JP2868889B2 - Manufacturing method of aluminum powder press molded product - Google Patents

Manufacturing method of aluminum powder press molded product

Info

Publication number
JP2868889B2
JP2868889B2 JP2316563A JP31656390A JP2868889B2 JP 2868889 B2 JP2868889 B2 JP 2868889B2 JP 2316563 A JP2316563 A JP 2316563A JP 31656390 A JP31656390 A JP 31656390A JP 2868889 B2 JP2868889 B2 JP 2868889B2
Authority
JP
Japan
Prior art keywords
aluminum powder
powder
gas
fluorine
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2316563A
Other languages
Japanese (ja)
Other versions
JPH04187704A (en
Inventor
明 吉野
春男 仙北谷
正昭 田原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Hokusan Kk
Original Assignee
Daido Hokusan Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Hokusan Kk filed Critical Daido Hokusan Kk
Priority to JP2316563A priority Critical patent/JP2868889B2/en
Priority to PCT/JP1991/001599 priority patent/WO1992008560A1/en
Publication of JPH04187704A publication Critical patent/JPH04187704A/en
Application granted granted Critical
Publication of JP2868889B2 publication Critical patent/JP2868889B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/072Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with aluminium
    • C01B21/0722Preparation by direct nitridation of aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/145Chemical treatment, e.g. passivation or decarburisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • C22C32/0068Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only nitrides

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、アルミニウム粉末加圧成形品の製法に関
するものである。
Description: TECHNICAL FIELD The present invention relates to a method for producing an aluminum powder press-formed product.

〔従来の技術〕 最近、自動車部品のシヤーシ等には、その強度,靭性
等を高めるため、アルミニウム粉末を熱間静水圧成形法
により成形したものが用いられている。この熱間静水圧
成形法は、第3図に概念図として示されるヒツプ(H.I.
P.)装置20を用いて行われる。すなわち、その炉本体21
内に所望の形状(例えば、自動車部品のシヤーシ等の形
状)をした薄い金属容器26を配装する。上記金属容器26
には、チタン粉末,マグネシウム粉末等を混合したアル
ミニウム粉末11が真空封入されている。ついで、上記金
属容器26に対して、ヒータ25による1000℃以上の温度下
で、アルゴンガス等の不活性ガスを圧入することにより
100MPa以上の圧力をかけ、内部のアルミニウム粉末11を
金属容器26と同形状に加圧成形し、アルミニウム合金製
品を得ることが行われている。22は上側蓋、23は下側蓋
である。
[Related Art] In recent years, in order to enhance the strength, toughness and the like of an automobile component, a chassis formed of aluminum powder by a hot isostatic pressing method has been used. This hot isostatic pressing method is shown in FIG.
P.) This is performed using the device 20. That is, the furnace body 21
Inside, a thin metal container 26 having a desired shape (for example, a shape such as a chassis of an automobile part) is disposed. The above metal container 26
Is vacuum-sealed with aluminum powder 11 mixed with titanium powder, magnesium powder and the like. Next, by injecting an inert gas such as argon gas into the metal container 26 at a temperature of 1000 ° C. or more by the heater 25,
An aluminum alloy product is obtained by applying a pressure of 100 MPa or more to press-mold the inner aluminum powder 11 into the same shape as the metal container 26. 22 is an upper lid and 23 is a lower lid.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかしながら、上記金属容器26に、各種粉末を混合し
たアルミニウム粉末11を真空封入する前に、アルミニウ
ム粉末11の表面に生成された酸化皮膜を除去する必要が
あり、このため各種粉末を混合したアルミニウム粉末11
を加熱することが行われている。ところが、上記アルミ
ニウム粉末11に混合する粉末として、溶融温度の低い粉
末を用いる場合には、上記加熱により溶融温度の低い粉
末が溶融して、アルミニウム粉末11の表面に付着し、酸
化皮膜を除去することができなくなり、上記H.I.P.装置
20にかけて得られたアルミニウム合金製品は強度,靭性
等において劣るという問題がある。
However, before vacuum-sealing the aluminum powder 11 mixed with various powders in the metal container 26, it is necessary to remove an oxide film formed on the surface of the aluminum powder 11; 11
Heating has been done. However, when a powder having a low melting temperature is used as the powder to be mixed with the aluminum powder 11, the powder having a low melting temperature is melted by the heating and adheres to the surface of the aluminum powder 11 to remove the oxide film. Will not be able to use the above HIP device
There is a problem that the aluminum alloy product obtained over 20 is inferior in strength, toughness and the like.

この発明は、このような事情に鑑みなされたもので、
強度,靭性に優れたアルミニウム合金製品を得ることが
できるアルミニウム粉末加圧成形品の製法の提供をその
目的とする。
The present invention has been made in view of such circumstances,
An object of the present invention is to provide a method for producing an aluminum powder press-formed product capable of obtaining an aluminum alloy product excellent in strength and toughness.

〔課題を解決するための手段〕[Means for solving the problem]

上記の目的を達成するため、この発明のアルミニウム
粉末加圧成形品の製法は、アルミニウム粉末もしくはこ
れに他の金属粉末を混合したものをフツ素系ガスに加熱
状態で接触させてアルミニウム粉末の表面にフツ化膜を
形成し、つぎに、このアルミニウム粉末を窒化ガスに加
熱状態で接触させてアルミニウム粉末の表面のフツ化膜
を除去するとともに表面層に硬質の窒化層を形成し、こ
の窒化層を形成したアルミニウム粉末を直接加圧成形し
て加圧成形品にするという構成をとる。
In order to achieve the above object, a method of manufacturing an aluminum powder press-formed product of the present invention comprises: contacting an aluminum powder or a mixture thereof with another metal powder in a heated state with a fluorine-based gas; Then, the aluminum powder is contacted with a nitriding gas in a heated state to remove the fluorine film on the surface of the aluminum powder and form a hard nitride layer on the surface layer. Is formed by directly press-molding the aluminum powder formed with the above to form a press-formed product.

〔作用〕[Action]

すなわち、この発明のアルミニウム粉末加圧成形品の
製法は、アルミニウム粉末を加圧成形する前に、アルミ
ニウム粉末をフツ素系ガスに加熱状態で接触させてその
表面にフツ化膜を生成した後、窒化ガスに加熱状態で接
触させて上記フツ化膜を除去すると同時に、その除去跡
(アルミニウム粉末の表面層)を硬質の窒化層に形成す
るようにしている。この方法は、窒化処理に先立つてフ
ツ化処理をすることにより、アルミニウム粉末の表面を
清浄化すると同時に活性化するため、窒化層を均一にか
つかなり深く迄形成することができ、耐久性に富む硬質
窒化層の層厚を均一にかつ厚くできるようになる。この
ようにすると、加圧成形時にはアルミニウム粉末の表面
には酸化皮膜が形成されておらず、しかも、硬質窒化層
が形成されていることから、得られる加圧成形品は靭
性、特に強度に優れたものになる。
That is, the method for producing an aluminum powder press-molded article of the present invention is that, before pressing the aluminum powder, the aluminum powder is brought into contact with a fluorine-based gas in a heated state to form a fluorine film on the surface thereof. The fluorine-containing film is removed by contact with a nitriding gas in a heated state, and at the same time, traces of the removal (surface layer of aluminum powder) are formed on a hard nitrided layer. In this method, the surface of the aluminum powder is cleaned and activated by performing a fluorine treatment prior to the nitriding treatment, so that the nitrided layer can be formed uniformly and to a considerable depth, and the durability is rich. The thickness of the hard nitride layer can be made uniform and thick. In this case, since the oxide film is not formed on the surface of the aluminum powder during the pressure molding and the hard nitrided layer is formed, the obtained molded article is excellent in toughness, particularly excellent strength. It becomes something.

つぎに、この発明について詳しく説明する。 Next, the present invention will be described in detail.

この発明のフツ化処理に使用するフツ素系ガスとは、
NF3,BF3,CF4,HF,SF6,F2から選ばれた少なくとも一つの
フツ素源成分をN2等の不活性ガス中に含有させたものの
ことをいう。これらフツ素源成分の中でも、反応性,取
扱い性等の面でNF3が最も優れており実用的である。
The fluorine-based gas used in the fluorine treatment of the present invention is:
It means that at least one fluorine source component selected from NF 3 , BF 3 , CF 4 , HF, SF 6 , and F 2 is contained in an inert gas such as N 2 . Among these fluorine source components, NF 3 is the most excellent and practical in terms of reactivity, handleability, and the like.

この発明の製法は、先に述べたように、上記フツ素系
ガスに、アルミニウム粉末(アルミニウム単独もしくは
これにチタン粉末,マグネシウム粉末等の他の金属粉末
を混合したもの)を、例えばNF3の場合、250〜400℃の
温度で接触させてアルミニウム粉末の表面をフツ化処理
した後、公知の窒化用ガス例えばアモニアを用いて窒化
処理(または浸炭窒化処理)を行う。このようなフツ素
系ガスにおけるNF3等のフツ素源成分の濃度は、例えば1
000〜100000ppmであり、好ましくは20000〜70000ppm、
より好ましいのは30000〜50000ppmである。このような
フツ素系ガスとの接触時間は、アルミニウム粉末の種
類、アルミニウム粉末に混合される粉末の種類、加熱温
度等に応じて適当な時間を選べばよく、通常は数分であ
る。
As described above, the production method of the present invention comprises, as described above, aluminum powder (aluminum alone or a mixture of other metal powders such as titanium powder and magnesium powder) mixed with the above-mentioned fluorine-based gas, for example, NF 3 In this case, after the surface of the aluminum powder is fluorinated by contact at a temperature of 250 to 400 ° C., nitriding (or carbonitriding) is performed using a known nitriding gas such as ammonia. The concentration of a fluorine source component such as NF 3 in such a fluorine-based gas is, for example, 1
000 to 100,000 ppm, preferably 20,000 to 70,000 ppm,
More preferably, it is 30,000 to 50,000 ppm. The contact time with such a fluorine-based gas may be appropriately selected depending on the type of aluminum powder, the type of powder mixed with the aluminum powder, the heating temperature, and the like, and is usually several minutes.

この発明の製法をより具体的に説明すると、アルミニ
ウム粉末を、例えば第1図に示す熱処理炉1内に設けた
ガス処理室9内に導入して、フツ素系ガスに接触させ
る。上記炉1は、外殻2内に設けたヒータ3の内側に内
容器4を入れたピツト炉で、炉1外から排気管6が内容
器4内に挿入されるとともに、ガス導入管5が内容器4
内を通つてガス処理室9の下側から室内に、粉末出口管
8が内容器4内を通つてガス処理室9の上側から室内に
それぞれ挿入されている。また、上記ガス導入管5には
ボンベ15,16から流量計17,バルブ18等を経由してガスが
供給される。図中、13は真空ポンプ、14は除害装置であ
る。
The production method of the present invention will be described more specifically. Aluminum powder is introduced into, for example, a gas processing chamber 9 provided in the heat treatment furnace 1 shown in FIG. 1 and brought into contact with a fluorine-based gas. The furnace 1 is a pit furnace in which an inner vessel 4 is placed inside a heater 3 provided in an outer shell 2. An exhaust pipe 6 is inserted into the inner vessel 4 from outside the furnace 1, and a gas introduction pipe 5 is connected to the furnace 1. Inner container 4
The powder outlet pipe 8 is inserted into the chamber from above the gas processing chamber 9 through the inner container 4 through the inside of the gas processing chamber 9. Gas is supplied to the gas introduction pipe 5 from cylinders 15 and 16 via a flow meter 17 and a valve 18. In the figure, 13 is a vacuum pump and 14 is a harm removal device.

この構成において、上記ガス処理室9内を所定の反応
温度に加熱し、上記ガス導入管5の先端にあけたガス出
口5aからフツ素ガス、例えばNF3とN2ガスの混合ガスを
吹き上げる。また、粉末貯槽7に設けた開閉弁(図示せ
ず)を開弁して、粉末貯槽7内のアルミニウム粉末11を
粉末出口管8に供給して、その下端の粉末出口8aからガ
ス処理室9内に落下させる。上記NF3は250〜400℃の温
度で活性基のフツ素を発生し、アルミニウム粉末との衝
突でアルミニウム粉末11の表面の有機、無機系の汚染を
除去すると同時に、このフツ素がアルミニウム粉末11の
表面のAl2O3,Al(OH)等の酸化物と次式に示すように
反応し、アルミニウム粉末11の表面に、ごく薄いフツ化
膜AlF3を形成する。
In this configuration, the inside of the gas processing chamber 9 is heated to a predetermined reaction temperature, and a fluorine gas, for example, a mixed gas of NF 3 and N 2 gas is blown up from a gas outlet 5 a opened at the tip of the gas introduction pipe 5. Further, an opening / closing valve (not shown) provided in the powder storage tank 7 is opened to supply the aluminum powder 11 in the powder storage tank 7 to the powder outlet pipe 8, and the gas treatment chamber 9 is supplied through the powder outlet 8a at the lower end thereof. Let fall inside. The NF 3 generates fluorine as an active group at a temperature of 250 to 400 ° C., and removes organic and inorganic contamination on the surface of the aluminum powder 11 by collision with the aluminum powder. Reacts with oxides such as Al 2 O 3 and Al (OH) 3 on the surface of the aluminum powder 11 as shown in the following formula to form a very thin fluoride film AlF 3 on the surface of the aluminum powder 11.

Al2O3+6F→2AlF3+3/2O2 Al(OH)+3F→AlF3+3/2H2O この反応により、アルミニウム粉末11の表面の酸化皮
膜はフツ化膜に変換され、表面に吸着されていたO2も除
去される。そして、このようなフツ化膜は、O2,H2,H2O
が存在しない場合、600℃以下の温度で安定であつて、
後続の窒化処理までの間におけるアルミニウム粉末11の
生地への酸化皮膜の形成やO2の吸着を防止する。また、
このようなフツ化処理では、その第1段階で炉材表面に
対してフツ化膜が形成されることとなることから、その
膜によつて、以後の炉材表面に対するフツ素系ガスに基
づく損傷が防止されるようになる。これらフツ化処理さ
れたアルミニウム粉末11は上記ガス処理室9の底部に配
置された粉末収容箱10に溜められる。
Al 2 O 3 + 6F → 2AlF 3 + 3 / 2O 2 Al (OH) 3 + 3F → AlF 3 + 3 / 2H 2 O By this reaction, the oxide film on the surface of the aluminum powder 11 is converted into a fluoride film and adsorbed on the surface. O 2 that had been removed is also removed. And such a fluoride film is made of O 2 , H 2 , H 2 O
Is stable at temperatures below 600 ° C,
The formation of an oxide film on the substrate of the aluminum powder 11 and the adsorption of O 2 until the subsequent nitriding treatment are prevented. Also,
In such a fluorine treatment, a fluorine film is formed on the surface of the furnace material in the first stage, so that the film is used to form a fluorine-based gas on the surface of the furnace material thereafter. Damage is prevented. These fluorine-treated aluminum powders 11 are stored in a powder storage box 10 arranged at the bottom of the gas processing chamber 9.

そののち、上記粉末収容箱10に溜められアルミニウム
粉末11を、上記熱処理炉1と同様の熱処理炉を用いて、
窒化処理する。すなわち、熱処理炉内に設けたガス処理
室中を450〜550℃の窒化温度に加熱し、その状態でN
H3、あるいはNH3と炭素源を有するガス(例えばRXガ
ス)との混合ガスをガス導入管の先端のガス出口から吹
き上げるとともに、粉末出口管からアルミニウム粉末11
を落下させて、両者を接触させる。これにより、上記フ
ツ化膜が、H2または微量の水分によつて例えば次式のよ
うに還元あるいは破壊され、それによつて活性なアルミ
ニウム粉末11の生地が露呈形成される。
After that, the aluminum powder 11 stored in the powder storage box 10 is removed by using the same heat treatment furnace as the heat treatment furnace 1.
Nitriding treatment is performed. That is, the inside of the gas treatment chamber provided in the heat treatment furnace was heated to a nitriding temperature of 450 to 550 ° C.
A gas mixture of H 3 or NH 3 and a gas having a carbon source (for example, RX gas) is blown up from a gas outlet at the tip of a gas introduction tube, and aluminum powder 11 is supplied from a powder outlet tube.
To bring them into contact. Thus, the Hutu of film, is reduced or destroyed as of One by the water H 2 or trace eg following equation, it'll connexion active fabric aluminum powder 11 is exposed form.

AlF3+3/2H2→Al+3HF このようにして、活性なアルミニウム粉末11の生地が
形成されると同時に、活性なN原子がアルミニウム粉末
11内に侵入、拡散してゆき、その結果、上記生地の表面
にAlNを含有する化合物層(窒化層)が形成される。
AlF 3 + 3 / 2H 2 → Al + 3HF In this way, the dough of the active aluminum powder 11 is formed, and at the same time, the active N atoms are removed from the aluminum powder.
As a result, the compound layer (nitride layer) containing AlN is formed on the surface of the cloth.

このような窒化層が形成されるのは、従来の窒化法で
も同様であるが、従来法では、常温より窒化温度まで上
昇する間に形成される酸化皮膜や、このとき吸着される
O2分によつて表面の活性度が低下しているので、N原子
の表面吸着の度合いが低く、不均一である。また、この
ような不均一性は、NH3の分解の度合いを炉内で均一に
保つことが実際上困難であることによつても拡大され
る。この発明の製法では、アルミニウム粉末11の表面に
おけるN原子の吸着が均一かつ迅速に行われるので、上
記のような問題は生じない。
The formation of such a nitrided layer is the same as in the conventional nitridation method. However, in the conventional method, the oxide film formed during the temperature rise from the room temperature to the nitridation temperature,
Because activity of the by connexion surface O 2 minutes is reduced, low degree of surface adsorption of N atoms are heterogeneous. Such non-uniformity is also magnified by the fact that it is practically difficult to keep the degree of decomposition of NH 3 uniform in the furnace. In the manufacturing method of the present invention, the above-described problem does not occur because the adsorption of N atoms on the surface of the aluminum powder 11 is performed uniformly and quickly.

このようにして得られたアルミニウム粉末11は、第2
図に示すように、その表面層が緻密で均一な硬質窒化層
Aで形成されている。
The aluminum powder 11 thus obtained is the second powder.
As shown in the figure, the surface layer is formed of a dense and uniform hard nitrided layer A.

そののち、上記アルミニウム粉末11を、公知のH.I.P.
装置20を用いて、所望形状のアルミニウム合金製品に加
圧形成する。
Thereafter, the aluminum powder 11 is mixed with a known HIP
The apparatus 20 is press-formed into an aluminum alloy product having a desired shape.

このように、この発明の製法は、H.I.P.装置20にかけ
る前に、アルミニウム粉末11の表面の酸化皮膜を除去し
ていることから、各種粉末を混合したアルミニウム粉末
11を加熱する必要がなく、アルミニウム粉末11に混合す
る粉末として溶融温度の低い粉末を用いる場合にも、得
られる加工成形品は強度,靭性等の機械的性質に優れた
ものになる。しかも、アルミニウム粉末11の表面層が硬
質窒化層で形成されていることから、特に強度に優れて
いる。
As described above, according to the manufacturing method of the present invention, since the oxide film on the surface of the aluminum powder 11 is removed before being applied to the HIP device 20, the aluminum powder obtained by mixing various powders is used.
Even if it is not necessary to heat the powder 11 and a powder having a low melting temperature is used as the powder to be mixed with the aluminum powder 11, the processed molded product obtained has excellent mechanical properties such as strength and toughness. Moreover, since the surface layer of the aluminum powder 11 is formed of a hard nitrided layer, the strength is particularly excellent.

〔発明の効果〕〔The invention's effect〕

以上のように、この発明のアルミニウム粉末加圧成形
品の製法は、窒化処理に先立つて、フツ化処理を行う。
これにより、アルミニウム粉末の表面の酸化皮膜等の不
働態皮膜がフツ化膜に変化し、アルミニウム粉末の表面
の保護が行われる。したがつて、フツ化膜の形成から窒
化処理の間に時間的な経過があつても、アルミニウム粉
末の表面に形成されたフツ化膜は良好な状態でアルミニ
ウム粉末の表面の保護を行う結果、アルミニウム粉末の
表面に対する再度の酸化皮膜の形成が防止される。この
フツ化膜は後続の窒化処理時に分解除去され、それによ
つてアルミニウム粉末の表面が露呈するようになる。こ
の露呈されたアルミニウム粉末の表面は活性な状態とな
つていることから、窒化処理におけるN原子はアルミニ
ウム粉末の表面層内に拡散しやすくなつており、上記N
原子は深く均一に拡散する。これにより、アルミニウム
粉末の表面層が、厚みが厚く、かつ均一な硬質窒化層に
形成される。したがつて、得られる加工成形品は強度,
靭性等の機械的性質に優れたものになる。
As described above, in the method for producing an aluminum powder press-formed product of the present invention, a fluorine treatment is performed prior to the nitriding treatment.
As a result, a passive film such as an oxide film on the surface of the aluminum powder is changed into a fluoride film, and the surface of the aluminum powder is protected. Therefore, even if there is a lapse of time between the formation of the fluoride film and the nitriding treatment, the fluorine film formed on the surface of the aluminum powder protects the surface of the aluminum powder in a favorable state, The formation of the oxide film again on the surface of the aluminum powder is prevented. This fluorine film is decomposed and removed during the subsequent nitriding treatment, thereby exposing the surface of the aluminum powder. Since the surface of the exposed aluminum powder is in an active state, N atoms in the nitriding treatment are easily diffused into the surface layer of the aluminum powder, and the N
Atoms diffuse deeply and uniformly. Thereby, the surface layer of the aluminum powder is formed into a thick and uniform hard nitrided layer. Therefore, the resulting molded product has strength,
It has excellent mechanical properties such as toughness.

〔実施例〕〔Example〕

アルミニウム粉末をトリクロロエタン洗浄した後、第
1図に示すような熱処理炉1でNF3を5000ppm含有するN2
ガス雰囲気で300℃で数分間接触させる。その後、上記
熱処理炉1で530℃で、50%NH3+50%N2の混合ガスで数
分間窒化処理を行い、しかるのち空冷して取り出した。
得られたアルミニウム粉末の窒化層の厚みは5〜10μm
であり、その表面硬度は1900〜2100Hvであつた。この表
面硬度は、従来知られた方法で窒化処理したものと比べ
て、はるかに大きくなつている。そののち、上記のよう
にしてH.I.P.装置を用いて所望形状のアルミニウム合金
製品にした。このアルミニウム合金製品は従来例のアル
ミニウム合金製品よりもはるかに強度、靭性に優れてい
た。
After the aluminum powder was washed with trichloroethane, N 2 containing 5000 ppm of NF 3 was heated in a heat treatment furnace 1 as shown in FIG.
Contact at 300 ° C for several minutes in a gas atmosphere. Thereafter, nitriding treatment was performed in the heat treatment furnace 1 at 530 ° C. with a mixed gas of 50% NH 3 + 50% N 2 for several minutes, followed by air cooling and removal.
The thickness of the nitrided layer of the obtained aluminum powder is 5 to 10 μm
And its surface hardness was 1900-2100 Hv. This surface hardness is much higher than that obtained by nitriding by a conventionally known method. Thereafter, an aluminum alloy product having a desired shape was formed using the HIP apparatus as described above. This aluminum alloy product had much higher strength and toughness than the conventional aluminum alloy product.

【図面の簡単な説明】[Brief description of the drawings]

第1図はこの発明の一実施例に用いる熱処理炉の断面
図、第2図はアルミニウム粉末の窒化層の状態を示す断
面図、第3図はH.I.P.装置の概念図である。 1……熱処理炉、11……アルミニウム粉末
FIG. 1 is a sectional view of a heat treatment furnace used in one embodiment of the present invention, FIG. 2 is a sectional view showing a state of a nitride layer of aluminum powder, and FIG. 3 is a conceptual view of a HIP device. 1 ... heat treatment furnace, 11 ... aluminum powder

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−193861(JP,A) 特開 平4−83863(JP,A) 特開 昭51−14837(JP,A) (58)調査した分野(Int.Cl.6,DB名) B22F 1/00 - 3/26 C23C 8/02,8/24 C23G 5/00 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-3-193861 (JP, A) JP-A-4-83863 (JP, A) JP-A-51-14837 (JP, A) (58) Field (Int.Cl. 6 , DB name) B22F 1/00-3/26 C23C 8 / 02,8 / 24 C23G 5/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】アルミニウム粉末もしくはこれに他の金属
粉末を混合したものをフツ素系ガスに加熱状態で接触さ
せてアルミニウム粉末の表面にフツ化膜を形成し、つぎ
に、このアルミニウム粉末を窒化ガスに加熱状態で接触
させてアルミニウム粉末の表面のフツ化膜を除去すると
ともに表面層に硬質の窒化層を形成し、この窒化層を形
成したアルミニウム粉末を直接加圧成形して加圧成形品
にすることを特徴とするアルミニウム粉末加圧成形品の
製法。
An aluminum powder or a mixture thereof mixed with another metal powder is brought into contact with a fluorine-based gas in a heated state to form a fluoride film on the surface of the aluminum powder, and then the aluminum powder is nitrided. By contacting the gas in a heated state to remove the fluorine film on the surface of the aluminum powder and form a hard nitrided layer on the surface layer, the aluminum powder on which the nitrided layer is formed is directly pressed and molded to form a pressed product. A method for producing an aluminum powder press-molded article, characterized in that:
JP2316563A 1990-11-20 1990-11-20 Manufacturing method of aluminum powder press molded product Expired - Fee Related JP2868889B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2316563A JP2868889B2 (en) 1990-11-20 1990-11-20 Manufacturing method of aluminum powder press molded product
PCT/JP1991/001599 WO1992008560A1 (en) 1990-11-20 1991-11-20 Method of making pressure-molded product from aluminum powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2316563A JP2868889B2 (en) 1990-11-20 1990-11-20 Manufacturing method of aluminum powder press molded product

Publications (2)

Publication Number Publication Date
JPH04187704A JPH04187704A (en) 1992-07-06
JP2868889B2 true JP2868889B2 (en) 1999-03-10

Family

ID=18078491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2316563A Expired - Fee Related JP2868889B2 (en) 1990-11-20 1990-11-20 Manufacturing method of aluminum powder press molded product

Country Status (2)

Country Link
JP (1) JP2868889B2 (en)
WO (1) WO1992008560A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0577436B1 (en) * 1992-07-02 1997-12-03 Sumitomo Electric Industries, Limited Nitrogen-combined aluminum sintered alloys and method of producing the same
GB0413135D0 (en) * 2004-06-12 2004-07-14 Rolls Royce Plc A method of manufacturing a component by consolidating a metal powder
KR100721780B1 (en) * 2005-05-30 2007-05-25 주식회사 다이너머트리얼스 Method for manufacturing high strength ultra-fine/nano-structured Al/AlN or Al alloy/AlN composite materials
SG11201608238TA (en) * 2014-04-07 2016-10-28 Powder Treat Technology Llc Surface energy modified particles, method of making, and use thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5022707A (en) * 1973-07-02 1975-03-11
JPS5773103A (en) * 1980-10-27 1982-05-07 Res Dev Corp Of Japan Production of high strength heat resistant metallic material
JPS621836A (en) * 1985-06-28 1987-01-07 Komatsu Ltd Manufacture of tough sintered hard material
JPS6283404A (en) * 1985-10-04 1987-04-16 Furukawa Electric Co Ltd:The Production of composite metallic powder
JPS62199703A (en) * 1986-02-26 1987-09-03 Sumitomo Light Metal Ind Ltd Hot hydrostatic compression molding method for al-si powder alloy

Also Published As

Publication number Publication date
JPH04187704A (en) 1992-07-06
WO1992008560A1 (en) 1992-05-29

Similar Documents

Publication Publication Date Title
US5114500A (en) Nitriding furnace apparatus and method
JP2868889B2 (en) Manufacturing method of aluminum powder press molded product
US5252145A (en) Method of nitriding nickel alloy
JP2868890B2 (en) Manufacturing method of aluminum powder press molded product
JPS62270761A (en) Nitriding method for steel
JPS60165370A (en) Nitriding treatment of stainless steel
CN1032411C (en) Process for manufacturing compacted articles of aluminium powder
JPH09157830A (en) Method for nitriding metallic material with gas and device therefor
JP2002053944A (en) Method for nitriding substrate containing aluminum metal
US5425847A (en) Removal method of glass adhered to sintered object
CN1033010C (en) Process for manufacturing compacted articles of aluminium powder
JPH022945B2 (en)
JP3354947B2 (en) Semiconductor substrate manufacturing method
JPS61101235A (en) Low discharge gasification of vacuum container
JP2946916B2 (en) Silicon nitride powder and method for producing the same
JPH03253502A (en) Degreasing method
JPH04208397A (en) Heat exchanger and manufacture thereof
JP2707933B2 (en) Hot press furnace
JPS60177174A (en) Surface treatment of iron-base sintered parts
JPH05156312A (en) Production of sintered aluminum alloy powder
JP2002047553A (en) Method and system for nitriding substrate containing aluminum metal
JPH01197363A (en) Method for cleaning graphitic member
US5207845A (en) Process for manufacturing rolled articles of titanium material
JPH08144006A (en) Production of sintered compact of stainless steel powder
JPH08319502A (en) Method for dewaxing metal powder injection-molded body

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071225

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081225

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081225

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091225

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees