3/
 2 Hz○この反応により、アルミニウム粉末11の
表面の酸化皮膜はフッ化膜に変換され、表面に吸着され
ていた02も除去される。そして、このようなフッ化膜
は、0□、H,、H2Oが存在しない場合、600°C
以下の温度で安定であって、後続の窒化処理までの間に
おけるアルミニウム粉末11の生地への酸化皮膜の形成
やO2の吸着を防止する。また、このようなフッ化処理
では、その第1段階で炉材表面に対してフッ化膜が形成
されることとなることから、その膜によって、以後の炉
材表面に対するフッ素系ガスに基づ(損傷が防止される
ようになる。これらフッ化処理されたアルミニウム粉末
11は上記ガス処理室9の底部に配置された粉末収容箱
10に溜められる。
A2□03+6F→2. IIF, +3/20□Al (
OH) z +3 F-+Affi F:l + 3/
2 Hz○ Through this reaction, the oxide film on the surface of the aluminum powder 11 is converted into a fluoride film, and 02 adsorbed on the surface is also removed. And, such a fluoride film can be heated at 600°C in the absence of 0□, H,, H2O.
It is stable at the following temperatures and prevents the formation of an oxide film on the material of the aluminum powder 11 and the adsorption of O2 until the subsequent nitriding treatment. In addition, in such fluoridation treatment, a fluoride film is formed on the surface of the furnace material in the first step, so this film prevents the surface of the furnace material from being exposed to fluorine-based gas. (Damage is prevented.) These fluorinated aluminum powders 11 are stored in a powder storage box 10 disposed at the bottom of the gas treatment chamber 9.

そののち、上記粉末収容箱10に溜められアルミニウム
粉末11を、上記熱処理炉1と同様の熱処理炉を用いて
、窒化処理する。すなわち、熱処理炉内に設けたガス処
理室中を450〜550°Cの窒化温度に加熱し、その
状態でNH3、あるいはNH,と炭素源を有するガス(
例えばRXガス)との混合ガスをガス導入管の先端のガ
ス出口から吹き上げるとともに、粉末出口管からアルミ
ニウム粉末11を落下させて、両者を接触させる。
Thereafter, the aluminum powder 11 stored in the powder storage box 10 is nitrided using a heat treatment furnace similar to the heat treatment furnace 1 described above. That is, the gas treatment chamber provided in the heat treatment furnace is heated to a nitriding temperature of 450 to 550°C, and in that state, NH3, or a gas containing NH and a carbon source (
For example, a mixed gas (RX gas) is blown up from the gas outlet at the tip of the gas introduction tube, and the aluminum powder 11 is dropped from the powder outlet tube to bring them into contact.

これにより、上記フッ化膜が、H2または微量の水分に
よって例えば次式のように還元あるいは破壊され、それ
によって活性なアルミニウム粉末11の生地が露呈形成
される。
As a result, the fluoride film is reduced or destroyed by H2 or a small amount of water, for example, as shown in the following equation, thereby exposing the active aluminum powder 11.

、’M!F3 +3/2H2→Aj2+3HF二のよう
にして、活性なアルミニウム粉末11の生地が形成され
ると同時に、活性なN原子がアルミニウム粉末11内に
侵入、拡散してゆき、その結果、上記生地の表面にAI
Nを含有する化合物層(窒化層)が形成される。
,'M! F3 +3/2H2→Aj2+3HF2 At the same time as a fabric of active aluminum powder 11 is formed, active N atoms penetrate and diffuse into aluminum powder 11, and as a result, the surface of the fabric to AI
A compound layer (nitrided layer) containing N is formed.

このような窒化層が形成されるのは、従来の窒化法でも
同様であるが、従来法では、常温より窒化温度まで上昇
する間に形成される酸化皮膜や、このとき吸着される0
□分によって表面の活性度が低下しているので、N原子
の表面吸着の度合いが低く、不均一である。また、この
ような不均一性は、NH4の分解の度合いを炉内で均一
に保つことが実際上困難であることによっても拡大され
る。この発明の製法では、アルミニウム粉末11の表面
におけるN原子の吸着が均一かつ迅速に行われるので、
上記のような問題は生じない。
Such a nitrided layer is formed in the same way in the conventional nitriding method, but in the conventional method, the oxide film formed while the temperature rises from room temperature to the nitriding temperature and the 000 adsorbed at this time are
Since the activity of the surface is reduced by □ minutes, the degree of adsorption of N atoms on the surface is low and non-uniform. Such non-uniformity is also exacerbated by the fact that it is practically difficult to maintain a uniform degree of NH4 decomposition within the furnace. In the manufacturing method of the present invention, N atoms are adsorbed uniformly and quickly on the surface of the aluminum powder 11.
The above problem does not occur.

このようにして得られたアルミニウム粉末11は、第2
図に示すように、その表面層が緻密で均一な硬質窒化層
Aで形成されている。
The aluminum powder 11 obtained in this way is
As shown in the figure, the surface layer is formed of a dense and uniform hard nitride layer A.

そののち、上記アルミニウム粉末11を、公知のH,1
,P、装置20を用いて、所望形状のアルミニウム合金
製品に加圧成形する。
Thereafter, the aluminum powder 11 was mixed with known H,1
, P. Using the apparatus 20, an aluminum alloy product of a desired shape is press-formed.

このように、この発明の製法は、H,1,P、装置20
にかける前に、アルミニウム粉末11の表面の酸化皮膜
を除去していることから、各種粉末を混合したアルミニ
ウム粉末11を加熱する必要がなく、アルミニウム粉末
11に混合する粉末として溶融温度の低い粉末を用いる
場合にも、得られる加工成形品は強度、靭性等の機械的
性質に優れたものになる。しかも、アルミニウム粉末1
1の表面層が硬質窒化層で形成されていることから、特
に強度に優れている。
In this way, the manufacturing method of the present invention includes H,1,P, apparatus 20
Since the oxide film on the surface of the aluminum powder 11 is removed before applying the powder, there is no need to heat the aluminum powder 11 mixed with various powders, and a powder with a low melting temperature can be used as the powder to be mixed with the aluminum powder 11. When used, the resulting processed molded product has excellent mechanical properties such as strength and toughness. Moreover, aluminum powder 1
Since the surface layer of No. 1 is formed of a hard nitride layer, it has particularly excellent strength.

[発明の効果] 以上のように、この発明のアルミニウム粉末加圧成形品
の製法は、窒化処理に先立って、フッ化処理を行う。こ
れにより、アルミニウム粉末の表面の酸化皮膜等の不働
態皮膜がフッ化膜に変化し、アルミニウム粉末の表面の
保護が行われる。したがって、フッ化膜の形成から窒化
処理の間に時間的な経過があっても、アルミニウム粉末
の表面に形成されたフッ化膜は良好な状態でアルミニウ
ム粉末の表面の保護を行う結果、アルミニウム粉末の表
面に対する再度の酸化皮膜の形成が防止される。このフ
ッ化膜は後続の窒化処理時に分解除去され、それによっ
てアルミニウム粉末の表面が露呈するようになる。この
露呈されたアルミニウム粉末の表面は活性な状態となっ
ていることから、窒化処理におけるN原子はアルミニウ
ム粉末の表面層内に拡散しやすくなっており、上記N原
子は深く均一に拡散する。これにより、アルミニウム粉
末の表面層が、厚みが厚く、かつ均一な硬質窒化層に形
成される。したがって、得られる加工成形品は強度、靭
性等の機械的性質に優れたものになる。
[Effects of the Invention] As described above, in the method for producing an aluminum powder press-molded product of the present invention, fluoridation treatment is performed prior to nitridation treatment. As a result, a passive film such as an oxide film on the surface of the aluminum powder is changed into a fluoride film, and the surface of the aluminum powder is protected. Therefore, even if there is a lapse of time between the formation of the fluoride film and the nitriding process, the fluoride film formed on the surface of the aluminum powder protects the surface of the aluminum powder in good condition. The formation of an oxide film on the surface is prevented again. This fluoride film is decomposed and removed during the subsequent nitriding process, thereby exposing the surface of the aluminum powder. Since the exposed surface of the aluminum powder is in an active state, the N atoms in the nitriding treatment easily diffuse into the surface layer of the aluminum powder, and the N atoms diffuse deeply and uniformly. As a result, the surface layer of the aluminum powder is formed into a thick and uniform hard nitrided layer. Therefore, the obtained processed molded product has excellent mechanical properties such as strength and toughness.

〔実施例〕〔Example〕

アルミニウム粉末をトリクロロエタン洗浄した後、第1
図に示すような熱処理炉1でN F 3を5000pp
m含有するN2ガス雰囲気で300″Cで数分間接触さ
せる。その後、上記熱処理炉1で530℃で、50%N
H3+50%N2の混合ガスで数分間窒化処理を行い、
しかるのち空冷して取り出した。得られたアルミニウム
粉末のiif[liの厚みは5〜10μmであり、その
表面硬度は1900〜2100Hvであった。この表面
硬度は、従来知られた方法で窒化処理したものと比べて
、はるかに太き(なっている。そののち、上記のように
してH,1,P、装置を用いて所望形状のアルミニウム
合金製品にした。このアルミニウム合金製品は従来例の
アルミニウム合金製品よりもはるかに強度、靭性に優れ
ていた。
After washing the aluminum powder with trichloroethane, the first
5000pp of NF3 was added in the heat treatment furnace 1 as shown in the figure.
Contact is carried out for several minutes at 300''C in an N2 gas atmosphere containing m. Thereafter, in the heat treatment furnace 1 at 530℃, 50%N
Perform nitriding treatment for several minutes with a mixed gas of H3 + 50% N2,
After that, it was air cooled and taken out. The obtained aluminum powder had an iif [li thickness of 5 to 10 μm, and a surface hardness of 1900 to 2100 Hv. This surface hardness is much greater than that of the surface nitrided using the conventionally known method. This aluminum alloy product has far superior strength and toughness than conventional aluminum alloy products.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例に用いる熱処理炉の断面図
、第2図はアルミニウム粉末の窒化層の状態を示す断面
図、第3図はH,1,P、装置の概念図である。 1・・・熱処理炉 11・・・アルミニウム粉末特許出
願人    大同酸素株式会社 代理人  弁理士  西 藤 征 彦 第2図 第3図
Fig. 1 is a cross-sectional view of a heat treatment furnace used in an embodiment of the present invention, Fig. 2 is a cross-sectional view showing the state of a nitrided layer of aluminum powder, and Fig. 3 is a conceptual diagram of the H, 1, P, apparatus. . 1... Heat treatment furnace 11... Aluminum powder patent applicant Daido Sanso Co., Ltd. Representative Patent attorney Yukihiko Nishifuji Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] (1)アルミニウム粉末をフツ素系ガスに加熱状態で接
触させ、つぎに、このアルミニウム粉末を窒化ガスに加
熱状態で接触させてアルミニウム粉末の表面層に硬質の
窒化層を形成し、この窒化層を形成したアルミニウム粉
末を直接加圧成形して加圧成形品にすることを特徴とす
るアルミニウム粉末加圧成形品の製法。
(1) Aluminum powder is brought into contact with a fluorine-based gas in a heated state, and then this aluminum powder is brought into contact with a nitriding gas in a heated state to form a hard nitrided layer on the surface layer of the aluminum powder, and this nitrided layer is A method for producing an aluminum powder press-molded product, which is characterized by directly press-molding aluminum powder formed into a press-molded product.
JP2316563A 1990-11-20 1990-11-20 Manufacturing method of aluminum powder press molded product Expired - Fee Related JP2868889B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2316563A JP2868889B2 (en) 1990-11-20 1990-11-20 Manufacturing method of aluminum powder press molded product
PCT/JP1991/001599 WO1992008560A1 (en) 1990-11-20 1991-11-20 Method of making pressure-molded product from aluminum powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2316563A JP2868889B2 (en) 1990-11-20 1990-11-20 Manufacturing method of aluminum powder press molded product

Publications (2)

Publication Number Publication Date
JPH04187704A true JPH04187704A (en) 1992-07-06
JP2868889B2 JP2868889B2 (en) 1999-03-10

Family

ID=18078491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2316563A Expired - Fee Related JP2868889B2 (en) 1990-11-20 1990-11-20 Manufacturing method of aluminum powder press molded product

Country Status (2)

Country Link
JP (1) JP2868889B2 (en)
WO (1) WO1992008560A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1604760A1 (en) * 2004-06-12 2005-12-14 Rolls-Royce Plc A method of manufacturing a component with a cellular structure by consolidating a coated metal powder
JP2008542541A (en) * 2005-05-30 2008-11-27 ダイナマテリアル・カンパニー・インコーポレーテッド Method for producing high-strength ultrafine nanostructured aluminum and aluminum nitride or aluminum alloy and aluminum nitride composite material

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0577436B1 (en) * 1992-07-02 1997-12-03 Sumitomo Electric Industries, Limited Nitrogen-combined aluminum sintered alloys and method of producing the same
WO2015157204A1 (en) * 2014-04-07 2015-10-15 Powder Treatment Technology LLC Surface energy modified particles, method of making, and use thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5022707A (en) * 1973-07-02 1975-03-11
JPS5773103A (en) * 1980-10-27 1982-05-07 Res Dev Corp Of Japan Production of high strength heat resistant metallic material
JPS621836A (en) * 1985-06-28 1987-01-07 Komatsu Ltd Manufacture of tough sintered hard material
JPS6283404A (en) * 1985-10-04 1987-04-16 Furukawa Electric Co Ltd:The Production of composite metallic powder
JPS62199703A (en) * 1986-02-26 1987-09-03 Sumitomo Light Metal Ind Ltd Hot hydrostatic compression molding method for al-si powder alloy

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1604760A1 (en) * 2004-06-12 2005-12-14 Rolls-Royce Plc A method of manufacturing a component with a cellular structure by consolidating a coated metal powder
JP2008542541A (en) * 2005-05-30 2008-11-27 ダイナマテリアル・カンパニー・インコーポレーテッド Method for producing high-strength ultrafine nanostructured aluminum and aluminum nitride or aluminum alloy and aluminum nitride composite material

Also Published As

Publication number Publication date
WO1992008560A1 (en) 1992-05-29
JP2868889B2 (en) 1999-03-10

Similar Documents

Publication Publication Date Title
US5114500A (en) Nitriding furnace apparatus and method
EP3175012B1 (en) Enhanced activation of self-passivating metals
JPH0344457A (en) Method for nitriding steel
JPH05195193A (en) Nitriding method of nickel alloy
EP0481136B1 (en) Method of nitriding steel
US5252145A (en) Method of nitriding nickel alloy
JPH04187704A (en) Manufacture of aluminum powder compression compact
US6090223A (en) Chromium nitride film and method for forming the same
JP2868890B2 (en) Manufacturing method of aluminum powder press molded product
JPS62270761A (en) Nitriding method for steel
JPS60165370A (en) Nitriding treatment of stainless steel
JPH04187755A (en) Crankshaft and its production
US5194097A (en) Method of nitriding steel and heat treat furnaces used therein
CN1032411C (en) Process for manufacturing compacted articles of aluminium powder
JPH09157830A (en) Method for nitriding metallic material with gas and device therefor
JPS60177174A (en) Surface treatment of iron-base sintered parts
JPS5935672A (en) Ionic nitriding treatment of stainless steel parts having ruggedness
JP2868895B2 (en) How to oxidize steel
JPS5881963A (en) Vacuum carburization method
US5207845A (en) Process for manufacturing rolled articles of titanium material
CN114369812A (en) Cleaning method of chemical vapor deposition equipment
JPH083771A (en) Treatment of steel surface
JPH0472727A (en) Gas cleaning process
JP3354947B2 (en) Semiconductor substrate manufacturing method
JPS62103380A (en) Production of vacuum chamber for cvd device and dry etching device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071225

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081225

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081225

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091225

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees