JPH04187587A - Device of growing crystal of compound semiconductor - Google Patents

Device of growing crystal of compound semiconductor

Info

Publication number
JPH04187587A
JPH04187587A JP31942890A JP31942890A JPH04187587A JP H04187587 A JPH04187587 A JP H04187587A JP 31942890 A JP31942890 A JP 31942890A JP 31942890 A JP31942890 A JP 31942890A JP H04187587 A JPH04187587 A JP H04187587A
Authority
JP
Japan
Prior art keywords
container
airtight container
pressure buffer
compound semiconductor
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31942890A
Other languages
Japanese (ja)
Other versions
JPH0699221B2 (en
Inventor
Tomoki Inada
稲田 知己
Masatomo Shibata
真佐知 柴田
Takashi Suzuki
隆 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP31942890A priority Critical patent/JPH0699221B2/en
Publication of JPH04187587A publication Critical patent/JPH04187587A/en
Publication of JPH0699221B2 publication Critical patent/JPH0699221B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To obtain high-purity compound semiconductor crystal in growth of compound semiconductor crystal by a pulling method by providing an airtight container to store a crucible with a pressure buffer path to communicates the inside and outside of the container and laying a pressure buffer container at n inlet and an outlet of the pressure buffer path. CONSTITUTION:In a device of growing compound semiconductor crystal wherein a crucible 1 charged with a compound semiconductor melt 5 of CaAs is wholly covered with a container 2 having high air tightness, the interior of the airtight container 2 is in an atmosphere containing a gas of an element having higher vapor pressure among elements constituting the melt 5 and the airtight container 2 is provided with a pressure buffer path 10 having throttled channel communicated with outside of the container 2, the following constitution is added. Namely, at least one of an inlet and an outlet of the pressure buffer path 10 is provided with a pressure buffer container 12 having the same or larger volume than space charged with the gas in the airtight container 2.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明はGaAs結晶なとの化合物半導体結晶を気密容
器を用いて育成する化合物半導体結晶の育成装置に係り
、特に圧力の緩衝空間を設けて気密容器内への不純物の
流入を抑制したものに間する。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to a compound semiconductor crystal growth apparatus for growing compound semiconductor crystals such as GaAs crystals using an airtight container, and particularly relates to a compound semiconductor crystal growth apparatus for growing compound semiconductor crystals such as GaAs crystals using an airtight container. Use an airtight container that prevents impurities from entering.

[従来の技術] 化合物半導体結晶、例えばGaAs結晶は、発光特性、
磁電変換特性、電子の高速性なと、他の材料にない優れ
た特長を有しており、工業的価値が極めて高い材料であ
る。その結晶成長方法には多数の方法が提案されており
、工業的生産に用いられている方法も幾つかある。その
中で広く月いられているのがB2O3等の不活性液体を
GaAs融液に浮かべ、融液からのA Sの解離を防ぎ
つつ、融液に接触させた種結晶を核として、回転しなが
ら引き上げる液体封止引上げ法(LEC法)である。こ
の方法は比較的簡単に単結晶が得られる特長を有し、工
業生産性の高い方法であり、LSI用の半絶縁性GaA
s結晶などの用途で実用化されている。
[Prior Art] Compound semiconductor crystals, such as GaAs crystals, have light emitting properties,
It has excellent features not found in other materials, such as magnetoelectric conversion properties and high-speed electrons, making it a material with extremely high industrial value. Many methods have been proposed for crystal growth, and some are used in industrial production. Among these, a widely used method is to float an inert liquid such as B2O3 on a GaAs melt, and while preventing the dissociation of AS from the melt, it rotates around a seed crystal brought into contact with the melt as a nucleus. This is a liquid-contained lifting method (LEC method) in which the material is pulled up while lifting. This method has the feature that single crystals can be obtained relatively easily, and is a method with high industrial productivity.
It has been put to practical use in applications such as s-crystals.

ところで、B2O3の不活性iα体をG a A S 
R液に浮かべると、この部分の温度勾配が大きくなって
、結晶が熱歪みを受ける。G a A S結晶は、本来
脆くて、熱歪みに弱い物質であるため、製造中に結晶が
受ける熱歪みにより、転位と呼ばれる結晶欠陥を発生し
たり、甚だしい場合には結晶にクラックが生ずることが
ある。これらを改善するためには、結晶全体の温度分布
を均一にし、熱歪みを小さくすることが有効である。た
だしこの場合には、結晶全体の温度が上昇するため、引
上げ中の結晶表面からのAsの解離が生し、結晶表面に
Gaの析出が生じたり、新たな転位の発生源ともなる。
By the way, the inactive iα form of B2O3 is G a A S
When floating in the R liquid, the temperature gradient in this area becomes large and the crystal undergoes thermal distortion. G a A S crystals are inherently brittle and susceptible to thermal strain, so thermal strain that the crystal undergoes during manufacturing can cause crystal defects called dislocations, or in extreme cases, cracks can form in the crystal. There is. In order to improve these problems, it is effective to make the temperature distribution uniform throughout the crystal and to reduce thermal distortion. However, in this case, since the temperature of the entire crystal increases, As is dissociated from the crystal surface during pulling, causing precipitation of Ga on the crystal surface and becoming a source of new dislocations.

そこで、これらの問題を解決するために、LEC法を改
善してるつぼの周囲を石英容器等から構成した気密容器
で覆い、引上軸と気密容器との間隙をB 2 o3液体
封止剤で塞ぎ、気密容器の中をAS雰囲気とすることに
より、GaAs融液表面からのAs解離を防ぐようにし
たものが提案されたく特公昭61−1397号公報)。
Therefore, in order to solve these problems, we improved the LEC method, covered the crucible with an airtight container made of quartz container, etc., and filled the gap between the drawing shaft and the airtight container with a B2O3 liquid sealant. (Japanese Patent Publication No. 1397/1982) has been proposed in which dissociation of As from the surface of the GaAs melt is prevented by closing the container and creating an AS atmosphere inside the airtight container.

2重融液シール引上法と呼ばれ、熱歪みの小さな環境て
G a A s結晶を育成するのに最適な方法である。
This method is called the double melt seal pulling method, and is an optimal method for growing GaAs crystals in an environment with small thermal distortion.

もう一つ別な熱歪みを低減する方法として、縦型ブリッ
ジマン法と呼ばれるものがある。縦長のるつぼにG a
 A s原料を入れてG a A s ii!l!液を
作り、種結晶を設けたるつは底から固化させて、GaA
s結晶を製造するものである。この方法では、融液から
のAsの解離を防ぐ必要から、るつぼ全体を気密容器で
覆い、その中に配したA Sを加熱ガス化してAS雰囲
気とする工夫がなされている(W、A、Gault他、
J、Crystal Gro略h 74.P491(1
986年))。LEC法に比へて、るつぼ全体の均熱化
が容易であり、転位の少ない結晶が得られる。
Another method for reducing thermal distortion is called the vertical Bridgman method. G a in a vertically long crucible
Add A s ingredients and G a A s ii! l! A liquid is made, a seed crystal is placed in the crucible, and the melt is solidified from the bottom to form GaA.
This is to produce s crystal. In this method, since it is necessary to prevent the dissociation of As from the melt, the entire crucible is covered with an airtight container, and the As placed inside is heated to gasify to create an AS atmosphere (W, A, Gault et al.
J, Crystal Gro abbreviation h 74. P491 (1
986)). Compared to the LEC method, it is easier to soak the entire crucible, and crystals with fewer dislocations can be obtained.

前述した方法はいずれも熱歪の小さな結晶を作製できる
。しかし基本的に気密容器中ての成長であるため容器内
外の圧力バランスをとる必要があり、圧力バランスがう
まくとれない場合は、容器が爆発する恐れがある。そこ
で、圧力バランスのための細孔を設けたり(特開平1−
37497号公報)、それをさらに発展させて揮発性成
分のASが容器外へ拡散するのを防ぐための緩衝通路を
設けて(特願平01−272542号明細書)、ASの
拡散障壁とするなとの工夫かなされている。
All of the methods described above can produce crystals with small thermal strain. However, since the growth is basically in an airtight container, it is necessary to balance the pressure inside and outside the container, and if the pressure cannot be balanced properly, there is a risk that the container will explode. Therefore, we created pores for pressure balance (Unexamined Japanese Patent Publication No. 1999-1-
37497), and this was further developed by providing a buffer passage to prevent the volatile component AS from diffusing outside the container (Japanese Patent Application No. 01-272542), which serves as a diffusion barrier for AS. A number of innovations have been made.

これにより、完全な気密容器でなくとも、GaAS融液
からのAsの解離を防ぐことができるため、簡便で操作
性の高い装置で熱歪の小さい良質の結晶を育成できるよ
うになっている。
This makes it possible to prevent the dissociation of As from the GaAS melt even if the container is not completely airtight, making it possible to grow high-quality crystals with low thermal strain using a simple and highly operable device.

[発明が解決しようとする課題] しかし、熱歪が小さくAsの解離を防ぐことができるこ
れらの方法でも、容器内外の圧力変動に伴い、容器外の
ガスが流入してくる。そのため、融液原料を収容する段
階で不純物汚染を防いても、成長中に容器外部の不純物
(例えばSiなど)を含むガスが流入し、育成結晶が汚
染される可能性がある。GaAsを始めとする化合物半
導体では高純度が要求され、また不純物を添加する場合
でも、限られた元素を限られた濃度で添加するため、前
記のように偶然に左右される不純物の混入は最も好まし
くない現象であり大きな問題である。
[Problems to be Solved by the Invention] However, even with these methods that have small thermal strain and can prevent dissociation of As, gas from outside the container flows in due to pressure fluctuations inside and outside the container. Therefore, even if impurity contamination is prevented at the stage of accommodating the melt raw material, gas containing impurities (for example, Si, etc.) from outside the container may flow in during growth, and the grown crystal may be contaminated. Compound semiconductors such as GaAs require high purity, and even when impurities are added, limited elements are added at limited concentrations, so impurity contamination caused by chance as mentioned above is the least likely. This is an undesirable phenomenon and a big problem.

本発明の目的は、気密容器に細孔や圧力緩衝通路を設け
た育成装置において化合物半導体結晶を育成する場合に
、外部からの不純物ガスの流入を防ぐための緩衝空間を
介在させることによって、上述した従来技術の欠点を解
消して、高純度な化合物半導体結晶を育成することがで
きる化合物半導体結晶の育成装置を提供することにある
An object of the present invention is to provide the above-mentioned method by interposing a buffer space to prevent the inflow of impurity gas from the outside when growing a compound semiconductor crystal in a growth apparatus having pores and pressure buffer passages in an airtight container. An object of the present invention is to provide a compound semiconductor crystal growth apparatus that can grow highly pure compound semiconductor crystals by eliminating the drawbacks of the prior art.

[課題を解決するための手段] 本発明は、化合物半導体aaを収容したるつは全体を気
密性の高い容器で覆い、この気密容器内を、融液を構成
する化合物元素のうち蒸気圧の高い方の元素ガスを含む
雰囲気とし・、気密容器に容器内外を連通ずる流路の紋
られた圧力緩衝路を設けた化合物半導体結晶の育成装置
に連用される。
[Means for Solving the Problems] The present invention provides that the crucible containing the compound semiconductor aa is entirely covered with a highly airtight container, and that the vapor pressure of the compound elements constituting the melt is controlled inside the airtight container. It is used for compound semiconductor crystal growth equipment, which has an atmosphere containing a higher elemental gas and has a pressure buffer path in an airtight container with a flow path communicating between the inside and outside of the container.

そして、空間的に狭められた圧力緩衝路に加えて、空間
的に広げられた圧力緩衝空間を設ける。
In addition to the spatially narrowed pressure buffer path, a spatially widened pressure buffer space is provided.

この圧力緩衝空間は、圧力緩衝路の8入口のいずれか、
あるいは両方に、気密容器内のガスが充満した空間の体
積とほぼ同等か、それ以上の容積を有する圧力緩衝容器
で構成される。
This pressure buffer space can be any of the 8 inlets of the pressure buffer path,
Alternatively, both may be configured with a pressure buffer container having a volume that is approximately equal to or larger than the volume of the space filled with gas within the airtight container.

圧力M街路には細孔、圧力緩衝通路が含まれ、さらにこ
の圧力緩衝通路には細管、ラビリンス構造物が含まれる
The pressure M street includes pores and pressure buffer passages, and the pressure buffer passages further include capillaries and labyrinth structures.

圧力緩衝容器は、圧力緩衝路から入ったガスを逃し、ま
たは容器内にガスを入れる適当なガス出入すの孔をもつ
容器で構成し・で、これを気密容器に設けた圧力緩衝路
に取り付ける。取り付ける位置は、気密容器の内部でも
、気密容器の外部でもよく、細孔や緩衝通路のガス出入
口の部分に取り付ける。圧力緩衝容器の容積はできる限
り大きいことが好ましい。おおよその百安として気密容
器内のガスで満たされた空間の体積とほぼ同等の容積を
もてば、ガスの出入りに伴う汚染現象を効果的に緩和で
きる。
A pressure buffer container consists of a container with suitable gas inlet/output holes to release gas from the pressure buffer path or to introduce gas into the container, and this is attached to the pressure buffer path provided in the airtight container. . The mounting position may be inside the airtight container or outside the airtight container, and it may be installed at the gas inlet/outlet portion of the pore or buffer passage. It is preferable that the volume of the pressure buffer container is as large as possible. If the volume is roughly equivalent to the volume of the space filled with gas in an airtight container, it will be possible to effectively alleviate the contamination phenomenon caused by the inflow and outflow of gas.

緩衝空間を構成する容器の材料としては、高温において
安定で、所望する半導体結晶への新たな不純物汚染源と
ならない高純度な材料がよく、気密容器ないしるつぼの
材料と同様に、例えは、パイロリティックBN(pBN
)、石英、アルミナ、チッ化ホウ素、チッ化ケイ素、炭
化シリコンなどが好ましい。
The material for the container constituting the buffer space is preferably a high-purity material that is stable at high temperatures and does not become a new source of impurity contamination to the desired semiconductor crystal. BN (pBN
), quartz, alumina, boron nitride, silicon nitride, silicon carbide, etc. are preferable.

[作用コ 気密容器内のガスが充満した空間の体積とほぼ同等かそ
れ以上の容積を有する圧力緩衝容器が圧力緩衝路に備え
られていると、菟密容器内外の圧力変動コニ伴い気密容
器外のガスが流入しようとしても、空間的な広がりのた
めガスの圧力緩衡惟が高く、ガスの流動性が低く抑えら
れるので、その外部のガスの流れは圧力緩衝容器内に止
まり、融液に触れないよいにすることができる。
[Effects] If a pressure buffer vessel with a volume that is approximately equal to or larger than the volume of the space filled with gas inside the airtight container is provided in the pressure buffer path, pressure fluctuations inside and outside the airtight container will occur, causing damage to the outside of the airtight container. Even if some gas tries to flow in, the pressure relaxation force of the gas is high due to the spatial expansion, and the fluidity of the gas is kept low, so the flow of the external gas stops inside the pressure buffer vessel and does not flow into the melt. You can avoid touching it.

したがって、融液原料を収容する段階で不純物汚染を防
げば、成長中に容器外部の不純物を含むガスか)流入す
ることがなく、育成結晶も汚染されることがなくなる。
Therefore, if impurity contamination is prevented at the stage of storing the melt raw material, gas containing impurities from outside the container will not flow into the container during growth, and the grown crystal will not be contaminated.

[実施例] 以下、G a A S単結晶の育成に連用した本発明の
実施例を図面を用いて説明する。
[Example] Hereinafter, an example of the present invention applied to the growth of a Ga AS single crystal will be described with reference to the drawings.

実施例1 第1図に示すような融液シール引上げ装置を用いた。A
sガス雰囲気を作るために、るつぼ1の周囲を気密容器
2て覆い、この気密容器2をざらに不活性カスで充填し
た高圧容器7て覆う構造になっている。
Example 1 A melt seal pulling device as shown in FIG. 1 was used. A
In order to create a gas atmosphere, the crucible 1 is surrounded by an airtight container 2, and this airtight container 2 is covered by a high pressure container 7 roughly filled with inert dregs.

気密容器2はpBN製で、その下部に同じくpBN製の
るつぼ1が載置され、その底部に気密容器2を回転させ
るための回転軸9が取り付けられる。気密容器2の上部
は引上軸3等を気密容器2内に挿入するために開口して
いる。引上軸3の挿入されたこの開口にB203M1体
封止剤4が流し込まれて、開口が塞がるようになってい
る。このように気密容器2を密閉することにより、気密
容器2の中をA s雰囲気として、るつぼ1円に溜られ
るGaAs1i!l!a5の表面からのAs解離を防ぐ
ように構成されている。また、GaAs結晶6を成長さ
せる成長温度を与えるためのヒータ8が気密容器2の外
周に設けられる。
The airtight container 2 is made of pBN, and a crucible 1 also made of pBN is placed at the bottom thereof, and a rotating shaft 9 for rotating the airtight container 2 is attached to the bottom of the crucible 1 . The upper part of the airtight container 2 is open for inserting the pulling shaft 3 and the like into the airtight container 2. B203M1 body sealant 4 is poured into this opening into which the pulling shaft 3 is inserted, so that the opening is closed. By sealing the airtight container 2 in this way, an As atmosphere is created inside the airtight container 2, and the GaAs1i! l! It is configured to prevent As dissociation from the surface of a5. Further, a heater 8 is provided on the outer periphery of the airtight container 2 to provide a growth temperature for growing the GaAs crystal 6.

上記気密容器2の上部と下部との間は縮径され、この縮
径部に、気密容器2内外の圧力バランスを取りつつ、気
密容器2内のAsガスの漏れるのを可能な範囲で防止す
るラビリンス構造物10が設けられている。
The diameter between the upper and lower parts of the airtight container 2 is reduced, and this reduced diameter portion is used to prevent the As gas inside the airtight container 2 from leaking to the extent possible while balancing the pressure inside and outside the airtight container 2. A labyrinth structure 10 is provided.

気密容器2の気密のため引上軸3と気密容器20開にB
2O3液体封止剤4゛を入れ融液シールとした。気密容
器2にはAsの拡散防止のための緩衝路として、ラビリ
ンス構造物10を設けた。このラビリンス構造物10は
気菌容器2内外の圧力バランスを取りつつ、気密容器2
内のAsカスの漏−れるのを可能な範囲で防止する。二
のラビリンス構造物10は、気密容器2に設けた口金状
の開口と、この口金状の開口を塞ぐキャップとから構成
され、これにより蛇行通路が形成される。
B to open the lifting shaft 3 and the airtight container 20 to make the airtight container 2 airtight.
4゛ of 2O3 liquid sealant was added to form a melt seal. A labyrinth structure 10 was provided in the airtight container 2 as a buffer path to prevent diffusion of As. This labyrinth structure 10 balances the pressure inside and outside the air-tight container 2, and
Prevent leakage of As scum inside to the extent possible. The second labyrinth structure 10 is composed of a cap-shaped opening provided in the airtight container 2 and a cap that closes the cap-shaped opening, thereby forming a meandering passage.

また、緩衝空間として気密容器2の体積とほぼ同等の容
積のpBN製の圧力緩衝容器12をラビリンス構造物1
0の外側に連続して設けた。この圧力緩衝容器12はガ
ス出入すの孔13をもち、この孔13の断面は容器断面
に比して可能な範囲で小さくする。
In addition, as a buffer space, a pressure buffer container 12 made of pBN having a volume almost equal to the volume of the airtight container 2 is used as a buffer space in the labyrinth structure 1.
Continuously provided outside of 0. This pressure buffer container 12 has a hole 13 for gas inflow and outflow, and the cross section of the hole 13 is made as small as possible compared to the cross section of the container.

このように圧力容器7の内ごこpBN製の気密容器2を
配し、その中に収容した同しくpBN製のるつぼ1にG
aAs融液5を収容し、GaAS種結晶1を融液上部よ
り接触させ回転しながら引上げることによりGaAs結
晶を育成するようにした。具体的には、Ga6800g
、As7450gから110mm径の結晶で長さ260
mmのものを成長させた。引上速度10mm/hて<1
00〉方位の結晶を作製した。得られた結晶は、107
″Ω・cm台の高抵抗を示し、不純物濃度は5 X 1
014c m−3以下の検出限界以下であった。
In this way, the airtight container 2 made of pBN is arranged inside the pressure vessel 7, and the crucible 1 also made of pBN housed therein is heated with G.
An aAs melt 5 was contained therein, and a GaAs seed crystal 1 was brought into contact with the melt from above and pulled up while rotating, thereby growing a GaAs crystal. Specifically, Ga6800g
, 110mm diameter crystal from As7450g, length 260
mm was grown. <1 at pulling speed 10mm/h
A crystal with a 00> orientation was produced. The obtained crystal is 107
It exhibits a high resistance on the order of ''Ω・cm, and the impurity concentration is 5 x 1
It was below the detection limit of 0.014cm-3 or less.

品質の再現性は良好であった。Quality reproducibility was good.

実施例2 第2図に示すように、縦型ブリッジマン装置を用いた。Example 2 As shown in FIG. 2, a vertical Bridgman apparatus was used.

縦型ブリッジマン装置による場合も、ASカス雰囲気を
作るために、I)BN製のるつぼ21全体をpBN製の
気密容器22て覆い、GaAS融液25からのAsの解
離を防ぐために、気密容器22の中に配したA Sを加
熱ガス化してAs雰囲気としている。そして、この気密
容器22をさらに圧力容器27て覆う構造になっている
5゜気密容器22の外周にはヒータ28が配設され、気
密容器22内部のたで長のるつは21全体を均熱化して
いる。
In the case of the vertical Bridgman apparatus, in order to create an AS scum atmosphere, I) cover the entire BN crucible 21 with a pBN airtight container 22, and in order to prevent As from dissociating from the GaAS melt 25, The As placed in the chamber 22 is heated and gasified to create an As atmosphere. A heater 28 is disposed around the outer periphery of the 5° airtight container 22, which is constructed to further cover this airtight container 22 with a pressure container 27. It's heating up.

気密容器22内に納めたたて長のるつは21の底部には
、GaAs種結晶31が載置される。このGaAs種結
晶31の上にG a A s融液25を入れ、るつは底
から固化させてGaAs結晶26を得る。
A GaAs seed crystal 31 is placed at the bottom of a vertically long crucible 21 housed in an airtight container 22 . A GaAs melt 25 is poured onto the GaAs seed crystal 31, and the melt is solidified from the bottom to obtain a GaAs crystal 26.

上記し・たような気密容器22の頂部に圧力バランス用
のラビリンス構造物30を設け、その外り1;にpBN
製の緩衝空間を構成する圧力緩衝容器32を設けた。 
このように圧力容器27内にpBN製のるつぼ21を含
むpBN製の気密容器22を入れて、るつぼ下部ここG
 a A s種結晶31を配し、収容したGaAsa液
25の下25))ら同化させる。具体的には、るつぼ2
1内にGa6800g、As7450gを入れ反応させ
た後、徐冷することで下方より結晶を育成し、直径11
0mmの結晶約14250gを得た。比抵抗は107Ω
・cm台の高抵抗で、不純物濃度は5X1014cm−
3以下であった。良好な高純度結晶が得られた。
A labyrinth structure 30 for pressure balance is provided at the top of the airtight container 22 as described above, and pBN is attached to the outside 1;
A pressure buffer container 32 was provided which constitutes a buffer space made of plastic.
In this way, the airtight container 22 made of pBN containing the crucible 21 made of pBN is placed in the pressure vessel 27, and the lower part of the crucible G
A As seed crystal 31 is placed under the contained GaAsa liquid 25 (25)) and assimilated. Specifically, Crucible 2
After putting 6,800 g of Ga and 7,450 g of As into a chamber of
Approximately 14,250 g of 0 mm crystals were obtained. Specific resistance is 107Ω
・High resistance on the cm level, impurity concentration 5X1014cm-
It was 3 or less. Good high purity crystals were obtained.

比較例1 第2図に示す垂直ブリッジマン装置で圧力緩衝容器22
を外して結晶を作製した。その他の条件は実施例2と同
一である。その結果を比較して下表に示す。
Comparative Example 1 Pressure buffer vessel 22 was installed in the vertical Bridgman apparatus shown in FIG.
was removed to prepare a crystal. Other conditions are the same as in Example 2. The results are compared and shown in the table below.

表 結晶比較 実施例1,2では高純度の結晶が得られたのに対し、比
較例ではSiの汚染が見られた。これは気密容器外部の
部材から発生した汚染ガスが成長中の逆拡散で気密容器
内に侵入したためと考えられる。
Table Comparative Crystal Examples 1 and 2 yielded highly pure crystals, whereas Comparative Example showed Si contamination. This is considered to be because contaminated gas generated from members outside the airtight container entered the airtight container through back diffusion during growth.

以上述べたように本実施例によれば、圧力緩衝路に加え
て圧力緩衝容器を備えて、気密容器内外の圧力バランス
をとりつつ、さらにカスの緩衝性を高めることにより、
気密容器内の元素ガスの漏れを最小限に抑え、かつ気密
容器外から気密容器内へ不純物を含むG a A s 
f)′S流入し・ないようにしたので、所望の元素ガス
雰囲気を再現性良く安定に維持することができる。し・
たがって、育成結晶の組成制御が容易になり、従来のよ
うに偶然に左右される不純物の混入が生しることがなく
、熱歪みの小さな環境下で化合物半導体結晶を安定かつ
安全に育成することができる。このことは、半導体の分
野ではますます増えている高純度化の要請に十分に応え
ることができる。
As described above, according to this embodiment, the pressure buffer container is provided in addition to the pressure buffer path, and the pressure balance inside and outside the airtight container is maintained, while further improving the cushioning property of the dregs.
Minimize the leakage of elemental gases in the airtight container and prevent gas containing impurities from outside the airtight container into the airtight container.
f) Since the inflow of 'S is prevented, the desired elemental gas atmosphere can be stably maintained with good reproducibility. death·
Therefore, it is easier to control the composition of the grown crystal, there is no chance of contamination with impurities as in the past, and compound semiconductor crystals can be grown stably and safely in an environment with little thermal distortion. be able to. This can fully meet the ever-increasing demand for higher purity in the semiconductor field.

また、既に提案されている装置に圧力緩衝容器を加える
という単純な構成で高品質な結晶を安定に育成すること
ができるため経済性に優れる。
In addition, high-quality crystals can be stably grown with a simple configuration of adding a pressure buffer container to an already proposed device, which is highly economical.

なお、上記実施例1,2ては圧力緩衝容器をラビリンス
構造物の通路の外側に設けたが、既述したように通路の
内側、即ち途中に設けてもよい。
In the first and second embodiments, the pressure buffer container was provided outside the passage of the labyrinth structure, but it may be provided inside the passage, that is, in the middle, as described above.

そして、圧力緩衝容器内は単一空間で構成する代りに、
複数の空間に区画形成してこれらを互に連通ずるように
してもよい。
And instead of configuring the inside of the pressure buffer container as a single space,
The space may be divided into a plurality of spaces and communicated with each other.

また、本発明は、上記実施例で扱ったG a A s以
外の他の化合物半導体、例えばI nAs、InP、G
aPなどにも同様に通用できることはもちろんである。
Further, the present invention is applicable to compound semiconductors other than GaAs used in the above embodiments, such as InAs, InP, and G
Of course, it can also be applied to aP and the like.

[発明の効果] 本発明によれば、緩衝空間を介在させることにより、外
部からの不純物の混入を有効に防止できるため、高純度
の結晶を得ることができ、また安定した品質の化合物半
導体結晶を再現性良く得ることができる。
[Effects of the Invention] According to the present invention, by providing a buffer space, it is possible to effectively prevent contamination of impurities from the outside, so that it is possible to obtain a crystal of high purity, and also to obtain a compound semiconductor crystal of stable quality. can be obtained with good reproducibility.

【図面の簡単な説明】 第1図は本発明の第1実施例による引上装置の構成図、
第2図は第2実施例によるたて型ブリッジマン装置の構
成図である。 2.22・・・気密容器(pBN製)、5.25・・・
G a A s融液、6.26 ・・・G a A s
結晶、7.27・・・圧力容器、8.28・・・ヒータ
、10.30・・・ラビリンス構造物(pBN製)、1
1.31・・・GaAs種結晶、12.32・・・圧力
緩衝容器(pB第1実施例による引上装置 第1図 第2実施例によるたて型)゛リフノ゛7ノ装置、  、
  第2図
[BRIEF DESCRIPTION OF THE DRAWINGS] FIG. 1 is a configuration diagram of a lifting device according to a first embodiment of the present invention;
FIG. 2 is a block diagram of a vertical Bridgman device according to a second embodiment. 2.22...Airtight container (made of pBN), 5.25...
G a As melt, 6.26...G a As
Crystal, 7.27... Pressure vessel, 8.28... Heater, 10.30... Labyrinth structure (made of pBN), 1
1.31...GaAs seed crystal, 12.32...Pressure buffer vessel (pB pulling device according to the first embodiment, Fig. 1, vertical type according to the second embodiment), ``Rifno'' 7 device,
Figure 2

Claims (1)

【特許請求の範囲】 化合物半導体融液を収容したるつぼ全体を気密性の高い
容器で覆い、この気密容器内を、前記融液を構成する化
合物元素のうち蒸気圧の高い方の元素ガスを含む雰囲気
とし、前記気密容器に容器内外を連通する流路を絞った
圧力緩衝路を設けた化合物半導体結晶の育成装置におい
て、 前記圧力緩衝路の出入口の少なくとも一方に、前記気密
容器内のガスが充満した空間の体積とほぼ同等か、それ
以上の容積を有する圧力緩衝容器を備えたことを特徴と
する化合物半導体結晶の育成装置。
[Scope of Claims] The entire crucible containing a compound semiconductor melt is covered with a highly airtight container, and the inside of this airtight container contains an elemental gas having a higher vapor pressure among the compound elements constituting the melt. In a compound semiconductor crystal growth apparatus, the atmosphere is provided in the airtight container and a pressure buffer path with a narrowed flow path communicating between the inside and outside of the container is provided, at least one of the entrance and exit of the pressure buffer path is filled with gas in the airtight container. 1. A compound semiconductor crystal growth apparatus comprising a pressure buffer container having a volume substantially equal to or larger than the volume of the space.
JP31942890A 1990-11-22 1990-11-22 Compound semiconductor crystal growth device Expired - Lifetime JPH0699221B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31942890A JPH0699221B2 (en) 1990-11-22 1990-11-22 Compound semiconductor crystal growth device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31942890A JPH0699221B2 (en) 1990-11-22 1990-11-22 Compound semiconductor crystal growth device

Publications (2)

Publication Number Publication Date
JPH04187587A true JPH04187587A (en) 1992-07-06
JPH0699221B2 JPH0699221B2 (en) 1994-12-07

Family

ID=18110087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31942890A Expired - Lifetime JPH0699221B2 (en) 1990-11-22 1990-11-22 Compound semiconductor crystal growth device

Country Status (1)

Country Link
JP (1) JPH0699221B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04367589A (en) * 1991-06-11 1992-12-18 Kobe Steel Ltd Production of compound semiconductor single crystal
WO1995033873A1 (en) * 1994-06-02 1995-12-14 Kabushiki Kaisha Kobe Seiko Sho Compound monocrystal manufacturing method and apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04367589A (en) * 1991-06-11 1992-12-18 Kobe Steel Ltd Production of compound semiconductor single crystal
WO1995033873A1 (en) * 1994-06-02 1995-12-14 Kabushiki Kaisha Kobe Seiko Sho Compound monocrystal manufacturing method and apparatus

Also Published As

Publication number Publication date
JPH0699221B2 (en) 1994-12-07

Similar Documents

Publication Publication Date Title
TWI361847B (en) Method and equipment for aln-monocrystal production with gas-pervious crucible-wall
US8858709B1 (en) Silicon carbide with low nitrogen content and method for preparation
US20120285370A1 (en) Sublimation growth of sic single crystals
US11624124B2 (en) Silicon carbide substrate and method of growing SiC single crystal boules
US11781245B2 (en) Silicon carbide substrate and method of growing SiC single crystal boules
EP0494312A1 (en) Method and apparatus for making single crystal
US4664742A (en) Method for growing single crystals of dissociative compounds
JPH01215788A (en) Method for pulling up crystal
JPH04187587A (en) Device of growing crystal of compound semiconductor
KR100438628B1 (en) Single crystal pulling device
CN109666968B (en) Method for producing silicon single crystal
JPH0314800B2 (en)
JP2576239B2 (en) Compound semiconductor crystal growth equipment
US5145550A (en) Process and apparatus for growing single crystals of III-V compound semiconductor
JPS60264390A (en) Growing method for single crystal
JPH06102588B2 (en) Method for growing compound semiconductor crystal
JPH0365593A (en) Single crystal growing apparatus
JP2001010890A (en) Single crystal pulling device
KR20160068240A (en) Ingot growth equipment
CN114775042B (en) Crucible for crystal growth and crystal growth method
JP2000026190A (en) Equipment for growing compound single crystal and method for growing compound single crystal, using the same
JPS63274691A (en) Method and device for growing single crystal
KR940011911B1 (en) Boat for growing a single crystal
JPS62216990A (en) Single crystal growth device
JPS62297291A (en) Pulling-up system for gaas single crystal

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081207

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081207

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091207

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 16

EXPY Cancellation because of completion of term