JPS6283404A - Production of composite metallic powder - Google Patents

Production of composite metallic powder

Info

Publication number
JPS6283404A
JPS6283404A JP60221600A JP22160085A JPS6283404A JP S6283404 A JPS6283404 A JP S6283404A JP 60221600 A JP60221600 A JP 60221600A JP 22160085 A JP22160085 A JP 22160085A JP S6283404 A JPS6283404 A JP S6283404A
Authority
JP
Japan
Prior art keywords
gas
powder
metallic powder
metal
composited
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60221600A
Other languages
Japanese (ja)
Inventor
Takuya Suzuki
卓哉 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP60221600A priority Critical patent/JPS6283404A/en
Publication of JPS6283404A publication Critical patent/JPS6283404A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce composite metallic powder composed of metallic powder to be treated by packing the metallic powder to be treated into a fluidizing vessel and heating the powder while fluidizing the powder by a carrier gas and supplying a gas for halogenating the metal to be composited and reducing gas into the fluidized layer of the metallic powder. CONSTITUTION:A perforated plate having many gas ejection holes is placed at the bottom and the atomized metallic powder 9 of 200-20 mesh is packed into the vessel. An inert gas A such as N2 is ejected via a supply pipe 5 from the gas ejection holes 3 to fluidize the metallic powder 9 and the metallic powder is heated to >=200 deg.C by a heater 2. The gas B for halogenating the metal to be composited and the reducing gas C such as H2 as a reducing agent for the same are ejected from the gas ejection holes 3. The metallic halide is reduced to the metal on the surface of the metallic powder 1 by H2, by which the composite metallic powder 12 formed with a film 11 on the surface of the metallic powder 1 or thermally diffused with the film into the metallic powder is produced.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は金属複合粉末の製造法に関し、特に複合化する
元素を金属粉末の表面に均一に鍍着又は金属粉末内に均
一に熱拡散させた金属複合を 粉末片容易に、かつ経済的に製造するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing a metal composite powder, and in particular to a method for producing a metal composite powder, in which the elements to be composited are uniformly plated on the surface of the metal powder or uniformly thermally diffused into the metal powder. The composite is easily and economically produced in powder form.

従来の技術 従来粉末冶金等では目的に応じて各種金属粉末が用いら
れており、その内含金粉末はアトマイズ法、電解法、メ
カニカルアロイング法等により造られている。アトマイ
ズ法は溶融し、た合金を細孔よV流出させ、これに圧縮
ガスや水流ジェットに作用させて飛散させることにより
粉末化するものである。電解法は金属塩の水溶液を電解
して合金粉末を生成させるものである。
BACKGROUND OF THE INVENTION Conventional powder metallurgy uses various metal powders depending on the purpose, and gold-containing powders are produced by atomization, electrolysis, mechanical alloying, etc. In the atomization method, a melted alloy is caused to flow out through pores, and is pulverized by being dispersed by the action of compressed gas or a water jet. In the electrolytic method, an aqueous solution of a metal salt is electrolyzed to produce an alloy powder.

またメカニカルアロイング法は異種の金属粉末をボール
ミル等で混合粉砕することにより合金粉末とするもので
ある。更に特殊々方法としては、異種金属を蒸発させ、
気体分子として衝突させることにより超微粉の合金粉末
とする方法も知られている。
In the mechanical alloying method, different metal powders are mixed and pulverized using a ball mill or the like to obtain an alloy powder. Furthermore, as a special method, evaporating dissimilar metals,
A method of producing ultrafine alloy powder by colliding gas molecules is also known.

発明が解決しようとする問題点 アトマイズ法のように合金を溶融するものは、溶融合金
化が困難な元素との合金粉末を製造することができず、
特に粉末化に際し酸化等によるロスも大きい。電解法は
合金化する元素及び合金組成が制限される。′1.たメ
カニカルアロイング法は、粉砕に大きなエネルギーを必
要とする不経済なものである。しかも用途によってば粉
末表面に他元素を破着り、た複合粉末が要求されている
が上記方法は何れも粉末表面に他元素を均一に破着I−
たり、粉末内に均一に熱拡散させて複合粉末とすること
ができなかった。
Problems to be Solved by the Invention Methods that melt alloys, such as the atomization method, cannot produce alloy powders with elements that are difficult to melt into alloys.
In particular, there is a large loss due to oxidation etc. during powdering. In the electrolytic method, alloying elements and alloy compositions are limited. '1. The mechanical alloying method requires a large amount of energy for grinding and is uneconomical. Moreover, depending on the application, composite powders are required in which other elements are ruptured onto the powder surface, but none of the above methods uniformly rupture other elements onto the powder surface.
In addition, it was not possible to uniformly diffuse heat within the powder to form a composite powder.

問題点を解決するための手段 本発明はこれに鑑み種々検討の結果、複合化する元素を
金属粉体の表面に均一に破着1.たり、又は金属粉末内
に均一に熱拡散させた金属複合粉末を容易に、かつ経済
的に製造することができる金属複合粉末の製造法を開発
1.たもので、金属粉末を不活性のキャリヤーガスで流
動化させて加熱してから、キャリヤーガスに複合化する
元素のハロゲン化気体と還元性ガスを混合[2、該混合
ガスと粉末表面を反応させて複合化する元素を粉末表面
に破着又は粉末内に熱拡散させることを特徴とするもの
である。
Means for Solving the Problems In view of this, the present invention was developed as a result of various studies, and was developed by: 1. uniformly adhering the elements to be composited to the surface of the metal powder; 1. Development of a manufacturing method for metal composite powder that can easily and economically produce metal composite powder that is uniformly thermally diffused into metal powder. After fluidizing the metal powder with an inert carrier gas and heating it, a halogenated gas of the element to be combined with the carrier gas and a reducing gas are mixed [2. The mixed gas and the powder surface are reacted. This method is characterized in that the elements to be composited are broken onto the powder surface or thermally diffused into the powder.

即ち本発明は第1図に示すように周囲に加熱用ヒーター
(2)ヲ設け、下部に多数のガス噴出細孔(3)を設け
たガス室(4)を有する流動槽(1)を用い、ガス室(
4)に取付けた供給管(5)にバルブ(6)(7)(8
) を介1−1て不活性のキャリヤーガス(5)、複合
化する元素のハロゲン化気体(B)及び還元性ガス(C
) k供給できるようにする。このようにして流動槽(
1)内に金属粉末(9)を装入15、バルブ(6)を開
いて不活性のキャリヤーガス(A)を供給し、ガス室(
4)よV細孔(3)を通して金属粉末(9)内に噴出さ
せ、排気管(10)より排出させることにより、金属粉
末(9)を流動状態に保持L、これを加熱用ヒータ(2
)ニより所定温度に加熱する。続いてバルブ(7)(8
)ヲ開いて不活性のキャリヤーガス(5)に複合化する
元素のハロゲン化気体(13)と還元性ガス(C)’に
混合し、流動する金属粉末(9)の表面と混合ガスを反
応させて、複合化する元素を金属粉末の表面に破着させ
るか、又は金属粉末内に熱拡散させて金属複合粉末とす
る。し〜かる後ヒータ(2)による加熱を止め、バルブ
(7)(8)を閉じてハロゲン化気体03)と還元性ガ
ス(0の供給を停止して不活性のキャリヤーガス中で冷
却し、流動槽(1)より取出す。
That is, the present invention uses a fluidized tank (1) having a gas chamber (4) provided with a heating heater (2) around the periphery and a large number of gas ejection pores (3) in the lower part, as shown in FIG. , gas chamber (
Attach valves (6) (7) (8) to the supply pipe (5) attached to
) through 1-1, an inert carrier gas (5), a halogenated gas (B) of the element to be complexed, and a reducing gas (C
) k supply. In this way, the fluidized tank (
1) Charge the metal powder (9) into the chamber (15), open the valve (6) to supply the inert carrier gas (A), and fill the gas chamber (
4) The metal powder (9) is maintained in a fluid state by injecting it into the metal powder (9) through the V-hole (3) and discharging it from the exhaust pipe (10), and then the metal powder (9) is heated by the heater (2).
) Heat to the specified temperature. Next, valves (7) (8
) is mixed with an elemental halogenated gas (13) and a reducing gas (C)' to be combined into an inert carrier gas (5), and the mixed gas is reacted with the surface of the flowing metal powder (9). Then, the element to be composited is broken onto the surface of the metal powder or thermally diffused into the metal powder to form a metal composite powder. After that, the heating by the heater (2) is stopped, the valves (7) and (8) are closed, the supply of the halogenated gas 03) and the reducing gas (0 is stopped, and the mixture is cooled in an inert carrier gas. Take it out from the fluidized tank (1).

作用 本発明は上記の如く金属粉末を不活性のキャリヤーガス
により流動させて加熱F〜、続いてキャリヤーガスに複
合化する元素のハロゲン化気体と還元性ガスを混合する
ことにより、金属粉末は混合ガスと均等に接触し、各金
属粉末の表面に複合化する元素を均一に破着1−たり、
各金属粉末内に複合化する元素を均一に熱拡散させるな
ど、通常の方法では製造不可能な複合粉末を容易に、か
つ経済的に製造することができる。
Function: As described above, the metal powder is fluidized by an inert carrier gas and heated F~, and then the halogenated gas of the element to be complexed and the reducing gas are mixed with the carrier gas, so that the metal powder is mixed. It comes into contact with the gas evenly, and the elements to be composited are uniformly bonded to the surface of each metal powder.
By uniformly thermally diffusing the elements to be composited into each metal powder, it is possible to easily and economically manufacture composite powders that cannot be manufactured using normal methods.

また複合化する元素のハロゲン化気体を変更することに
よジ、金属粉末の表面に複合化する2種以上の元素を連
続1.て層状に破着したり、金属粉末内に複合化する2
種以上の元素を連続[−て熱拡散させて複合化させるこ
とができる。しかもこれ等の処理は何れも加熱過程で複
合化する元素のハロゲン化気体を連続的に変更すること
により容易に実施できるもので、熱的に極めて経済的な
方法である。
Also, by changing the halogenated gas of the element to be composited, two or more elements to be composited can be continuously applied to the surface of the metal powder. break in layers or become composite within the metal powder2
More than one element can be composited by continuous thermal diffusion. Furthermore, all of these treatments can be easily carried out by continuously changing the halogenated gas of the element to be compounded during the heating process, and are extremely thermally economical methods.

実施例(1) 第1図に示す装置を使用I2、AガスにN2ガス、Bガ
スに塩素ガスを溶融錫上に通して生成]−たSnCnガ
ム及びCガスにN2ガスを用い、−200〜20メツシ
ユのCu了トマイズ粉の表面にSnを20μの厚さに破
着]た。先ず流動槽内にCu了トマイズ粉を装入し、N
2ガスを供給してC1lアトマイズ粉を流動化させ、と
fLを200℃に加熱して、これにN2ガスに対し5n
CA<ガスを10係、N2ガスを10係の比率で混合し
た。この混合ガスでCu了トマイズ粉を1時間流動fL
処理(−たところ、第2図(イ)に示すようにCu了ト
マイズ粉(1)の表面にSn薄膜〔11)を20μの厚
さに均一に破着l−た粉末が得られた。
Example (1) Using the apparatus shown in FIG. 1, using the SnCn gum and N2 gas as the C gas, -200 Sn was broken to a thickness of 20 μm on the surface of ~20 mesh Cu-tomized powder. First, Cu Tomized powder is charged into a fluidized tank, and N
2 gas was supplied to fluidize the C1l atomized powder, and fL was heated to 200°C, and 5n of N2 gas was supplied to this.
CA<gas was mixed at a ratio of 10 parts and N2 gas was mixed at a ratio of 10 parts. Flow the Cu Tomized powder for 1 hour with this mixed gas.
As a result of the treatment, a powder was obtained in which a Sn thin film [11] was uniformly adhered to a thickness of 20 μm on the surface of the Cu-tomized powder (1), as shown in FIG. 2(A).

実施例(2) 実施例(1)において、Cu了トマイズ粉をN2ガス、
5nQt4ガス及びN2ガスの混合ガスにより流動化さ
せ、200’Cに1時間加熱して、第2図(イ)に示す
ようにCu了トマイズ粉(1)の表面K S n薄膜(
11)を20μの厚さに破着した後、5nCt<ガス及
びN2ガスの供給を停止し、N2ガスのみでSnを破着
り、りアトマイズ粉を流動6一 化させ、220℃[5時間加熱1.て鍛着したSnを総
i S n C11化合物ト[、り。]、かる後7 (
10℃にケイ温したところ第2図(ロ)11こ示すよう
に均一にSnが熱拡散1.たブロンズ粉(12)が得ら
れた。
Example (2) In Example (1), Cu Tomized powder was heated with N2 gas,
It was fluidized with a mixed gas of 5nQt4 gas and N2 gas and heated at 200'C for 1 hour to form a KSn thin film (
11) to a thickness of 20μ, the supply of 5nCt< gas and N2 gas was stopped, and the Sn was broken with only N2 gas, the atomized powder was made to flow, and the powder was heated at 220°C for 5 hours. Heating 1. The forged Sn is combined with a total iSnC11 compound. ], Karugo 7 (
When heated to 10°C, Sn was uniformly thermally diffused as shown in Figure 2 (b) 11. Bronze powder (12) was obtained.

実施例(3) AガスにN2ガス、I3ガスにZnCnガム及びCガス
にN2ガスを用い、実施例(1)と同様πしてCu了ト
マイズ粉?N、ガスで渾、勧化させて時間流動化処理し
た後、Z n C1+ガス及びIf、ガスの供給全停+
11、N2ガスにより流動化させながら冷却[また。そ
の結果Cu了トマイズ粉の表面にZnが均一に鍛着11
、同時に粉末内に均一に熱拡散し、て黄銅粉となった。
Example (3) Using N2 gas as the A gas, ZnCn gum as the I3 gas, and N2 gas as the C gas, π was used as in Example (1) to form a Cu-tomized powder. After stirring and fluidizing with N and gas, Z n C1 + gas and If, gas supply completely stopped +
11. Cooling while fluidizing with N2 gas [Also. As a result, Zn was uniformly forged on the surface of the Cu tomized powder.
At the same time, heat was diffused uniformly into the powder, resulting in brass powder.

実施例(4) AガスVCN2 )j /(、BガスK N1)CAI
 (!: 5nC44ガスの2種のガス、CガスにH,
ガスを用い、実施例(1)と同様に(−て、C11了ト
マイズ粉をN2ガスにより流動化させ、 750℃に加
熱1.てN l) Cl 4ガスを10係、N2ガスを
20%の比率で混合1.て流動化処理することによV%
第3図(イ)に示すようにC11了トマイズ粉(1)に
Nbの薄膜(13)を形成1.た。次にNbC44ガス
及びI(。
Example (4) A gas VCN2 )j /(, B gas K N1) CAI
(!: 5nC44 gas, two types of gas, C gas and H,
Using gas, in the same manner as in Example (1), fluidize the C11 tomized powder with N2 gas and heat it to 750°C. Mix in the ratio of 1. V% by fluidization treatment
As shown in FIG. 3(A), a thin Nb film (13) is formed on the C11 atomized powder (1).1. Ta. Next, NbC44 gas and I(.

ガスの供給を停止1.て200℃まで冷却した後、N2
ガスに5nCt4ガス’(rlO%、Haガスヲ10係
の比率で混合I7て流動化処理することにより、第3図
(ロ)に示すようにCIl了トマイズ粉(1)上に形成
し*Nb薄膜(13)上にSn薄膜(11)k鍍着した
。続いて5nC44ガスとN2ガスの供給を停止1−1
、N2ガスで流動化させ々がら700℃に昇温1−fこ
ところ、Sn薄膜(11)はNb薄膜(13)内に熱拡
散し、第3図(ハ)に示すようにCu粉(1)上に極め
て薄いNb薄膜(13)を介1てNb3Sn膜(]4)
を有する複合粉が得られた。
Stop gas supply 1. After cooling to 200℃, N2
By fluidizing the gas by mixing it with 5nCt4 gas (rlO%) and Ha gas at a ratio of 10 parts, a *Nb thin film is formed on the CIL totomized powder (1) as shown in Figure 3 (b). (13) A Sn thin film (11)k was deposited on the top.Then, the supply of 5nC44 gas and N2 gas was stopped 1-1
At about 1-f, the Sn thin film (11) is thermally diffused into the Nb thin film (13) and the Cu powder ( 1) Nb3Sn film (]4) with an extremely thin Nb thin film (13) on top
A composite powder having the following properties was obtained.

この複合粉末UCII−Nb3Snインサイチュ−法に
よる超電導線製造用の粉末と(−て適(−たものである
This composite powder UCII-Nb3Sn is suitable for use in producing superconducting wires by in-situ method.

発明の効果 このように本発明は金属粉末を不活性ガスで流動化[−
1こ7土に複合化する元素のハロケン化気体と還元性ガ
スを混合することVCより、単独又は連続1−で通常の
方θ(では製造小川゛能な複合粉末を容易かつ経済的に
製造することができる顕著な効果を奏するものである。
Effects of the Invention As described above, the present invention fluidizes metal powder with an inert gas [-
Mixing a halogenated gas and a reducing gas of the element to be composited with 1-7 soil.By using VC alone or in succession, it is possible to easily and economically produce a composite powder that is easy to manufacture. It can produce remarkable effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法を実施するための装置の一例を示す
説明図、第2図((1)(ロ)に本発明方法により得ら
れる粉末の一例を示すもので、(イ)は複合化する元素
を鍛着した粉末、(ロ)は熱拡散により合金化1.た粉
末の説明図、第3図(イ)(ロ)C→は本発明方法によ
るC 11−N b3S nインザーチュー用粉末の製
造過程を示すもので、(イ)はNb鍍層着C11粉仲)
はCu粉上にNb薄膜を介してSn薄膜を鍛着したC 
11粉、(ハ)ばCkll上上N b薄膜を介[1,て
Nb3Sn薄膜を形成したCLI粉の説明図である。 A キャリヤーガス B 複合化する元素のハロゲン化気体 C還元性ガス 1 流動槽  2 ヒーター 3 ガス噴出細孔  4 カス室 5  (jt給管  6.7.8  バルブ9 @属粉
体  10 排気管 11  Sn薄膜  12 ブロンズ粉13  Nl)
薄膜  14  Nb3Sn膜−10=
Figure 1 is an explanatory diagram showing an example of an apparatus for implementing the method of the present invention, Figure 2 ((1) and (b) shows an example of powder obtained by the method of the present invention, and (a) is a composite (b) is an explanatory diagram of the powder alloyed by thermal diffusion. The figure shows the manufacturing process of powder for
is C with a Sn thin film forged on Cu powder through a Nb thin film.
FIG. 11 is an explanatory diagram of CLI powder in which a Nb3Sn thin film was formed on Ckll with an Nb thin film interposed thereon. A Carrier gas B Halogenated gas of the element to be combined C Reducing gas 1 Fluidization tank 2 Heater 3 Gas ejection pores 4 Cass chamber 5 (Jt supply pipe 6.7.8 Valve 9 @Group powder 10 Exhaust pipe 11 Sn thin film 12 bronze powder 13 Nl)
Thin film 14 Nb3Sn film -10=

Claims (1)

【特許請求の範囲】[Claims] 金属粉末を不活性のキャリヤーガスで流動化させて加熱
してから、キャリヤーガスに複合化する元素のハロゲン
化気体と還元性ガスを混合し、該混合ガスと粉末表面を
反応させて複合化する元素を粉末表面に鍍着又は粉末内
に熱拡散させることを特徴とする金属複合粉末の製造法
Metal powder is fluidized with an inert carrier gas and heated, then a halogenated gas of the element to be composited and a reducing gas are mixed with the carrier gas, and the mixed gas is reacted with the powder surface to form a composite. A method for producing metal composite powder, characterized by plating elements on the powder surface or thermally diffusing elements into the powder.
JP60221600A 1985-10-04 1985-10-04 Production of composite metallic powder Pending JPS6283404A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60221600A JPS6283404A (en) 1985-10-04 1985-10-04 Production of composite metallic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60221600A JPS6283404A (en) 1985-10-04 1985-10-04 Production of composite metallic powder

Publications (1)

Publication Number Publication Date
JPS6283404A true JPS6283404A (en) 1987-04-16

Family

ID=16769298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60221600A Pending JPS6283404A (en) 1985-10-04 1985-10-04 Production of composite metallic powder

Country Status (1)

Country Link
JP (1) JPS6283404A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992008560A1 (en) * 1990-11-20 1992-05-29 Daidousanso Co., Ltd. Method of making pressure-molded product from aluminum powder
WO1992008561A1 (en) * 1990-11-20 1992-05-29 Daidousanso Co., Ltd. Making of pressure-molded product from aluminum powder

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS514941A (en) * 1974-07-01 1976-01-16 Matsushita Electric Ind Co Ltd
JPS5216973A (en) * 1975-07-31 1977-02-08 Natl Res Inst For Metals Epitachisial growing method of semiconductor of family chemical compou nd
JPS55158267A (en) * 1979-05-29 1980-12-09 Int Standard Electric Corp Valve metal coating method
JPS58181860A (en) * 1982-04-17 1983-10-24 Sumitomo Metal Ind Ltd Diffusion and permeation treated steel product and preparation thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS514941A (en) * 1974-07-01 1976-01-16 Matsushita Electric Ind Co Ltd
JPS5216973A (en) * 1975-07-31 1977-02-08 Natl Res Inst For Metals Epitachisial growing method of semiconductor of family chemical compou nd
JPS55158267A (en) * 1979-05-29 1980-12-09 Int Standard Electric Corp Valve metal coating method
JPS58181860A (en) * 1982-04-17 1983-10-24 Sumitomo Metal Ind Ltd Diffusion and permeation treated steel product and preparation thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992008560A1 (en) * 1990-11-20 1992-05-29 Daidousanso Co., Ltd. Method of making pressure-molded product from aluminum powder
WO1992008561A1 (en) * 1990-11-20 1992-05-29 Daidousanso Co., Ltd. Making of pressure-molded product from aluminum powder

Similar Documents

Publication Publication Date Title
EP1586665B1 (en) Producing nickel-base cobalt-base iron-base iron-nickel-base or iron-nickel-cobalt-base alloy articles by reduction of nonmetallic precursor compounds and melting
US3775156A (en) Method of forming composite metal strip
CN104625046B (en) The manufacture method of core shell structure micron and nano composite spherical powder
US2935394A (en) Method and apparatus for producing micron and sub-micron metals
JPH01119657A (en) Frame spray coated hard alloy product
CN104607823A (en) Manufacturing method of spherical self-fluxing alloy solder
US4348433A (en) Flame spray powder
JPS58110401A (en) Metallic granule containing magnesium for accumulating hydrogen and method of manufacturing said granule
US7833472B2 (en) Article prepared by depositing an alloying element on powder particles, and making the article from the particles
US4202691A (en) Metallo-thermic powder
US4894086A (en) Method of producing dispersion hardened metal alloys
JPS6283404A (en) Production of composite metallic powder
JPS5645372A (en) Material for blast and surface treatment method by use of said material
US4361604A (en) Flame spray powder
JPH02153063A (en) Making of nitriding-alloy
US20070141374A1 (en) Environmentally resistant disk
US4348434A (en) Flame spray powder
CN1078257C (en) Melting-casting process of preparing metal-base composite material through in-situ reaction and spray formation
US4230750A (en) Metallo-thermic powder
CN109136788A (en) A kind of high-carbon high-alloy amorphous pre-alloyed powder and preparation method thereof
JPH02504044A (en) Laminated material or laminated processed product and its manufacturing method
US3468699A (en) Method of providing malleable metal coatings on particles of lubricants
JP3130220B2 (en) Conductor roll for electroplating line and method of manufacturing the same
JPS60500376A (en) Surface deformed powder metal parts and how to manufacture them
CN109848407A (en) A kind of cobalt-chromium-tungsten alloy cladding tantalum carbide powder and preparation method thereof