JPH0699221B2 - Compound semiconductor crystal growth device - Google Patents

Compound semiconductor crystal growth device

Info

Publication number
JPH0699221B2
JPH0699221B2 JP31942890A JP31942890A JPH0699221B2 JP H0699221 B2 JPH0699221 B2 JP H0699221B2 JP 31942890 A JP31942890 A JP 31942890A JP 31942890 A JP31942890 A JP 31942890A JP H0699221 B2 JPH0699221 B2 JP H0699221B2
Authority
JP
Japan
Prior art keywords
airtight container
container
crystal
compound semiconductor
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP31942890A
Other languages
Japanese (ja)
Other versions
JPH04187587A (en
Inventor
知己 稲田
真佐知 柴田
隆 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP31942890A priority Critical patent/JPH0699221B2/en
Publication of JPH04187587A publication Critical patent/JPH04187587A/en
Publication of JPH0699221B2 publication Critical patent/JPH0699221B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はGaAs結晶などの化合物半導体結晶を気密容器を
用いて育成する化合物半導体結晶の育成装置に係り、特
に圧力の緩衝空間を設けて気密容器内への不純物の流入
を抑制したものに関する。
Description: TECHNICAL FIELD The present invention relates to a compound semiconductor crystal growing apparatus for growing a compound semiconductor crystal such as a GaAs crystal using an airtight container, and in particular, providing a pressure buffer space to provide airtightness. The present invention relates to a device in which the inflow of impurities into a container is suppressed.

[従来の技術] 化合物半導体結晶、例えばGaAs結晶は、発光特性、磁電
変換特性、電子の高速性など、他の材料にない優れた特
長を有しており、工業的価値が極めて高い材料である。
その結晶成長方法には多数の方法が提案されており、工
業的生産に用いられている方法も幾つかある。その中で
広く用いられているのがB23等の不活性液体をGaAs融
液に浮かべ、溶液からのAsの解離を防ぎつつ、融液に接
触させた種結晶を核として、回転しながら引き上げる液
体封止引上げ法(LEC法)である。この方法は比較的簡
単に単結晶が得られる特長を有し、工業生産性の高い方
法であり、LSI用の半絶縁性GaAs結晶などの用途で実用
化されている。
[Prior Art] A compound semiconductor crystal, for example, a GaAs crystal, has excellent properties not found in other materials, such as light emission characteristics, magnetoelectric conversion characteristics, and high electron speed, and is a material of extremely high industrial value. .
A large number of methods have been proposed for the crystal growth method, and some methods have been used for industrial production. Among them, the most widely used method is to float an inert liquid such as B 2 and 3 on a GaAs melt, prevent the dissociation of As from the solution, and rotate the seed crystal in contact with the melt as a nucleus. It is a liquid sealing pulling method (LEC method) that pulls up while. This method has a feature that a single crystal can be obtained relatively easily, has a high industrial productivity, and has been put to practical use in applications such as semi-insulating GaAs crystal for LSI.

ところで、B2O3の不活性液体をGaAs融液に浮かべると、
この部分の温度勾配が大きくなって、結晶が熱歪みを受
ける。GaAs結晶は、本来脆くて、熱歪みに弱い物質であ
るため、製造中に結晶が受ける熱歪みにより、転位と呼
ばれる結晶欠陥を発生したり、甚だしい場合には結晶に
クラックが生ずることがある。これらを改善するために
は、結晶全体の温度分布を均一にし、熱歪みを小さくす
ることが有効である。ただしこの場合には、結晶全体の
温度が上昇するため、引上げ中の結晶表面からのAsの解
離が生じ、結晶表面にGaの析出が生じたり、新たな転位
の発生源ともなる。
By the way, when an inert liquid of B 2 O 3 is floated on the GaAs melt,
The temperature gradient in this portion becomes large, and the crystal is subjected to thermal strain. Since GaAs crystals are inherently brittle and weak against thermal strain, the thermal strain applied to the crystals during manufacturing may cause crystal defects called dislocations or, in extreme cases, cracks in the crystals. In order to improve these, it is effective to make the temperature distribution of the entire crystal uniform and reduce the thermal strain. However, in this case, since the temperature of the entire crystal rises, As is dissociated from the crystal surface during pulling, Ga is precipitated on the crystal surface, and a new source of dislocations is generated.

そこで、これらの問題を解消するために、LEC法を改善
してるつぼの周囲を石英容器等から構成した気密容器で
覆い、引上軸と気密容器との間隙をB2O3液体封止剤で塞
ぎ、気密容器の中をAs雰囲気とすることにより、GaAs融
液表面からのAs解離を防ぐようにしたものが提案された
(特公昭61−1397号公報)。2重融液シール引上法と呼
ばれ、熱歪みの小さな環境でGaAs結晶を育成するのに最
適な方法である。
Therefore, in order to solve these problems, the LEC method was improved by covering the crucible with an airtight container made of a quartz container or the like, and the gap between the pulling shaft and the airtight container was covered with a B 2 O 3 liquid sealant. It has been proposed to prevent the dissociation of As from the surface of the GaAs melt by closing the inside of the container with an As atmosphere in an airtight container (JP-B-61-1397). It is called the double melt seal pull-up method and is the most suitable method for growing GaAs crystals in an environment with small thermal strain.

もう一つ別な熱歪みを低減する方法として、縦型ブリッ
ジマン法と呼ばれるものがある。縦長のるつぼにGaAs原
料を入れてGaAs溶液を作り、種結晶を設けたるつぼ底か
ら固化されて、GaAs結晶を製造するものである。この方
法では、融液からのAsの解離を防ぐ必要から、るつぼ全
体を気密容器で覆い、その中に配したAsを加熱ガス化し
てAs雰囲気とする工夫がなされている(W.A.Gault他.J.
Crystal Growth 74,P491(1986年))。LEC法に比べ
て、るつぼ全体の均熱化が容易であり、転位の少ない結
晶が得られる。
Another method for reducing thermal strain is called the vertical Bridgman method. A GaAs raw material is put into a vertically long crucible to make a GaAs solution, and the GaAs crystal is manufactured by solidifying from the bottom of the crucible provided with a seed crystal. In this method, since it is necessary to prevent the dissociation of As from the melt, the whole crucible is covered with an airtight container, and the As placed in the crucible is heated and gasified to create an As atmosphere (WAGault et al. J.
Crystal Growth 74, P491 (1986)). Compared to the LEC method, it is easier to soak the entire crucible and a crystal with less dislocations can be obtained.

前述した方法はいずれも熱歪の小さな結晶を作製でき
る。しかし基本的に気密容器中での成長であるため容器
内外の圧力バランスをとる必要があり、圧力バランスが
うまくとれない場合は、容器が爆発する恐れがある。そ
こで、圧力バランスのための細孔を設けたり(特開平1
−37497号公報)、それをさらに発展させて揮発性成分
のAsが容器外へ拡散するのを防ぐための緩衝通路を設け
て(特願平01−272542号明細書)、Asの拡散障壁とする
などの工夫がなされている。これにより、完全な気密容
器でなくとも、GaAs融液からのAsの解離を防ぐことがで
きるため、簡便で操作性の高い装置で熱歪の小さい良質
の結晶を育成できるようになっている。
Any of the methods described above can produce a crystal with a small thermal strain. However, since the growth is basically in an airtight container, it is necessary to balance the pressure inside and outside the container, and if the pressure balance is not good, the container may explode. Therefore, pores for pressure balance may be provided (see Japanese Patent Laid-Open No. HEI-1
-37497), a buffer passage for preventing the diffusion of As, which is a volatile component, out of the container is provided by further developing it (Japanese Patent Application No. 01-272542) to provide a diffusion barrier for As. It has been devised to do so. As a result, it is possible to prevent As from being dissociated from the GaAs melt even if the container is not a completely airtight container, so that it is possible to grow a good quality crystal with small thermal strain in a simple and highly operable device.

[発明が解決しようとする課題] しかし、熱歪が小さくAsの解離を防ぐことができるこれ
らの方法でも、容器内外の圧力変動に伴い、容器外のガ
スが流入してくる。そのため、融液原料を収容する段階
で不純物汚染を防いでも、成長中に容器外部の不純物
(例えばSiなど)を含むガスが流入し、育成結晶が汚染
される可能性がある。GaAsを始めとする化合物半導体で
は高純度が要求され、また不純物を添加する場合でも、
限られた元素を限られた濃度で添加するため、前記のよ
うに偶然に左右される不純物の混入は最も好ましくない
現象であり大きな問題である。
[Problems to be Solved by the Invention] However, even with these methods in which the thermal strain is small and the dissociation of As can be prevented, the gas outside the container flows in as the pressure inside and outside the container fluctuates. Therefore, even if impurity contamination is prevented at the stage of accommodating the melt raw material, there is a possibility that a gas containing impurities (for example, Si or the like) outside the container may flow in during growth to contaminate the grown crystal. High purity is required for compound semiconductors such as GaAs, and even when impurities are added,
Since a limited element is added at a limited concentration, the accidental inclusion of impurities as described above is the most undesirable phenomenon and is a serious problem.

本発明の目的は、気密容器に細孔や圧力緩衝通路を設け
た育成装置において化合物半導体結晶を育成する場合
に、外部からの不純物ガスの流入を防ぐための緩衝空間
を介在させることによって、上述した従来技術の欠点を
解消して、高純度な化合物半導体結晶を育成することが
できる化合物半導体結晶の育成装置を提供することにあ
る。
An object of the present invention is to provide a buffer space for preventing the inflow of an impurity gas from the outside when growing a compound semiconductor crystal in a growing device having a pore or a pressure buffer passage in an airtight container, thereby providing the above-mentioned structure. It is an object of the present invention to provide a compound semiconductor crystal growing device capable of growing a high-purity compound semiconductor crystal by solving the drawbacks of the conventional techniques.

[課題を解決するための手段] 本発明は、化合物半導体融液を収拾したるつぼ全体を気
密性の高い容器で覆い、この気密容器内を、融液を構成
する化合物元素のうち蒸気圧の高い方の元素ガスを含む
雰囲気とし、気密容器に容器内外を連通する流路の絞ら
れた圧力緩衝路を設けた化合物半導体結晶の育成装置に
適用される。
[Means for Solving the Problems] The present invention covers the entire crucible in which the compound semiconductor melt is collected with a highly airtight container, and the inside of this airtight container has a high vapor pressure among the compound elements constituting the melt. The present invention is applied to a compound semiconductor crystal growing apparatus in which an atmosphere containing the other element gas is provided and a pressure buffer passage having a narrowed passage for communicating the inside and the outside of the container is provided in an airtight container.

そして、空間的に狭められた圧力緩衝路に加え、空間的
に広げられた圧力緩衝空間を設ける。この圧力緩衝空間
は、圧力緩衝路の出入口のいずれか、あるいは両方に、
気密容器内のガスが充満した空間の体積とほぼ同等か、
それ以上の容積を有する圧力緩衝容器で構成される。
Then, in addition to the spatially narrowed pressure buffer passage, a spatially widened pressure buffer space is provided. This pressure buffer space is provided at either or both of the inlet and outlet of the pressure buffer passage.
Is the volume of the air-tight container almost equal to the volume of the space filled with gas?
It is composed of a pressure buffer container having a volume larger than that.

圧力緩衝路には細孔、圧力緩衝通路が含まれ、さらにこ
の圧力緩衝通路には細管、ラビリンス構造物が含まれ
る。
The pressure buffer passage includes pores and a pressure buffer passage, and the pressure buffer passage further includes a thin tube and a labyrinth structure.

圧力緩衝容器は、圧力緩衝路から入ったガスを逃し、ま
たは容器内にガスを入れる適当なガス出入りの孔をもつ
容器で構成して、これを気密容器に設けた圧力緩衝路に
取り付ける。取り付ける位置は、気密容器の内部でも、
気密容器の外部でもよく、細孔や緩衝通路のガス出入口
の部分に取り付ける。圧力緩衝容器の容積はできる限り
大きいことが好ましい。おおよその目安として気密容器
内のガスで満たされた空間の体積とほぼ同等の容積をも
てば、ガスの出入りに伴う汚染現象を効果的に緩和でき
る。
The pressure buffer container is constituted by a container having an appropriate gas inlet / outlet for letting out gas entering from the pressure buffer passage or allowing gas to enter the container, and this is attached to the pressure buffer passage provided in the airtight container. The mounting position is inside the airtight container,
It may be external to the airtight container, and attached to the gas inlet / outlet portion of the pores or buffer passage. The volume of the pressure buffer container is preferably as large as possible. As a rough guide, if the volume of the space filled with the gas in the airtight container is approximately the same, the pollution phenomenon due to the inflow and outflow of gas can be effectively mitigated.

緩衝空間を構成する容器の材料としては、高温において
安定で、所望する半導体結晶への新たな不純物汚染源と
ならない高純度な材料がよく、気密容器ないしるつぼの
材料と同様に、例えば、パイロリティックBN(pBN)、
石英、アルミナ、チッ化ホウ素、チッ化ケイ素、炭化シ
リコンなどが好ましい。
As a material of the container forming the buffer space, a high-purity material that is stable at high temperature and does not become a new impurity contamination source to a desired semiconductor crystal is preferable. Like the material of the airtight container or the crucible, for example, a pyrolytic BN (PBN),
Quartz, alumina, boron nitride, silicon nitride, silicon carbide and the like are preferable.

[作用] 気密容器内のガスは充満した空間の体積とほぼ同等かそ
れ以上の容積を有する圧力緩衝容器が圧力緩衝路に備え
られていると、気密容器内外の圧力変動に伴い気密容器
外のガスが流入しようとしても、空間的な広がりのため
ガスの圧力緩衝性が高く、ガスの流動性が低く抑えられ
るので、その外部のガスの流れは圧力緩衝容器内に止ま
り、融液に触れないようにすることができる。
[Operation] When the pressure buffer passage is equipped with a pressure buffer container having a volume approximately equal to or larger than the volume of the space filled with the gas in the airtight container, the pressure outside the airtight container will be affected by the pressure fluctuation inside and outside the airtight container. Even if the gas is about to flow in, the pressure spreadability of the gas is high due to the spatial expansion, and the fluidity of the gas is suppressed to a low level. Therefore, the flow of the gas outside it stops inside the pressure buffer container and does not touch the melt. You can

したがって、融液原料を収容する段階で不純物汚染を防
げば、成長中に容器外部の不純物を含むガスが流入する
ことがなく、育成結晶も汚染されることがなくなる。
Therefore, if impurity contamination is prevented at the stage of containing the melt raw material, the gas containing impurities outside the container does not flow during growth, and the grown crystal is not contaminated.

[実施例] 以下、GaAs単結晶の育成に適用した本発明の実施例を図
面を用いて説明する。
Example An example of the present invention applied to the growth of a GaAs single crystal will be described below with reference to the drawings.

実施例1 第1図に示すような融液シール引上げ装置を用いた。As
ガス雰囲気を作るために、るつぼ1の周囲を気密容器2
で覆い、この気密容器2をさらに不活性ガスで充填した
高圧容器7で覆う構造になっている。
Example 1 A melt seal pulling apparatus as shown in FIG. 1 was used. As
An airtight container 2 is placed around the crucible 1 to create a gas atmosphere.
The airtight container 2 is further covered with a high pressure container 7 filled with an inert gas.

気密容器2はpBN製で、その下部に同じくpBN製のるつぼ
1が載置され、その底部に気密容器2を回転させるため
の回転軸9が取り付けられる。気密容器2の上部は引上
軸3等を気密容器2内に挿入するために開口している。
引上軸3の挿入されたこの開口にB2O3液体封止剤4が流
し込まれて、開口が塞がるようになっている。このよう
に気密容器2を密閉することにより、気密容器2の中を
As雰囲気として、るつぼ1内に溜られるGaAs融液5の表
面からのAs解離を防ぐように構成されている。また、Ga
As結晶6を成長させる成長温度を与えるためのヒータ8
が気密容器2の外周に設けられる。
The airtight container 2 is made of pBN, and the crucible 1 also made of pBN is placed on the lower part of the airtight container 2, and the rotary shaft 9 for rotating the airtight container 2 is attached to the bottom of the crucible 1. The upper part of the airtight container 2 is open for inserting the pulling shaft 3 and the like into the airtight container 2.
The B 2 O 3 liquid sealant 4 is poured into the opening into which the pulling shaft 3 is inserted, so that the opening is closed. By sealing the airtight container 2 in this manner, the inside of the airtight container 2 is closed.
The As atmosphere is configured to prevent As dissociation from the surface of the GaAs melt 5 accumulated in the crucible 1. Also, Ga
Heater 8 for giving a growth temperature for growing As crystal 6
Are provided on the outer periphery of the airtight container 2.

上記気密容器2の上部と下部との間は縮径され、この縮
径部に、気密容器2内外の圧力バランスを取りつつ、気
密容器2内のAsガスの漏れるのを可能な範囲で防止する
ラビリンス構造物10が設けられている。
A diameter is reduced between the upper part and the lower part of the airtight container 2, and the As gas in the airtight container 2 is prevented from leaking as much as possible while balancing the pressure inside and outside the airtight container 2 at the reduced diameter part. A labyrinth structure 10 is provided.

気密容器2の気密のため引上軸3と気密容器2の間にB2
O3液体封止剤4を入れ融液シールとした。気密容器2に
はAsの拡散防止のための緩衝路として、ラビリンス構造
物10を設けた。このラビリンス構造物10は気密容器2内
外の圧力バランスを取りつつ、気密容器2内のAsガスの
漏れるのを可能な範囲で防止する。このラビリンス構造
物10は、気密容器2に設けた口金状の開口と、この口金
状の開口を塞ぐキャップとから構成され、これにより蛇
行通路が形成される。
B 2 between the pulling shaft 3 and the airtight container 2 for airtightness of the airtight container 2.
O 3 liquid sealant 4 was put in to form a melt seal. The airtight container 2 is provided with a labyrinth structure 10 as a buffer passage for preventing diffusion of As. The labyrinth structure 10 prevents the As gas in the airtight container 2 from leaking to the extent possible while balancing the pressure inside and outside the airtight container 2. The labyrinth structure 10 is composed of a mouthpiece-shaped opening provided in the airtight container 2 and a cap that closes the mouthpiece-shaped opening, thereby forming a meandering passage.

また、緩衝空間として気密容器2の体積とほぼ同等の容
積のpBN製の圧力緩衝容器12をラビリンス構造物10の外
側に連続して設けた。この圧力緩衝容器12はガス出入り
の孔13をもち、この孔13の断面は容器断面に比して可能
な範囲で小さくする。
Further, as a buffer space, a pressure buffer container 12 made of pBN and having a volume substantially equal to the volume of the airtight container 2 was continuously provided outside the labyrinth structure 10. This pressure buffer container 12 has a gas inlet / outlet hole 13, and the cross section of this hole 13 is made as small as possible in comparison with the container cross section.

このように圧力容器7の内にpBN製の気密容器2を配
し、その中に収容した同じくpBN製のるつぼ1にGaAs融
液5を収容し、GaAs種結晶1を融液上部より接触させ回
転しながら引上げることによりGaAs結晶を育成するよう
にした。具体的には、Ga6800g、As7450gから110mm径の
結晶で長さ260mmのものを成長させた。引上速度10mm/h
で<100>方位の結晶を作製した。得られた結晶は、107
Ω・cm台の高抵抗を示し、不純物濃度は5×1014cm-3
下の検出限界以下であった。品質の再現性は良好であっ
た。
In this way, the airtight container 2 made of pBN is placed in the pressure vessel 7, and the GaAs melt 5 is placed in the crucible 1 made of pBN which is also placed therein, and the GaAs seed crystal 1 is brought into contact with the melt from above. The GaAs crystal was grown by pulling it while rotating. Specifically, a crystal having a diameter of 110 mm and a length of 260 mm was grown from Ga6800 g and As7450 g. Lifting speed 10mm / h
Then, a crystal having a <100> orientation was produced. The crystals obtained are 10 7
It showed a high resistance on the order of Ω · cm and the impurity concentration was below the detection limit of 5 × 10 14 cm −3 or less. The reproducibility of quality was good.

実施例2 第2図に示すように、縦型ブリッジマン装置を用いた。
縦型ブリッジマン装置による場合も、Asガス雰囲気を作
るために、pBN製のるつぼ21全体をpBN製の気密容器22で
覆い、GaAs融液25からのAsの解離を防ぐために、気密容
器22の中に配したAsを加熱ガス化してAs雰囲気としてい
る。そして、この気密容器22をさらに圧力容器27で覆う
構造になっている。気密容器22の外周にはヒータ28が配
設され、気密容器22内部のたて長のるつぼ21全体を均熱
化している。
Example 2 As shown in FIG. 2, a vertical Bridgman device was used.
Even in the case of using a vertical Bridgman apparatus, in order to create an As gas atmosphere, the entire crucible 21 made of pBN is covered with an airtight container 22 made of pBN to prevent the dissociation of As from the GaAs melt 25. The As placed inside is heated and gasified to create an As atmosphere. The airtight container 22 is further covered with the pressure container 27. A heater 28 is provided on the outer periphery of the airtight container 22 to uniformly heat the entire crucible 21 having a long length inside the airtight container 22.

気密容器22内に納めたたて長のるつぼ21の底部には、Ga
As種結晶31が載置される。このGaAs種結晶31の上にGaAs
融液25を入れ、るつぼ底から固化させてGaAs結晶26を得
る。
At the bottom of the long crucible 21 stored in the airtight container 22, Ga
An As seed crystal 31 is placed. GaAs on this GaAs seed crystal 31
The melt 25 is put and solidified from the bottom of the crucible to obtain a GaAs crystal 26.

上記したような気密容器22の頂部に圧力バランス用のラ
ビリンス構造物30を設け、その外側にpBN製の緩衝空間
を構成する圧力緩衝容器32を設けた、このように圧力容
器27内にpBN製のるつぼ21を含むpBN製の気密容器22を入
れて、るつぼ下部にGaAs種結晶31を配し、収容したGaAs
融液25の下方から固化させる。具体的には、るつぼ21内
にGa6800g、As7450gを入れ反応させた後、徐冷すること
で下方より結晶を育成し、直径110mmの結晶約14250gを
得た。比抵抗は107Ω・cm台の高抵抗で、不純物濃度は
5×1014cm-3以下であった。良好な高純度結晶が得られ
た。
A labyrinth structure 30 for pressure balance is provided on the top of the airtight container 22 as described above, and a pressure buffer container 32 constituting a buffer space made of pBN is provided outside the labyrinth structure 30, and thus made of pBN in the pressure container 27. A pBN airtight container 22 containing a crucible 21 was placed, and a GaAs seed crystal 31 was placed in the lower part of the crucible to accommodate the GaAs.
The melt 25 is solidified from below. Specifically, Ga6800 g and As7450 g were put into the crucible 21 and reacted, and then gradually cooled to grow a crystal from below to obtain about 14250 g of a crystal having a diameter of 110 mm. The specific resistance was as high as 10 7 Ω · cm, and the impurity concentration was 5 × 10 14 cm −3 or less. Good high-purity crystals were obtained.

比較例1 第2図に示す垂直ブリッジマン装置で圧力緩衝容器22を
外して結晶を作製した。その他の条件は実施例2と同一
である。その結果を比較して下表に示す。
Comparative Example 1 Crystals were produced by removing the pressure buffer container 22 with the vertical Bridgman apparatus shown in FIG. The other conditions are the same as in Example 2. The results are compared and shown in the table below.

実施例1,2では高純度の結晶が得られたのに対し、比較
例ではSiの汚染が見られた。これは気密容器外部の部材
から発生した汚染ガスが成長中の逆拡散で気密容器内に
侵入したためと考えられる。
While high-purity crystals were obtained in Examples 1 and 2, Si contamination was observed in Comparative Examples. It is considered that this is because the pollutant gas generated from the member outside the airtight container entered the airtight container by the reverse diffusion during the growth.

以上述べたように本実施例によれば、圧力緩衝路に加え
て圧力緩衝容器を備えて、気密容器内外の圧力バランス
をとりつつ、さらにガスの緩衝性を高めることにより、
気密容器内の元素ガスの漏れを最小限に抑え、かつ気密
容器外から気密容器内へ不純物を含むGaAsが流入しない
ようにしたので、所望の元素ガス雰囲気を再現性良く安
定に維持することができる。したがって、育成結晶の組
成制御が容易になり、従来のように偶然に左右される不
純物の混入が生じることがなく、熱歪みの小さな環境下
で化合物半導体結晶を安定かつ安全に育成することがで
きる。このことは、半導体の分野ではますます増えてい
る高純度化の要請に十分に応えることができる。
As described above, according to the present embodiment, by providing a pressure buffer container in addition to the pressure buffer passage, while balancing the pressure inside and outside the airtight container, by further enhancing the buffer property of gas,
Since leakage of elemental gas in the airtight container is minimized and GaAs containing impurities is prevented from flowing into the airtight container from outside the airtight container, the desired elemental gas atmosphere can be maintained with good reproducibility and stability. it can. Therefore, it becomes easy to control the composition of the grown crystal, and unlike the conventional case, it is possible to stably and safely grow the compound semiconductor crystal in an environment with a small thermal strain without accidentally mixing impurities. . This can sufficiently meet the ever-increasing demand for high purity in the field of semiconductors.

また、既に提案されている装置に圧力緩衝容器を加える
という単純な構成で高品質な結晶を安定に育成すること
ができるため経済性に優れる。
Further, since a high quality crystal can be stably grown with a simple structure in which a pressure buffer container is added to the already proposed apparatus, it is excellent in economic efficiency.

なお、上記実施例1,2では圧力緩衝容器をラビリンス構
造物の通路の外側に設けたが、既述したように通路の内
側、即ち途中に設けてもよい。そして、圧力緩衝容器内
は単一空間で構成する代りに、複数の空間に区画形成し
てこれらを互に連通するようにしてもよい。
Although the pressure buffer container is provided outside the passage of the labyrinth structure in the first and second embodiments, it may be provided inside the passage, that is, in the middle thereof as described above. The pressure buffer container may be divided into a plurality of spaces so that they communicate with each other, instead of forming a single space.

また、本発明は、上記実施例で扱ったGaAs以外の他の化
合物半導体、例えばInAs、InP、GaPなどにも同様に適用
できることはもちろんである。
Further, the present invention can be similarly applied to other compound semiconductors other than GaAs dealt with in the above embodiments, such as InAs, InP and GaP.

[発明の効果] 本発明によれば、緩衝空間を介在させることにより、外
部からの不純物の混入を有効に防止できるため、高純度
の結晶を得ることができ、また安定した品質の化合物半
導体結晶を再現性良く得ることができる。
[Effects of the Invention] According to the present invention, by interposing a buffer space, it is possible to effectively prevent impurities from entering from the outside, so that a high-purity crystal can be obtained, and a compound semiconductor crystal of stable quality can be obtained. Can be obtained with good reproducibility.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の第1実施例による引上装置の構成図、
第2図は第2実施例によるたて型ブリッジマン装置の構
成図である。 2、22…気密容器(pBN製)、5、25…GaAs融液、6、2
6…GaAs結晶、2、27…圧力容器、8、28…ヒータ、1
0、30…ラビリンス構造物(pBN製)、11、31…GaAs種結
晶、12、32…圧力緩衝容器(pBN製)。
FIG. 1 is a block diagram of a lifting device according to a first embodiment of the present invention,
FIG. 2 is a block diagram of a vertical Bridgman device according to the second embodiment. 2, 22 ... Airtight container (made of pBN), 5, 25 ... GaAs melt, 6, 2
6 ... GaAs crystal, 2, 27 ... Pressure vessel, 8, 28 ... Heater, 1
0, 30 ... Labyrinth structure (pBN), 11, 31 ... GaAs seed crystal, 12, 32 ... Pressure buffer container (pBN).

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】化合物半導体融液を収容したるつぼ全体を
気密性の高い容器で覆い、この気密容器内を、前記融液
を構成する化合物元素のうち蒸気圧の高い方の元素ガス
を含む雰囲気とし、前記気密容器に容器内外を連通する
流路を絞った圧力緩衝路を設けた化合物半導体結晶の育
成装置において、 前記圧力緩衝路の出入口の少なくとも一方に、前記気密
容器内のガスが充満した空間の体積とほぼ同等か、それ
以上の容積を有する圧力緩衝容器を備えたことを特徴と
する化合物半導体結晶の育成装置。
1. An atmosphere in which the whole crucible containing a compound semiconductor melt is covered with a highly airtight container, and the airtight container contains an element gas having a higher vapor pressure of the compound elements constituting the melt. And, in the growing device for a compound semiconductor crystal provided with a pressure buffer passage narrowing a flow path communicating between the inside and the outside of the airtight container, at least one of the inlet and outlet of the pressure buffer passage is filled with gas in the airtight container An apparatus for growing a compound semiconductor crystal, comprising a pressure buffer container having a volume substantially equal to or larger than the volume of space.
JP31942890A 1990-11-22 1990-11-22 Compound semiconductor crystal growth device Expired - Lifetime JPH0699221B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31942890A JPH0699221B2 (en) 1990-11-22 1990-11-22 Compound semiconductor crystal growth device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31942890A JPH0699221B2 (en) 1990-11-22 1990-11-22 Compound semiconductor crystal growth device

Publications (2)

Publication Number Publication Date
JPH04187587A JPH04187587A (en) 1992-07-06
JPH0699221B2 true JPH0699221B2 (en) 1994-12-07

Family

ID=18110087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31942890A Expired - Lifetime JPH0699221B2 (en) 1990-11-22 1990-11-22 Compound semiconductor crystal growth device

Country Status (1)

Country Link
JP (1) JPH0699221B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2734813B2 (en) * 1991-06-11 1998-04-02 株式会社神戸製鋼所 Method for manufacturing compound semiconductor single crystal
KR100246712B1 (en) * 1994-06-02 2000-03-15 구마모토 마사히로 Method and apparatus for preparing compound single crystals

Also Published As

Publication number Publication date
JPH04187587A (en) 1992-07-06

Similar Documents

Publication Publication Date Title
TWI361847B (en) Method and equipment for aln-monocrystal production with gas-pervious crucible-wall
US20120285370A1 (en) Sublimation growth of sic single crystals
US3716345A (en) Czochralski crystallization of gallium arsenide using a boron oxide sealed device
EP0494312B1 (en) Method and apparatus for making single crystal
US4704257A (en) Apparatus for growing single crystals of dissociative compounds
EP3382068A1 (en) Silicon carbide substrate and method of growing sic single crystal boules
US4664742A (en) Method for growing single crystals of dissociative compounds
US4196171A (en) Apparatus for making a single crystal of III-V compound semiconductive material
US4365588A (en) Fixture for VPE reactor
JPH0699221B2 (en) Compound semiconductor crystal growth device
US5256381A (en) Apparatus for growing single crystals of III-V compound semiconductors
Capper Bulk crystal growth: methods and materials
EP0102054B1 (en) Method for growing gaas single crystal by using floating zone
US3902860A (en) Thermal treatment of semiconducting compounds having one or more volatile components
JP2529934B2 (en) Single crystal manufacturing method
JPH06219900A (en) Production of si-doped n-type gallium arsenide single crystal
JPH0314800B2 (en)
JP2576239B2 (en) Compound semiconductor crystal growth equipment
JPS60264390A (en) Growing method for single crystal
US3648654A (en) Vertical liquid phase crystal growth apparatus
JPH06128096A (en) Production of compound semiconductor polycrystal
JPH0365593A (en) Single crystal growing apparatus
Mullin et al. Pressure balancing: a technique for suppressing dissociation during the melt-growth of compounds
JPH06102588B2 (en) Method for growing compound semiconductor crystal
US10815586B2 (en) Gallium-arsenide-based compound semiconductor crystal and wafer group

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081207

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081207

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20091207

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 16

EXPY Cancellation because of completion of term