JPH04185106A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH04185106A
JPH04185106A JP31532790A JP31532790A JPH04185106A JP H04185106 A JPH04185106 A JP H04185106A JP 31532790 A JP31532790 A JP 31532790A JP 31532790 A JP31532790 A JP 31532790A JP H04185106 A JPH04185106 A JP H04185106A
Authority
JP
Japan
Prior art keywords
fet
mmic
chip
heater
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31532790A
Other languages
Japanese (ja)
Inventor
Fumiaki Emori
江森 文章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP31532790A priority Critical patent/JPH04185106A/en
Publication of JPH04185106A publication Critical patent/JPH04185106A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inductance-Capacitance Distribution Constants And Capacitance-Resistance Oscillators (AREA)

Abstract

PURPOSE:To make the temperature of a microwave monolithic integrated circuit(MMIC) chip stable by providing a circuit converting a temperature dependency of a diode into a current flowing a heat element in the MMIC. CONSTITUTION:A field effect transistor(FET) 2 and a peripheral circuit 3 are formed to an MMIC chip 1 comprising a circuit formed on a GaAs board. Then a Schottky diode 21 and a heater FET 22 are arranged in the vicinity of oscillation FET 2 on the major side of the chip 1. A temperature rise of the FET 2 is detected at a terminal 31 as a variance in a rising voltage Vf of a diode 21. Then a drain current of the heater FET 22 is controlled by controlling a gate voltage of the heater FET 22 through an operational amplifier 32 receiving the voltage detected at the terminal 31. Thus, the temperature of the MMIC chip is made stable.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置に関し、特にガリウムひ素(以下G
aAsと記す)等の半絶縁性化合物基板上に形成された
マイクロ波モノリシック集積回路(以下MMICと記す
)発振器に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to semiconductor devices, and particularly relates to gallium arsenide (hereinafter referred to as G
The present invention relates to a microwave monolithic integrated circuit (hereinafter referred to as MMIC) oscillator formed on a semi-insulating compound substrate such as aAs (hereinafter referred to as MMIC).

〔従来の技術〕[Conventional technology]

半絶縁性化合物基板上に電界効果トランジスタ(以下F
ETと記す)構造の能動素子とこの能動素子を機能させ
る受動素子からなるMMICは、高周波特性に優れ、小
型、低価格化、高量産性であることから特にIGHz以
上の周波数領域にて実用化が進んでいる。特にX=Ku
帯と呼ばれるIGHz帯は、衛星放送の普及やVSAT
 (小型衛星地球局)利用の拡大により著しく伸びてい
る市場であり、MMICが最も望まれている市場である
A field effect transistor (hereinafter F) is fabricated on a semi-insulating compound substrate.
MMIC, which consists of an active element (denoted as ET) structure and a passive element that makes this active element function, has excellent high frequency characteristics, is compact, low cost, and can be mass-produced, so it has been put to practical use especially in the frequency range of IGHz or higher. is progressing. Especially X=Ku
The IGHz band, also known as
(Small satellite earth stations) This is a market that is growing significantly due to the expansion of usage, and MMIC is the most desired market.

このようなマイクロ波を利用した通信は、IGHz付近
を第1中間周波数とする為に、例えば12GHzからI
GHzへの周波数変換回路を必要とする。この周波数変
換回路では、例えば1IGHzの局部発振器を有してい
る。
Communication using such microwaves uses, for example, 12 GHz to IGHz as the first intermediate frequency.
Requires frequency conversion circuit to GHz. This frequency conversion circuit includes, for example, a 1 IGHz local oscillator.

従来のMMICによる局部発振の半導体装置に関し、図
を用いて説明する。
A local oscillation semiconductor device using a conventional MMIC will be described with reference to the drawings.

第4図は、従来のMMICによる局部発振器のMMIC
レイアウト図及び周辺回路図である。
Figure 4 shows a local oscillator MMIC using a conventional MMIC.
They are a layout diagram and a peripheral circuit diagram.

例えばGaAs基板上に回路が形成された大きさlXl
X0.14noのMMICチップ1には、例えばWg−
’400μm、!1g=0.5pmのFET2及び周辺
回路3が形成されている。FET2には外部からバイア
ス電圧がV。。端子4から例えば−0,2VがV。D端
子5から例えば3vが供給される。出力部6の後には誘
電体共振器7が付き、発振出力が出力端子8から例えば
周波数f=10.6GHz、出力P、=+6dBが出力
される。発振器の発振周波数は、温度変化に対し変動し
易い。
For example, the size lXl of a circuit formed on a GaAs substrate
For example, Wg-
'400μm! 1g=0.5pm FET 2 and peripheral circuit 3 are formed. A bias voltage is applied to FET2 from the outside. . For example, -0.2V from terminal 4 is V. For example, 3V is supplied from the D terminal 5. A dielectric resonator 7 is attached after the output section 6, and an oscillation output is outputted from an output terminal 8 at a frequency f=10.6 GHz and an output P=+6 dB, for example. The oscillation frequency of the oscillator tends to fluctuate due to temperature changes.

例えばMMICチップ1単体では20ppmの温度特性
がある。これを抑える為にMMICチップlを組み込む
シャーシ内にはサーシスタ11を配して発振回路の温度
を検圧し、ヒータ素子12の電流をコントロールする事
で発振器全体の温度制御をしていた。
For example, a single MMIC chip 1 has a temperature characteristic of 20 ppm. In order to suppress this, a sursistor 11 is placed inside the chassis in which the MMIC chip l is installed, and the temperature of the oscillator circuit is detected, and the temperature of the entire oscillator is controlled by controlling the current of the heater element 12.

第5図は、従来の局部発振器の構造図である。FIG. 5 is a structural diagram of a conventional local oscillator.

例えば真ちゅうによるンヤーシ13に例えば厚さt=0
.381mmのセラミック基板14が半田付けされ、M
MICチップlが基板14上に半田付けされている。シ
ャーシ】3内にはサーシスタ11とヒータ素子12がM
MICチップ1とは別に組み込まれていた。
For example, the thickness t=0 for the string 13 made of brass.
.. A 381 mm ceramic board 14 is soldered, and M
A MIC chip l is soldered onto the substrate 14. Chassis] Inside 3, a sursistor 11 and a heater element 12 are installed.
It was incorporated separately from MIC chip 1.

〔発明が解決しようとする課題〕。[Problem to be solved by the invention].

上述した従来の半導体装置は、発熱部がMMICチップ
1内のFET2であるのに対し、これより例えば10薗
離れたシャーシ部をサーシスタ11で感知する為に、F
ET2の温度変化に対するサーシスタ11特性の直線性
の限界と、ヒータ素子12がFET2及び全体の温度を
変える為の所要時間から、発振器の安定度には例えば8
ppmといった限界があり問題であった。
In the conventional semiconductor device described above, the heat generating part is the FET 2 in the MMIC chip 1, but in order to sense the chassis part, which is, for example, 10 steps away from this, by the sursistor 11, the FET 2 is used as the heat generating part.
The stability of the oscillator is, for example, 8, due to the limit of linearity of the sursistor 11 characteristic with respect to temperature change of ET2 and the time required for the heater element 12 to change the temperature of FET2 and the whole.
This was a problem because there was a limit such as ppm.

また、サーシスタ11.ヒータ素子12を外付けする分
、小型化を妨げること。ヒータ素子12の容量に例えば
IWといった容量が必要であることから消費電力も大き
くかつそのうちの大半がヒータ素子12で消費されると
いう問題点もあった。
Also, the servistor 11. Since the heater element 12 is externally attached, miniaturization is hindered. Since the heater element 12 requires a capacity such as IW, there is also a problem in that the power consumption is large and most of the power is consumed by the heater element 12.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の半導体装置は、半絶縁性化合物基板の表面上に
電界効果トランジスタ構造とそれを機能させる受動素子
からなる発振回路が形成されたマイクロ波モノリシック
集積回路を有する半導体装置に於いて、該マイクロ波モ
ノリシック集積回路内にダイオード及び発熱素子を前記
発振回路と高周波的に独立して配置し、且つ、該ダイオ
ードの温度依存性を該発熱素子に流れる電流に変換する
回路を有したことを特徴とする半導体装置が得られる。
The semiconductor device of the present invention is a semiconductor device having a microwave monolithic integrated circuit in which an oscillation circuit consisting of a field effect transistor structure and a passive element for functioning the field effect transistor structure is formed on the surface of a semi-insulating compound substrate. A diode and a heating element are arranged in a wave monolithic integrated circuit independently from the oscillation circuit in terms of high frequency, and a circuit is provided for converting the temperature dependence of the diode into a current flowing through the heating element. A semiconductor device is obtained.

〔実施例〕〔Example〕

次に本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は、本発明の一実施例を説明するMMICによる
局部発振器のMMICレイアウト図及び周辺回路図であ
る。例えばG a A s基板上に回路が形成された大
きさlXlX0.14mmのMMICチップ1には例え
ばWg=400μm、 (l g=0.5μmのFET
2及び周辺回路3が形成されている。
FIG. 1 is an MMIC layout diagram and peripheral circuit diagram of a local oscillator using an MMIC, explaining an embodiment of the present invention. For example, an MMIC chip 1 with a size of lXlx0.14 mm on which a circuit is formed on a GaAs substrate has a FET of Wg=400 μm and (l g=0.5 μm).
2 and a peripheral circuit 3 are formed.

MMICチップ1の主表面上において、発振用FET2
の近傍例えば50μm離れたところに例えばffg=4
μm、Wg=50μmのショットキーダイオード′21
がレイアウトされ形成されている。また、例えばWg=
 1.0 OCJμm、 4 g=05μmのヒータF
ET22も例えば50μm離れたところにレイアウトさ
れている。
On the main surface of the MMIC chip 1, the oscillation FET 2
For example, ffg=4 in the vicinity of, for example, 50 μm away.
μm, Wg=50μm Schottky diode '21
are laid out and formed. Also, for example, Wg=
1.0 OCJμm, 4g=05μm heater F
The ET22 is also laid out at a distance of, for example, 50 μm.

FET2の温度上昇は、近傍のダイオード21の立ち上
がり電圧V’fの変動として端子(1)31に検出され
る。例えばVfの温度依存性は2mV/℃である。この
端子(1)31に検出された電圧は、オペアンプ32を
介してヒータFET22のゲート電圧をコントロールす
る事で、ヒータFET22のドレイン電流を制御する。
The temperature rise of the FET 2 is detected at the terminal (1) 31 as a change in the rising voltage V'f of the nearby diode 21. For example, the temperature dependence of Vf is 2 mV/°C. The voltage detected at this terminal (1) 31 controls the gate voltage of the heater FET 22 via the operational amplifier 32, thereby controlling the drain current of the heater FET 22.

第2図は、本発明の第二の実施を説明するMMICによ
る局部発振器のMMICレイアウト図及び周辺回路図で
ある。例えばGaAs基板上に回路が形成された大きさ
lXlX0.14s+のMMICチップ1には例えばW
g”400μm、!! g=0.5μmのFET2及び
周辺回路3が形成されている。
FIG. 2 is an MMIC layout diagram and peripheral circuit diagram of a local oscillator using an MMIC, explaining a second implementation of the present invention. For example, in the MMIC chip 1 having a circuit formed on a GaAs substrate and having a size of lXlX0.14s+, for example, W
g”400 μm!! FET 2 and peripheral circuit 3 with g=0.5 μm are formed.

MMICチップ1の主表面上において、発振用FET2
の近傍例えば50μm離れたところ例えばf1g=4μ
rn、Wg=50pmのシ、i+ットキーダイオード2
1がレイアウトされ形成されている。
On the main surface of the MMIC chip 1, the oscillation FET 2
Nearby, for example, 50 μm away, for example, f1g=4μ
rn, Wg=50pm, i+tkey diode 2
1 is laid out and formed.

また、例えばイオン注入抵抗の100Ω抵抗23も例え
ば50μm離れたところにレイアウトされている。
Further, for example, a 100Ω resistor 23, which is an ion implantation resistor, is also laid out at a distance of, for example, 50 μm.

FET2の温度上昇は、近傍のダイオード21の立ち上
り電圧Vfの変動として検出され、例えば温度依存性2
mV/’C、オペアンプ32を介し、抵抗23の電流を
制御する。
The temperature rise of the FET 2 is detected as a fluctuation in the rising voltage Vf of the nearby diode 21, and for example, the temperature dependence 2
mV/'C, the current of the resistor 23 is controlled via the operational amplifier 32.

第3図は、本発明の半導体装置の構造図である。FIG. 3 is a structural diagram of the semiconductor device of the present invention.

例えば真ちゅうによるシャーシ13に例えば厚さt=0
.381−のセラミック基板14が半田付けされ、MM
ICチップ1が基板14上に半田付けされている。シャ
ーシ13内にはMMICチップ1と誘電体共振器7のみ
で構成できる。
For example, the chassis 13 made of brass has a thickness t=0.
.. 381- ceramic substrate 14 is soldered, MM
An IC chip 1 is soldered onto a substrate 14. The chassis 13 can be configured with only the MMIC chip 1 and the dielectric resonator 7.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明はMMICチップ1内に7
ヨノトキータイオード21とヒータFET22.抵抗2
3を配し、タイi−F’21117)Vfの温度特性を
ヒータFET22.抵抗23の電流を制御することでM
MICチップ1の温度を安定させ発振周波数を例えば5
 ppm以下に安定する事ができる。これは、ダイオー
ド21で熱検出しヒータFET22.抵抗23にて温度
制御する部分がMMICチップl上にある事で実現でき
る効果である。更に、温度制御の電流も例えば従来の1
/10程度に低減できる。
As explained above, the present invention has seven devices in the MMIC chip 1.
Yonoto key tie ode 21 and heater FET 22. resistance 2
Heater FET22. By controlling the current of the resistor 23, M
The temperature of the MIC chip 1 is stabilized and the oscillation frequency is set to 5, for example.
It can be stabilized below ppm. This detects the heat with the diode 21 and the heater FET 22. This effect can be achieved because the portion whose temperature is controlled by the resistor 23 is located on the MMIC chip l. Furthermore, the current for temperature control is also different from the conventional one, for example.
It can be reduced to about /10.

タイオード21.ヒータFET22.抵抗23は、MM
ICチップ1内のFET2と同じプロセスで形成できコ
スト的には従来と同じくして製造できる。
Tiode 21. Heater FET22. The resistor 23 is MM
It can be formed by the same process as the FET 2 in the IC chip 1, and can be manufactured at the same cost as conventional methods.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示すMMICレイアウト図
及び周辺回路図、第2図は本発明の第2の実施例を示す
MMICレイアウト図及び周辺回路図、第3図は本発明
の実施例を示す構造図、第4図は従来例のMMICレイ
アウト図及び周辺回路図、第5図は従来例の構造図であ
る。 1・・・・・・MMICチップ、2・・・・・FET、
3・・・・・周辺回路、4・・・・・・VQ(l端子、
5・・・・・・v、D端子、6・・・・・出力部、7・
・・・・・誘電体共振器、8・・・・・・出力端子、1
1・・・・・・サーミスタ、12・・・・・・ヒータ素
子、13・・・・・シャーシ、14・・・・・・基板、
21・・・・・・ダイオード、22・・・・・・ヒータ
FET、23・・・・・抵抗、31・・・・・・端子(
1)、32・・・・・・オペアンプ。 代理人 弁理士  内 原   音 弔3図
FIG. 1 is an MMIC layout diagram and peripheral circuit diagram showing an embodiment of the invention, FIG. 2 is an MMIC layout diagram and peripheral circuit diagram showing a second embodiment of the invention, and FIG. 3 is an implementation of the invention. A structural diagram showing an example, FIG. 4 is an MMIC layout diagram and peripheral circuit diagram of a conventional example, and FIG. 5 is a structural diagram of a conventional example. 1...MMIC chip, 2...FET,
3... Peripheral circuit, 4... VQ (l terminal,
5...v, D terminal, 6...output section, 7...
...Dielectric resonator, 8...Output terminal, 1
1... Thermistor, 12... Heater element, 13... Chassis, 14... Board,
21... Diode, 22... Heater FET, 23... Resistor, 31... Terminal (
1), 32... operational amplifier. Agent Patent Attorney Otohara Uchihara Illustration 3

Claims (1)

【特許請求の範囲】[Claims] 半絶縁性化合物基板の表面上に電界効果トランジスタ構
造とそれを機能される受動素子からなる発振回路が形成
されたマイクロ波モノリシック集積回路を有する半導体
装置に於いて、該マイクロ波モノリシック集積回路内に
ダイオード及び発熱素子を前記発振回路と高周波的に独
立して配置し、且つ、該ダイオードの温度依存性を該発
熱素子に流れる電流に変換する回路を有したことを特徴
とする半導体装置。
In a semiconductor device having a microwave monolithic integrated circuit in which an oscillation circuit consisting of a field effect transistor structure and a passive element functioning thereon is formed on the surface of a semi-insulating compound substrate, in the microwave monolithic integrated circuit. A semiconductor device comprising: a diode and a heating element arranged independently from the oscillation circuit in terms of high frequency; and a circuit that converts the temperature dependence of the diode into a current flowing through the heating element.
JP31532790A 1990-11-20 1990-11-20 Semiconductor device Pending JPH04185106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31532790A JPH04185106A (en) 1990-11-20 1990-11-20 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31532790A JPH04185106A (en) 1990-11-20 1990-11-20 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH04185106A true JPH04185106A (en) 1992-07-02

Family

ID=18064074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31532790A Pending JPH04185106A (en) 1990-11-20 1990-11-20 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH04185106A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5517053A (en) * 1995-01-09 1996-05-14 Northrop Grumman Corporation Self stabilizing heater controlled oscillating transistor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5517053A (en) * 1995-01-09 1996-05-14 Northrop Grumman Corporation Self stabilizing heater controlled oscillating transistor
WO1996021950A1 (en) * 1995-01-09 1996-07-18 Northrop Grumman Corporation Self stabilizing heater controlled oscillating transistor
JP2006344983A (en) * 1995-01-09 2006-12-21 Northrop Grumman Corp Automatic stabilization heater control oscillation transistor

Similar Documents

Publication Publication Date Title
US6172567B1 (en) Radio communication apparatus and radio frequency power amplifier
EP0789451A1 (en) High frequency amplifier and control
EP0854568A2 (en) Monolithic microwave integrated circuit
US4107720A (en) Overlay metallization multi-channel high frequency field effect transistor
CN1783427B (en) Temperature-compensated resistor and fabrication method therefor
Yamauchi et al. X-band MMIC power amplifier with an on-chip temperature-compensation circuit
US4016643A (en) Overlay metallization field effect transistor
Cidronali et al. Ultralow DC power VCO based on InP-HEMT and heterojunction interband tunnel diode for wireless applications
US6288596B1 (en) Gate biasing arrangement to temperature compensate a quiescent current of a power transistor
Kwon et al. A Ka-band MMIC oscillator stabilized with a micromachined cavity
JPH04185106A (en) Semiconductor device
US3408543A (en) Combination capacitor and fieldeffect transistor
Sholley et al. 118 GHz MMIC radiometer for the (IMAS) integrated multispectral atmospheric sounder
Estreich A monolithic wide-band GaAs IC amplifier
US6087896A (en) Compensation technique using MOS capacitance
JPH04326608A (en) Oscillation circuit
KR20080074880A (en) Thermoelectric bias voltage generator
Lai et al. 0.15/spl mu/m InGaAs/AlGaAs/GaAs HEMT production process for high performance and high yield V-band power MMICs
JP2000209038A (en) High frequency power amplifier and radio communication equipment
US4745374A (en) Extremely-high frequency semiconductor oscillator using transit time negative resistance diode
Kobayashi et al. Monolithic regulated self-biased HEMT MMIC's
JPH06204757A (en) Monolithic microwave semiconductor integrated circuit
Fukuta et al. GaAs 8 GHz-band high power FET
KR100937039B1 (en) A Bias Circuit having Compensation Capability for Threshold Voltage and Temperature Variations and Amplifier using the same
Basco et al. Monolithic integration of a 94 GHz AlGaAs/GaAs 2-DEG mixer on quartz substrate by epitaxial lift-off