JPH04185287A - Moving mechanism - Google Patents

Moving mechanism

Info

Publication number
JPH04185287A
JPH04185287A JP2313694A JP31369490A JPH04185287A JP H04185287 A JPH04185287 A JP H04185287A JP 2313694 A JP2313694 A JP 2313694A JP 31369490 A JP31369490 A JP 31369490A JP H04185287 A JPH04185287 A JP H04185287A
Authority
JP
Japan
Prior art keywords
voltage
arrow
moved
given
movable body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2313694A
Other languages
Japanese (ja)
Inventor
Masatoshi Nagano
雅敏 永野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2313694A priority Critical patent/JPH04185287A/en
Priority to US07/723,911 priority patent/US5225941A/en
Priority to EP91110936A priority patent/EP0464764B1/en
Priority to DE69125974T priority patent/DE69125974T2/en
Publication of JPH04185287A publication Critical patent/JPH04185287A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a required moving displacement and reduce the size of a moving mechanism efficiently by a method wherein a voltage which is applied to an electro- mechanical energy transducer and gives extension and contraction to it is controlled so as to facilitate the movement of a moving unit. CONSTITUTION:If a voltage having a waveform given in the figure is applied to a piezoelectric device 3, the piezoelectric device 3 is suddenly extended to the direction of an arrow A in the sudden voltage rising part 10a of the voltage waveform and, accordingly, a vibration shaft 4 is also moved to the direction of the arrow A by a distance corresponding to the extension of the piezoelectric device 3. At that time, a moving unit 2 is hardly moved because it can not follow the movement of the vibration shaft 4 owing to an inertia given by its weight and a riction given by a first flat spring 5. Then, in the relatively slow voltage dropping part 10b of the voltage waveform, the piezoelectric device 3 is slowly contracted in accordance with the voltage drop. At that time, the vibration shaft 4 is also moved slowly to the direction of an arrow B and, as a friction given by a second flat spring 8 is larger than the friction given by the first flat spring 5, the moving unit 2 is moved to the direction of the arrow B. Therefor, the moving unit 2 can be moved to the direction of the arrow B.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は圧電素子を伸縮させることにより物体を移動さ
せる移動機構に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a moving mechanism that moves an object by expanding and contracting a piezoelectric element.

[従来の技術] 従来、物体を直進移動させるために、DCモーターや、
ステッピングモーター等の回転動力源により回転運動を
発生させ、これを、カム、リンク等の機構により、直進
運動に変換するという手段がとられてきた。しかし、上
記の機構を小型化しようとしても必要な出力トルクによ
りモーターの大きさが決定され、また、回転運動を直進
運動に変換する機構が必須であるため機構全体の小型化
には制約が大きい。そこで最近、各種のリニアモーター
が提案されている。
[Prior Art] Conventionally, in order to move an object in a straight line, a DC motor,
BACKGROUND ART Conventionally, a method has been adopted in which rotational motion is generated by a rotational power source such as a stepping motor, and this is converted into linear motion by a mechanism such as a cam or a link. However, even if we try to miniaturize the above mechanism, the size of the motor is determined by the required output torque, and a mechanism that converts rotational motion into linear motion is essential, so there are significant restrictions on miniaturizing the entire mechanism. . Therefore, recently, various linear motors have been proposed.

[発明が解決しようとしている課題] しかし、このリニアモーターも、その大部分が電気によ
り発生する磁力と永久磁石の組合せによるものであり、
原理的に電磁気を用いたモーターであることはDCモー
ターやステッピングモーターと変りがなく、そのため理
論的に小型化の限界が決定されてしまう。これらのこと
から、駆動機構を小型化するため圧電素子が注目される
ようになった。しかし、圧電素子は変位量が非常に小さ
いことがその変位量より大きい移動を行う機構を構成す
る場合大きな障害となっている。
[Problem to be solved by the invention] However, this linear motor is also largely based on a combination of magnetic force generated by electricity and permanent magnets.
In principle, motors use electromagnetism, no different from DC motors or stepping motors, and therefore the limits of miniaturization are determined theoretically. For these reasons, piezoelectric elements have attracted attention in order to miniaturize drive mechanisms. However, the very small amount of displacement of the piezoelectric element is a major obstacle when constructing a mechanism that moves larger than the amount of displacement.

本発明は、上記課題を解決するためのもので所望の移動
変位量を得ることができ、小型を有効に図ることのでき
る移動機構を提供することを目的とする。
The present invention is intended to solve the above-mentioned problems, and an object of the present invention is to provide a moving mechanism that can obtain a desired amount of displacement and can be effectively miniaturized.

[課題を解決するための手段] 本発明の目的を実現するための移動機構の構成は、固定
体に伸縮方向の一端を接した電気−機械エネルギー変換
素子と、該電気−機械エネルギー変換素子の伸縮方向他
端に接し該電気−機械エネルギー変換素子の伸縮方向に
対して移動自在な振動軸と、該電気−機械エネルギー変
換素子の伸縮方向に移動自在な移動体と、該固定体と該
移動体との間に摩擦力を発生させる第1の摩擦手段と、
該移動体と該振動軸との間に該第1の摩擦手段により発
生する摩擦力より大なる摩擦力を発生させる第2の摩擦
手段と、該電気−機械エネルギー変換素子に印加する伸
び方向と縮方向との電圧を該移動体を移動可能に制御す
る電圧制御回路とを具備したことを特徴とする。
[Means for Solving the Problems] The configuration of the moving mechanism for realizing the object of the present invention includes an electric-mechanical energy conversion element whose one end in the expansion and contraction direction is in contact with a fixed body, and the electric-mechanical energy conversion element. a vibration shaft that is in contact with the other end in the expansion and contraction direction and is movable in the expansion and contraction direction of the electro-mechanical energy conversion element; a movable body that is movable in the expansion and contraction direction of the electric-mechanical energy conversion element; the fixed body; and the movable body. a first friction means that generates a friction force between the body and the body;
a second friction means that generates a friction force greater than the friction force generated by the first friction means between the movable body and the vibration shaft; and a stretching direction in which the electric-mechanical energy conversion element is applied. The present invention is characterized by comprising a voltage control circuit that controls the voltage with respect to the contraction direction so that the movable body can move.

[作   用] 上記した構成の移動機構は、圧電素子等からなる電気−
機械エネルギー変換素子に例えは急激に上昇する電圧を
印加して圧電素子を伸ばすと振動軸が急激に移動するこ
とになり、その際振動軸の急激な移動により移動体はそ
の位置に停止することになるが、圧電素子を縮める際に
印加する電圧を緩やかに降下させると振動軸がゆっくり
と戻り、第2の摩擦手段との摩擦力により移動体が移動
する。
[Function] The moving mechanism having the above-mentioned configuration uses an electric current composed of a piezoelectric element or the like.
For example, if a rapidly rising voltage is applied to a mechanical energy conversion element to extend the piezoelectric element, the vibration axis will move rapidly, and the moving body will stop at that position due to the rapid movement of the vibration axis. However, if the voltage applied when contracting the piezoelectric element is gradually lowered, the vibration axis will slowly return, and the movable body will move due to the frictional force with the second friction means.

[実 施 例] 以下本発明を図面に示す実施例に基づいて詳細に説明す
る。
[Example] The present invention will be described in detail below based on an example shown in the drawings.

第1図は第1の実施例を示す断面図、第6図、第7図は
夫々圧電素子に印加する電圧の波形を示す図である。
FIG. 1 is a sectional view showing the first embodiment, and FIGS. 6 and 7 are diagrams showing waveforms of voltages applied to the piezoelectric element, respectively.

図中、1は例えば枠体等からなる固定部、4は固定部1
に支持案内されて長さ方向に移動可能な振動軸、2は質
量を有する移動体で、この移動体2は振動軸1と固定部
1とにより移動方向を規制されて支持案内されている。
In the figure, 1 is a fixed part consisting of a frame, etc., and 4 is a fixed part 1.
A vibration shaft 2 which is supported and guided by and movable in the length direction is a moving body having a mass, and this movable body 2 is supported and guided by the vibration shaft 1 and the fixed part 1 while its movement direction is restricted.

3は圧電素子で、伸縮方向(積層方向)が図中矢印A、
Bで示す方向と一致するように固定部1に保持され、振
動軸4とその伸縮方向で接しており、接着剤により接着
されて一体となっている。
3 is a piezoelectric element whose expansion/contraction direction (layering direction) is indicated by arrow A in the figure.
It is held by the fixed part 1 so as to coincide with the direction indicated by B, contacts the vibration shaft 4 in its expansion and contraction direction, and is bonded with an adhesive to form an integral body.

5は移動体2に取付けられた第1の板バネで、固定部1
を一定の力で付勢し、固定部1と移動体2との間に摩擦
力を与えている。
5 is a first leaf spring attached to the movable body 2, and the fixed part 1
is biased with a constant force to provide a frictional force between the fixed part 1 and the movable body 2.

8は移動体2に取付けられた第2の板バネで、振動軸4
を一定の力で付勢し、移動体2と振動軸4との間に摩擦
力を与えている。モして、移動体2の自重落下を防止す
るために、板バネ5.8の摩擦力の合成は、移動体2に
かかる重力よりも大きく設定している。また、第2の板
バネ8による摩擦力を第1の板バネ5による摩擦力より
大きく設定している。ここで、第1の板バネ5がなくて
も移動体2を移動させることができ、第2の板バネ8に
よる摩擦力を移動体2にかかる重力より大きくすること
で、移動体2の自重落下を防止することができるが、こ
のようにすると移動体2の質量に対しバネ8による摩擦
力が大きくなり過ぎ、移動体2の移動速度を低下させて
しまうので、本実施例においては板バネ5.8により移
動体2に摩擦力を与えている。
8 is a second leaf spring attached to the movable body 2, and the vibration shaft 4
is biased with a constant force to apply frictional force between the movable body 2 and the vibration shaft 4. Furthermore, in order to prevent the movable body 2 from falling due to its own weight, the resultant frictional force of the leaf spring 5.8 is set to be larger than the gravitational force acting on the movable body 2. Further, the frictional force caused by the second leaf spring 8 is set to be larger than the frictional force caused by the first leaf spring 5. Here, the movable body 2 can be moved even without the first leaf spring 5, and by making the frictional force by the second leaf spring 8 larger than the gravity applied to the movable body 2, the self-weight of the movable body 2 Although falling can be prevented, if this is done, the frictional force caused by the spring 8 will become too large relative to the mass of the moving body 2, reducing the moving speed of the moving body 2. Therefore, in this embodiment, a plate spring is used. 5.8 gives a frictional force to the moving body 2.

10及び11は圧電素子駆動のために印加される電圧波
形であり、第6図においては急激な電圧上昇部10aと
、比較的緩やかな電圧降下部10bを有し、また第7図
においては、比較的緩やかな電圧上昇部11aと急激な
電圧降下部11bとを有している。
10 and 11 are voltage waveforms applied to drive the piezoelectric element, and in FIG. 6 there is a rapid voltage rise part 10a and a relatively gentle voltage drop part 10b, and in FIG. It has a relatively gradual voltage rise section 11a and a rapid voltage drop section 11b.

12は電圧制御回路としての電圧波形調整回路であり、
電源13と、圧電素子3とを夫々電線により結ばれてい
る。
12 is a voltage waveform adjustment circuit as a voltage control circuit;
The power source 13 and the piezoelectric element 3 are connected to each other by electric wires.

このように構成した移動機構の動作を以下に説明する。The operation of the moving mechanism configured in this way will be explained below.

例えば、第6図に示す電圧波形を圧電素子3に印加する
と、急激な電圧上昇部10aにおいて、圧電素子3は急
激に矢印A方向へ伸び、それにしたがフて振動軸4も急
激に矢印入方向に該圧電素子3の伸びた分穆動する。こ
のとき、移動体2はその自重による慣性と、第1の板バ
ネ5による摩擦力のため、振動軸4の動きに追従できず
、殆んど移動しない、そして、比較的縁やかな電圧降下
部10bにおいて、圧電素子は電圧降下に従いゆっくり
と縮む。このとき、振動軸4もゆっくり矢印B方向に移
動し、第2の板バネ8による摩擦力が第1の板バネ5に
よる摩擦力より大きいため、移動体2は矢印B方向に移
動する。この一連の動作を繰り返すことにより、移動体
2は矢印B方向に移動する。
For example, when the voltage waveform shown in FIG. 6 is applied to the piezoelectric element 3, the piezoelectric element 3 suddenly extends in the direction of the arrow A at the rapid voltage increase portion 10a, and accordingly, the vibration axis 4 also suddenly moves into the direction of the arrow A. The piezoelectric element 3 moves in the same direction as the piezoelectric element 3 extends. At this time, the movable body 2 is unable to follow the movement of the vibration shaft 4 due to inertia due to its own weight and frictional force due to the first leaf spring 5, and hardly moves, and the voltage drop is relatively small. In section 10b, the piezoelectric element slowly contracts as the voltage drops. At this time, the vibration shaft 4 also moves slowly in the direction of arrow B, and since the frictional force caused by the second leaf spring 8 is greater than the frictional force caused by the first leaf spring 5, the movable body 2 moves in the direction of arrow B. By repeating this series of operations, the moving body 2 moves in the direction of arrow B.

また第7図に示すような電圧波形を圧電素子3に印加す
ると、比較的縁やかな電圧上昇部11aにおいて、圧電
素子3は電圧上昇に従いゆっくりと図中矢印六方向に伸
び、振動軸4もそれに伴ない矢印A方向に移動する。こ
のとき、移動体2は第2の板バネ8の摩擦力により、振
動軸4と共にA方向に移動する、そして、急激な電圧降
下部11bにおいて、圧電素子3は急激に縮み、それに
従い振動軸4も急激に矢印B方向へ圧電素子3が縮んだ
分移動する。
Furthermore, when a voltage waveform as shown in FIG. 7 is applied to the piezoelectric element 3, the piezoelectric element 3 slowly extends in the six directions of arrows in the figure as the voltage rises, and the vibration axis 4 also extends at a relatively gradual voltage rise portion 11a. Accordingly, it moves in the direction of arrow A. At this time, the movable body 2 moves in the direction A together with the vibration shaft 4 due to the frictional force of the second leaf spring 8, and at the rapid voltage drop portion 11b, the piezoelectric element 3 rapidly contracts, and the vibration shaft accordingly 4 also rapidly moves in the direction of arrow B by the amount that piezoelectric element 3 has shrunk.

このとき、移動体2はその自重による慣性と、第1の板
バネ5による摩擦力のため、振動軸4の動ぎに追従でき
ず、殆どB動しない、つまり第7図の電圧波形を印加す
ることにより、移動体2は六方向に移動する。
At this time, the movable body 2 cannot follow the movement of the vibration shaft 4 due to inertia due to its own weight and frictional force due to the first leaf spring 5, and hardly moves B, that is, the voltage waveform shown in FIG. 7 is applied. By doing so, the moving body 2 moves in six directions.

なお本実施例は、圧電素子3と振動軸4とを接着剤によ
り固定し、圧電素子3の伸縮に振動軸4の移動を追従さ
せるようにしているが、第2図に示すように、圧電素子
とは反対側にコイルバネ6を設けると共に、振動軸4と
圧電素子3とを接触させてお鮒、該コイルバネ6のバネ
力により、常時振動軸4を圧電素子3に圧接させ、圧電
素子3の伸縮により振動軸4が圧電素子3より離れない
ようにしている。
In this embodiment, the piezoelectric element 3 and the vibration shaft 4 are fixed with adhesive so that the movement of the vibration shaft 4 follows the expansion and contraction of the piezoelectric element 3. However, as shown in FIG. A coil spring 6 is provided on the opposite side of the element, and the vibration shaft 4 and the piezoelectric element 3 are brought into contact with each other. The vibration axis 4 is prevented from separating from the piezoelectric element 3 by the expansion and contraction of the piezoelectric element 3.

また、移動体2は、固定部1により、振動軸4の回りの
回転が規制されているが、第3図に示すように、案内軸
7に移動体1を貫通させることにより同様の効果が得ら
れる。
Further, although the movable body 2 is restricted from rotating around the vibration shaft 4 by the fixed part 1, the same effect can be obtained by passing the movable body 1 through the guide shaft 7, as shown in FIG. can get.

第4図は、上記した第2図及び第4図に夫々示した実施
例を組み合わせた実施例を示している。
FIG. 4 shows an embodiment in which the embodiments shown in FIGS. 2 and 4 described above are combined.

一方、移動体2は振動軸4に貫通支持されているが、第
5図に示すように、案内軸7と、固定部1とにより支持
案内するようにしても同様である。
On the other hand, although the movable body 2 is supported through the vibrating shaft 4, it can also be supported and guided by the guide shaft 7 and the fixed part 1, as shown in FIG.

また、第1の板バネ5は第8図に示すように、固定部1
側に設けても、第2の板バネ8を第9図に示すように振
動軸4側に設けても同様の効果が得られる。
Further, the first leaf spring 5 is attached to the fixed portion 1 as shown in FIG.
The same effect can be obtained even if the second plate spring 8 is provided on the vibration shaft 4 side as shown in FIG.

なお、移動体に発生させる摩擦手段は板バネとしている
が、コイルバネやゴム等の弾性部材であフてもよい。
Although the friction means generated in the movable body is a plate spring, it may also be an elastic member such as a coil spring or rubber.

このように、上述した各実施例は、圧電素子等の電気−
機械エネルギー変換素子を用い、非常に簡単な構造によ
り移動機構を構成できるので、小型の移動機構を提供す
ることができ、電圧印加時の圧電素子の変位量は非常に
小さいにもかかわらず、大きな移動量が得られる。
In this way, each of the above-mentioned embodiments has an electrical connection such as a piezoelectric element.
Since the movement mechanism can be configured with a very simple structure using mechanical energy conversion elements, it is possible to provide a compact movement mechanism, and even though the amount of displacement of the piezoelectric element when voltage is applied is very small, it is possible to construct a movement mechanism with a very simple structure. The amount of movement can be obtained.

また、電圧印加時において、圧電素子の変位量は非常に
小さいため、移動体を非常に高精度で位置決めすること
ができる。
Furthermore, since the amount of displacement of the piezoelectric element is very small when voltage is applied, the moving body can be positioned with very high precision.

また、板バネ5.8による摩擦力の合力が移動体にかか
る重力よりも大きいため、移動方向をどのような方向に
設定しても移動体が自重落下することがない。
Further, since the resultant force of the frictional force by the leaf spring 5.8 is greater than the gravity applied to the movable body, the movable body will not fall under its own weight no matter what direction the movable body is set.

[発明の効果] 以上説明したように、本発明の移動機構は所望の移動変
位量を得ることができ、装置の小型化を有効に図ること
ができる。
[Effects of the Invention] As explained above, the moving mechanism of the present invention can obtain a desired amount of movement displacement, and can effectively downsize the device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による移動機構の第1の実施例を示す概
略図、第2図は第2の実施例を示す概略図、第3図は第
3の実施例を示す概略図、褌 #4図は第4の実施例を示す概略図、第5図は第5の実
施例を示す概略図、第6図及び第7図は波形図、第8図
及び第9図は夫々第3図、第1図の実施例の変形例を示
す。 1・・・固定部      2・・・穆動体3・・・圧
電素子     4・・・振動軸5・・・板バネ   
   6・・・バネ7・・・案内軸      8・・
・板バネ10・・・電圧波形     10a・・・電
圧上昇部10b・・・電圧下降部   11・・・電圧
波形11a・・・電圧上昇部   11b・・・電圧下
降部12・・・電圧波形調整回路 13・・・電源他4
名 第1図 第5図 第6図 第7図
Fig. 1 is a schematic diagram showing a first embodiment of the moving mechanism according to the present invention, Fig. 2 is a schematic diagram showing a second embodiment, and Fig. 3 is a schematic diagram showing a third embodiment. Figure 4 is a schematic diagram showing the fourth embodiment, Figure 5 is a schematic diagram showing the fifth embodiment, Figures 6 and 7 are waveform diagrams, and Figures 8 and 9 are respectively Figure 3. , shows a modification of the embodiment of FIG. 1...Fixed part 2...Moving body 3...Piezoelectric element 4...Vibration shaft 5...Plate spring
6...Spring 7...Guide shaft 8...
- Leaf spring 10... Voltage waveform 10a... Voltage rising part 10b... Voltage falling part 11... Voltage waveform 11a... Voltage rising part 11b... Voltage falling part 12... Voltage waveform adjustment Circuit 13...power supply and others 4
Figure 1 Figure 5 Figure 6 Figure 7

Claims (1)

【特許請求の範囲】[Claims] 1 固定体に伸縮方向の一端を接した電気−機械エネル
ギー変換素子と、該電気−機械エネルギー変換素子の伸
縮方向他端に接し該電気−機械エネルギー変換素子の伸
縮方向に対して移動自在な振動軸と、該電気−機械エネ
ルギー変換素子の伸縮方向に移動自在な移動体と、該固
定体と該移動体との間に摩擦力を発生させる第1の摩擦
手段と、該移動体と該振動軸との間に該第1の摩擦手段
により発生する摩擦力より大なる摩擦力を発生させる第
2の摩擦手段と、該電気−機械エネルギー変換素子に印
加する伸び方向と縮方向との電圧を該移動体を移動可能
に制御する電圧制御回路とを具備することを特徴とする
移動機構。
1 An electric-mechanical energy conversion element whose one end in the expansion and contraction direction is in contact with a fixed body, and a vibration that is in contact with the other end of the electric-mechanical energy conversion element in the expansion and contraction direction and is movable in the expansion and contraction direction of the electric-mechanical energy conversion element. a shaft, a movable body movable in the direction of expansion and contraction of the electro-mechanical energy conversion element, a first friction means for generating a frictional force between the fixed body and the movable body, and the movable body and the vibration. a second friction means that generates a friction force greater than the friction force generated by the first friction means between the shaft and the electric-mechanical energy conversion element; A moving mechanism comprising: a voltage control circuit for movably controlling the moving body.
JP2313694A 1990-07-03 1990-11-19 Moving mechanism Pending JPH04185287A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2313694A JPH04185287A (en) 1990-11-19 1990-11-19 Moving mechanism
US07/723,911 US5225941A (en) 1990-07-03 1991-07-01 Driving device
EP91110936A EP0464764B1 (en) 1990-07-03 1991-07-02 Driving device
DE69125974T DE69125974T2 (en) 1990-07-03 1991-07-02 Drive device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2313694A JPH04185287A (en) 1990-11-19 1990-11-19 Moving mechanism

Publications (1)

Publication Number Publication Date
JPH04185287A true JPH04185287A (en) 1992-07-02

Family

ID=18044397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2313694A Pending JPH04185287A (en) 1990-07-03 1990-11-19 Moving mechanism

Country Status (1)

Country Link
JP (1) JPH04185287A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010067659A1 (en) * 2008-12-10 2010-06-17 スミダコーポレーション株式会社 Coil part

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010067659A1 (en) * 2008-12-10 2010-06-17 スミダコーポレーション株式会社 Coil part
JP5167372B2 (en) * 2008-12-10 2013-03-21 スミダコーポレーション株式会社 Coil parts

Similar Documents

Publication Publication Date Title
US7456549B2 (en) Electroactive polymer motors
US6717329B2 (en) Drive mechanism employing electromechanical transducer and method for controlling the drive mechanism
JP3646154B2 (en) Drive device
JP4144171B2 (en) Drive device using electro-mechanical transducer
JPS63299785A (en) Micro-movement device employing impact force of piezo-electric and electrostrictive element
US5418418A (en) Micro-actuator
CN112803829B (en) Friction asymmetric inertia piezoelectric linear driving device and method
US7095159B2 (en) Devices with mechanical drivers for displaceable elements
JP4561164B2 (en) Driving apparatus and driving method
JP3218851B2 (en) Driving method of driving device using electro-mechanical conversion element
JP4626281B2 (en) Driving apparatus and driving method
JPH10192785A (en) Vibration generating mechanism
JPH04185287A (en) Moving mechanism
US7671512B2 (en) Impact drive actuator
JP3722062B2 (en) Drive device
JPH07274546A (en) Driving gear using electro-mechanical transducer
Kern et al. Actuator Design
US20140239747A1 (en) Inertial drive actuator
US4516062A (en) Actuator
JPH1169847A (en) Actuator utilizing an electromechanical converting element
JPH04193078A (en) Shifting mechanism
JP3933460B2 (en) Drive device
JP5305380B2 (en) Actuator, positioning device
KR102558860B1 (en) Linear actuator
JP3582310B2 (en) Driving device using electromechanical transducer