JPH04183924A - Direct injection in-cylinder type spark ignition engine - Google Patents

Direct injection in-cylinder type spark ignition engine

Info

Publication number
JPH04183924A
JPH04183924A JP2311658A JP31165890A JPH04183924A JP H04183924 A JPH04183924 A JP H04183924A JP 2311658 A JP2311658 A JP 2311658A JP 31165890 A JP31165890 A JP 31165890A JP H04183924 A JPH04183924 A JP H04183924A
Authority
JP
Japan
Prior art keywords
fuel injection
fuel
cylinder
compression stroke
ignition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2311658A
Other languages
Japanese (ja)
Other versions
JP2751626B2 (en
Inventor
Takanobu Ueda
貴宣 植田
Shizuo Sasaki
三々木 静夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2311658A priority Critical patent/JP2751626B2/en
Publication of JPH04183924A publication Critical patent/JPH04183924A/en
Application granted granted Critical
Publication of JP2751626B2 publication Critical patent/JP2751626B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/025Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining temperatures inside the cylinder, e.g. combustion temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3023Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/401Controlling injection timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/14Direct injection into combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D2041/389Controlling fuel injection of the high pressure type for injecting directly into the cylinder
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

PURPOSE:To sufficiently form a mixture necessary for ignition and flame propagation for satisfactory combustion by advancing fuel injection timing in compression stroke injection and ignition timing a low temperature in a cylinder. CONSTITUTION:A throttle valve 7 is controllably opened and closed by a step motor 8. A fuel injection valve 9 injects fuel directly into a cylinder chamber 4. An ignition plug 12 is connected through a distributor 13 to an ignitor 14. An electronic control unit 30 has a crank angle sensor 25, water temperature sensor 26 and accelerator opening sensor 27 connected to input ports 35. On the other hand, an output ports 36 are connected through respective drive circuits 39, 40, 41 respectively to the fuel injection valve 9, ignitor 14 and step motor 8. Thus, when a temperature is low in a cylinder, the fuel injection timing in a compression stroke injection is advanced and ignition timing is advanced. Thus, a fire nucleus is early formed to raise the temperature in the cylinder, promote the evaporation of fuel and form satisfactory mixture.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は筒内直接噴射式火花点火機関に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to an in-cylinder direct injection spark ignition engine.

〔従来の技術〕[Conventional technology]

シリンダ内に燃料を直接噴射するための燃料噴射弁を備
え、低負荷時には圧縮行程後半に点火栓を指向せしめて
燃料を噴射せしめて成層燃焼を行い、中・高負荷時には
吸気行程と圧縮行程後半とにおいて燃料を噴射せしめて
弱成層燃焼を行うようにした筒内直接噴射式火花点火機
関が開示されている(特開平2−169834号公報参
照)。
Equipped with a fuel injection valve to directly inject fuel into the cylinder, at low loads, the spark plug is directed to inject fuel in the latter half of the compression stroke to perform stratified combustion, and at medium and high loads, the fuel is injected during the intake stroke and the latter half of the compression stroke. An in-cylinder direct injection spark ignition engine has been disclosed in which fuel is injected to perform weak stratified combustion (see Japanese Patent Laid-Open No. 2-169834).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながらこの内燃機関では、機関冷間時においては
シリンダ内の温度、例えば燃焼室の壁温が低いた必に、
シリンダ内に噴射された燃料の蒸発が悪化し、このため
、着火および火炎伝播に必要な混合気の形成が不十分と
なり良好な燃焼が得られないという問題を生ずる。
However, in this internal combustion engine, when the engine is cold, the temperature inside the cylinder, for example, the wall temperature of the combustion chamber, is low.
Evaporation of the fuel injected into the cylinder deteriorates, resulting in insufficient formation of the air-fuel mixture necessary for ignition and flame propagation, resulting in a problem that good combustion cannot be achieved.

また、例えば低負荷運転時からの加速時においても、シ
リンダ内の温度が相対的に低いために同様の問題を生ず
る。
Furthermore, for example, during acceleration from low-load operation, the same problem occurs because the temperature inside the cylinder is relatively low.

〔課題を解決するための手段〕[Means to solve the problem]

上記問題点を解決するため本発明によれば、圧縮行程に
シリンダ内に燃料を直接噴射せしめて点火栓によって着
火せしめるようにした内燃機関において、シリンダ内低
温時においては圧縮行程噴射の燃料噴射時期を進角せし
めると共に点火時期を進角せし必るようにしている。
In order to solve the above problems, according to the present invention, in an internal combustion engine in which fuel is directly injected into the cylinder during the compression stroke and ignited by the ignition plug, when the temperature inside the cylinder is low, the fuel injection timing of the compression stroke injection is At the same time, the ignition timing must be advanced.

〔作 用〕[For production]

シリンダ内低温時においては圧縮行程噴射の燃料噴射時
期が進角せし必られると共に点火時期が進角せしめられ
る。これによって火炎核が早期に形成され、この結果ン
リンダ内温度がより高くなるために燃料の蒸発を促進し
て良好な混合気を形成するこ七ができる。
When the temperature inside the cylinder is low, the fuel injection timing for compression stroke injection must be advanced, and the ignition timing must also be advanced. As a result, a flame kernel is formed at an early stage, and as a result, the temperature inside the cylinder becomes higher, which promotes fuel evaporation and forms a good air-fuel mixture.

〔実施例〕〔Example〕

第1図を参照すると、■はシリンダブロック、2はシリ
ングヘッド、3はピストン、4はシリンダ室、5は吸気
管、6は排気管を夫々示す。吸気、管5にはリンクレス
スロットル弁7が配置される。
Referring to FIG. 1, ▪ indicates a cylinder block, 2 indicates a cylinder head, 3 indicates a piston, 4 indicates a cylinder chamber, 5 indicates an intake pipe, and 6 indicates an exhaust pipe. A linkless throttle valve 7 is arranged in the intake pipe 5.

このスロットル弁7はステップモータ8によって開閉制
御せしめられ、アイドル運転時以外および減速運転時以
外においてはほぼ全開状態とされる。
This throttle valve 7 is controlled to open and close by a step motor 8, and is kept substantially fully open except during idle operation and deceleration operation.

燃料噴射弁9の先端はシリンダ室4まて延び、シリンダ
室4内に燃料を直接噴射することができる。
The tip of the fuel injection valve 9 extends into the cylinder chamber 4, and fuel can be directly injected into the cylinder chamber 4.

各気筒の燃料噴射弁9は、各燃料噴射弁9に共通の蓄圧
室10に接続され、この蓄圧室10は燃料ポンプ11に
よってほぼ一定圧力の高圧燃料で満たされている。点火
栓12はディス) IJピユータ13を介してイブナイ
フ14に接続される。
The fuel injection valves 9 of each cylinder are connected to a pressure accumulation chamber 10 common to each fuel injection valve 9, and this pressure accumulation chamber 10 is filled with high-pressure fuel at a substantially constant pressure by a fuel pump 11. The spark plug 12 is connected to the Eve knife 14 via an IJ computer 13.

電子制御ユニット30はディジタルコンピュータからな
り、双方向性バス31によって相互に接続されたROM
 (リードオンリメモリ)32 、RAM(ランダムア
クセスメモ!J)33 、CP[I(マイクロプロセッ
サ)34、人力ポート35および出力ポート36を具備
する。
The electronic control unit 30 consists of a digital computer with ROMs interconnected by a bidirectional bus 31.
(read only memory) 32 , RAM (random access memory! J) 33 , CP[I (microprocessor) 34 , a human power port 35 and an output port 36 .

機関回転数を検出するだめのクランク角センザ25はデ
ィストリビュータ13に内蔵され、クランク角センザ2
5の出力信号は入力ポート35に人力される。
A crank angle sensor 25 for detecting the engine speed is built into the distributor 13.
The output signal of 5 is inputted to the input port 35.

機関冷却水温を検出するための水温センサ26はΔD変
換器37を介して入力ポート35に接続される。
A water temperature sensor 26 for detecting engine cooling water temperature is connected to an input port 35 via a ΔD converter 37.

図示しないアクセルペダルの踏込み量を検出するための
アクセル開度センサ27はAD変換器38を介して人力
ポート35に接続される。
An accelerator opening sensor 27 for detecting the amount of depression of an accelerator pedal (not shown) is connected to the human power port 35 via an AD converter 38.

一方、出力ポート36は各駆動回路39.40,4]を
介して夫々燃料噴射弁9、イブナイフ14、ステップモ
ータ8に接続される。
On the other hand, the output port 36 is connected to the fuel injection valve 9, the Eve knife 14, and the step motor 8 via respective drive circuits 39, 40, 4].

第2図には第1図の機関本体の拡大断面図を示す。第2
図を参照すると、ピストン頂部に形成された凹状燃焼室
20は、上部側の大径の浅皿部21と、浅皿部21の中
央部に形成された下部側の深皿部22との二重構造とさ
れ、深皿部22は浅皿部21よりも小径に形成されてい
る。
FIG. 2 shows an enlarged sectional view of the engine body shown in FIG. 1. Second
Referring to the figure, the concave combustion chamber 20 formed at the top of the piston consists of a large-diameter shallow dish part 21 on the upper side and a deep dish part 22 on the lower side formed at the center of the shallow dish part 21. It has a heavy structure, and the deep dish part 22 is formed to have a smaller diameter than the shallow dish part 21.

図示しない吸気ポートはスワールポートとなっており、
燃料噴射弁9は多噴孔ホールノズルを有する。したがっ
て燃料噴射弁9は比較的貫徹力が強くかつ広がり角の小
さい棒状の燃料を噴射する。
The intake port (not shown) is a swirl port,
The fuel injection valve 9 has a multi-hole nozzle. Therefore, the fuel injection valve 9 injects rod-shaped fuel with a relatively strong penetration force and a small spread angle.

燃料噴射弁9は、斜め下方を指向してシリンダ室4の頂
部に・配置される。また燃料噴射弁9の燃料噴射方向お
よび燃料噴射時期は、噴射燃料が燃焼室20内に指向す
るように決められている。点火栓12は、ピストン3の
上死点時に凹状燃焼室20内に位置するように配設され
る。
The fuel injection valve 9 is arranged at the top of the cylinder chamber 4 so as to face diagonally downward. Further, the fuel injection direction and fuel injection timing of the fuel injection valve 9 are determined so that the injected fuel is directed into the combustion chamber 20. The ignition plug 12 is arranged so as to be located within the concave combustion chamber 20 when the piston 3 is at its top dead center.

第3図には圧縮行程噴射と吸気行程噴射の制御パターン
を示す。第3図を参照すると、横軸は機関の負荷を表し
ており、第3図では負荷として燃料噴射量Qをとり、縦
軸には燃料噴射量Qをとっている。燃料噴射量Q、に相
当する負荷領域までは、圧縮行程においてだけ燃料が噴
射される。圧縮行程燃料噴射量はQ、まで漸次増大せし
められる。燃料噴射量Q、において、圧縮行程燃料噴射
量はQ、まで急激に減少せしめられると共に吸気行程燃
料噴射量はQ、まで急激に増大せしめられる。Q、は中
負荷付近の燃料噴射量であり、Q。
FIG. 3 shows control patterns for compression stroke injection and intake stroke injection. Referring to FIG. 3, the horizontal axis represents the load on the engine, and in FIG. 3, the load is the fuel injection amount Q, and the vertical axis is the fuel injection amount Q. Up to a load range corresponding to the fuel injection amount Q, fuel is injected only in the compression stroke. The compression stroke fuel injection amount is gradually increased to Q. In the fuel injection amount Q, the compression stroke fuel injection amount is rapidly decreased to Q, and the intake stroke fuel injection amount is rapidly increased to Q. Q is the fuel injection amount near medium load;

とQ、との和として次式で示される。It is expressed as the sum of and Q by the following equation.

Q、−Q。+Q。Q, -Q. +Q.

ここで、QIlは点火栓12により着火可能な混合気を
形成し得る最小限の圧縮行程燃料噴射量であり、Q、は
吸気行程において噴射された燃料がシリンダ室4内に均
質に拡散した際に点火栓12による着火火災が伝播可能
な最小限の吸気行程燃料噴射量である。
Here, QIl is the minimum compression stroke fuel injection amount that can form an air-fuel mixture that can be ignited by the spark plug 12, and Q is the minimum amount of fuel injected during the intake stroke when the fuel injected in the intake stroke is uniformly diffused into the cylinder chamber 4. This is the minimum intake stroke fuel injection amount at which a fire ignited by the spark plug 12 can propagate.

燃料噴射量がQSより大きくかつQuより小さい負荷領
域においては、全燃料噴射量Qを圧縮行程と吸気行程と
に分割して噴射し、圧縮行程燃料噴射量は負荷によらず
一定とし吸気行程燃料噴射量は負荷の増大に伴って増大
せしめられる。
In a load region where the fuel injection amount is larger than QS and smaller than Qu, the total fuel injection amount Q is divided into the compression stroke and the intake stroke and injected, and the compression stroke fuel injection amount is constant regardless of the load, and the intake stroke fuel is The injection amount is increased as the load increases.

燃料噴射量がQ、より大きい負荷領域においては、燃料
噴射量が多いた必吸気行程噴射によって形成されるシリ
ンダ室内の予混合気の濃度が着火に十分なほど濃いため
、着火のための圧縮行程噴射をやめて、要求燃料噴射量
の全量を吸気行程において噴射することとしている。Q
I+はシリンダ室内に燃料が均質に拡散した場合にも点
火栓により着火可能な均質混合気を形成可能な最小限吸
気行程燃料噴射量である。
In a load region where the fuel injection amount is Q or larger, the concentration of the premixture in the cylinder chamber formed by the intake stroke injection with a large fuel injection amount is rich enough for ignition, so the compression stroke for ignition is The injection is stopped and the entire required fuel injection amount is injected during the intake stroke. Q
I+ is the minimum intake stroke fuel injection amount that can form a homogeneous mixture that can be ignited by the spark plug even when the fuel is uniformly diffused in the cylinder chamber.

第4図には、第3図の燃料噴射制御パターンを負荷とク
ランク角との関係で表わした図を示す。
FIG. 4 shows a diagram showing the fuel injection control pattern of FIG. 3 in terms of the relationship between load and crank angle.

再び第2図を参照すると、中負荷付近Q3より低い負荷
領域においては、圧縮行程後期に燃料噴射弁9から燃焼
室20に向かって要求噴射量の全量が噴射される。燃料
噴射時期は遅くされ、このため大部分の燃料は深皿部2
2内に噴射される。深皿部22内壁面に付着した燃料は
蒸発霧化し、燃焼室20内に可燃域を含む濃淡のある混
合気層を形成する。この混合気層の一部が点火栓12に
より点火され、主に深皿部22内で良好な燃焼が完了す
る。
Referring again to FIG. 2, in a load region lower than the medium load vicinity Q3, the entire required injection amount is injected from the fuel injection valve 9 toward the combustion chamber 20 in the latter half of the compression stroke. The fuel injection timing is delayed, so most of the fuel is in the deep dish section 2.
It is injected into 2. The fuel adhering to the inner wall surface of the deep dish portion 22 is evaporated and atomized to form a mixed gas layer containing a flammable region within the combustion chamber 20. A part of this air-fuel mixture layer is ignited by the spark plug 12, and good combustion is completed mainly within the deep dish portion 22.

中負荷付近Qsより高<Q+□より低い負荷領域におい
ては、第5図に示されるように、吸気行程初期(第5図
(a))に吸気行程噴射が実行され、燃料噴射弁9がら
燃焼室20を指向して燃料が噴射される。噴射燃料Fは
主に浅皿部21に衝突し、その一部はシリング室4中に
反射し、他の一部は浅皿部21の壁面に付着し壁面から
の加熱により蒸発霧化する。これらの燃料は、吸入渦流
SWおよび吸気流の乱れRによって吸気行程から圧縮行
程に至る間に予混合気Pが形成される(第5図(b))
In a load region higher than Qs near medium load and lower than Q+□, as shown in FIG. Fuel is injected toward the chamber 20. The injected fuel F mainly collides with the shallow dish part 21, a part of which is reflected into the shilling chamber 4, and the other part adheres to the wall surface of the shallow dish part 21 and is evaporated and atomized by heating from the wall surface. These fuels form a premixture P during the period from the intake stroke to the compression stroke due to the intake swirl SW and the turbulence R of the intake flow (Fig. 5(b)).
.

この予混合気Pの空燃比は、着火火炎が伝播できる程度
の空燃比とされる。吸入渦流SWが強い場合には、シリ
ンダ室4外周付近が濃く、中心付近が薄くなるような予
混合気が形成される。
The air-fuel ratio of this premixture P is set to a level that allows the ignition flame to propagate. When the suction vortex SW is strong, a premixture is formed that is rich near the outer periphery of the cylinder chamber 4 and thin near the center.

なお、吸気行程噴射時期を早めて、ピストン3がより」
−死点に近い位置にあるときに燃料を噴射すると、大部
分の燃料は深皿部22内に噴射され、大部分の燃料が深
皿部22内で予混合気化される。
In addition, by advancing the intake stroke injection timing, piston 3 will be more effective.
- When fuel is injected at a position close to the dead center, most of the fuel is injected into the deep dish part 22, and most of the fuel is premixed in the deep dish part 22.

続いて圧縮行程後期(第5図(C))に圧縮行程噴射が
実行され、大部分の燃料が深皿部22内に噴射される。
Subsequently, compression stroke injection is performed in the latter half of the compression stroke (FIG. 5(C)), and most of the fuel is injected into the deep dish portion 22.

深皿部22内壁面に付着した燃料は、壁面および圧縮空
気からの加熱により気化し、渦流SWにより拡散混合し
、可燃域を含む濃淡のある不均一混合気層が形成される
。この混合気層の一部が点火栓12により点火され、不
均一混合気層の燃焼が進行する(第5図(d))。この
燃焼により形成された火炎Bが深皿部22内で発達する
過程で、周辺の予混合気に伝播し、さらに逆スキツシコ
流Sにより、深皿部22外まで燃焼を進行させる。
The fuel adhering to the inner wall surface of the deep dish portion 22 is vaporized by heating from the wall surface and compressed air, and is diffused and mixed by the vortex SW, forming a heterogeneous mixture layer with a rich and light concentration including a flammable region. A part of this mixture layer is ignited by the spark plug 12, and combustion of the heterogeneous mixture layer proceeds (FIG. 5(d)). As the flame B formed by this combustion develops within the deep dish section 22, it propagates into the surrounding premixture, and further, the combustion progresses to the outside of the deep dish section 22 due to the reverse gas flow S.

なお圧縮行程噴射時期を早め、燃料を浅皿部21と深皿
部22の両方に噴射する場合には、火炎が浅皿部21と
深皿部22とに広く分布し、予混合気への火炎の伝播を
より容易にすることができる。
In addition, when the compression stroke injection timing is advanced and the fuel is injected into both the shallow dish part 21 and the deep dish part 22, the flame is widely distributed in the shallow dish part 21 and the deep dish part 22, and the premixture is affected. Flame propagation can be made easier.

ところでこのような内燃機関では、機関冷間時において
はシリンダ内の温度、例えば燃焼室20の壁温が低いた
めに、シリンダ内に噴射された燃料の蒸発が悪化し、こ
のため着火および火炎伝播に必要な混合気の形成が不十
分となり、良好な燃焼が得られないという問題を生ずる
By the way, in such an internal combustion engine, when the engine is cold, the temperature inside the cylinder, for example, the wall temperature of the combustion chamber 20, is low, which worsens the evaporation of the fuel injected into the cylinder, which reduces ignition and flame propagation. This results in insufficient formation of the air-fuel mixture necessary for combustion, resulting in the problem that good combustion cannot be obtained.

また、シリンダ内の温度は燃料噴射量が少ない程低下す
るために、低負荷運転時からの加速時においては、シリ
ンダ内の温度は相対的に低くなり上述と同様の問題を生
ずる。
Further, since the temperature inside the cylinder decreases as the fuel injection amount decreases, during acceleration from low-load operation, the temperature inside the cylinder becomes relatively low, causing the same problem as described above.

そこで本実施例ではシリンダ内の温度が低いときには、
圧縮行程噴射の燃料噴射時第を進角せしめると共に点火
時期を進角せしめるようにしている。すなわち、第4図
に示されるように、シリンダ内低温度においては圧縮行
程噴射時期および点火時期は実線で示されるように、シ
リンダ内が低温でないとき(点線で示される)に対して
進角せしめられている。
Therefore, in this embodiment, when the temperature inside the cylinder is low,
The fuel injection timing of the compression stroke injection is advanced, and the ignition timing is also advanced. That is, as shown in Fig. 4, when the temperature inside the cylinder is low, the compression stroke injection timing and ignition timing are advanced, as shown by the solid line, compared to when the inside of the cylinder is not low temperature (shown by the dotted line). It is being

これによって火炎核が早期に形成されるために、圧縮行
程におけるガス圧縮による発熱と相まってシリンダ内温
度がより高くなるために燃料の蒸発を促進することがで
きる。この結果、良好な混合気を形成することができ、
斯くして良好な燃焼を得ることができる。
As a result, a flame kernel is formed at an early stage, which, together with the heat generated by gas compression in the compression stroke, increases the temperature inside the cylinder, thereby promoting fuel evaporation. As a result, a good mixture can be formed,
In this way, good combustion can be obtained.

第6図には本実施例を実行するだめのルーチンを示す。FIG. 6 shows a routine for executing this embodiment.

このルーチンは一部クランク角毎の割込みによって実行
される。第6図を参照すると、まずステップ60におい
て、アクセル踏込み量と機関回転数とのマツプから全燃
料噴射量0が計算される。次いでステップ61において
全燃料噴射量Qと機関回転数とのマツプから圧縮行程燃
料噴射量Q。
This routine is partially executed by an interrupt every crank angle. Referring to FIG. 6, first in step 60, a total fuel injection amount of 0 is calculated from a map of the accelerator depression amount and the engine speed. Next, in step 61, the compression stroke fuel injection amount Q is determined from a map of the total fuel injection amount Q and the engine speed.

が計算される。次いでステップ62では圧縮行程燃料噴
射量Q。と機関回転数のマツプから圧縮行程燃料噴射時
期A。が計算される。次いでステップ63では全燃料噴
射IQと機関回転数のマツプから点火時期I9が計算さ
れる。ステップ64ては、機関冷却水温TWが70℃以
上か否か、すなわち機関冷間時か否か判定される。TW
<70℃の場合、すなわち機関冷間時においてはステッ
プ67に進み、圧縮行程燃料噴射量Q。がOか否か判定
される。
is calculated. Next, in step 62, the compression stroke fuel injection amount Q is determined. Compression stroke fuel injection timing A is determined from the map of engine speed and engine speed. is calculated. Next, in step 63, the ignition timing I9 is calculated from the map of the total fuel injection IQ and the engine speed. In step 64, it is determined whether the engine cooling water temperature TW is 70° C. or higher, that is, whether the engine is cold. T.W.
If <70°C, that is, when the engine is cold, the process proceeds to step 67, where the compression stroke fuel injection amount Q is determined. It is determined whether or not is O.

Q、キ0の場合、すなわち圧縮行程噴射が実行される場
合には、ステップ68に進み圧縮行程燃料噴射時期A。
In the case of Q, key 0, that is, when compression stroke injection is to be executed, the process advances to step 68 and the compression stroke fuel injection timing A is determined.

の進角量Xが計算される。次いでステップ69では圧縮
行程燃料噴射時期A。にXが加算され、進角量Xだけ進
角せしめられる。ここで、圧縮行程燃料噴射時期A。は
圧縮上死点から吸気下死点に向かって計測した角度であ
る。次いでステップ70では点火時期I、の進角量Yが
計算される。次いでステップ71では点火時期■、にY
が加算され、進角量Yだけ進角せしめられる。
The advance angle amount X is calculated. Next, in step 69, the compression stroke fuel injection timing A is determined. X is added to , and the angle is advanced by the amount of advance X. Here, the compression stroke fuel injection timing A. is the angle measured from compression top dead center to intake bottom dead center. Next, in step 70, an advance amount Y of the ignition timing I is calculated. Next, in step 71, the ignition timing is changed to ■, Y.
is added, and the angle is advanced by the advance amount Y.

一方、ステップ67においてQc’= 0と判定された
場合、ずなわぢ圧縮行程噴射が実行されないときには、
ステップ70およびステップ71において点火時期■、
が進角せしめられる。
On the other hand, if it is determined in step 67 that Qc'=0, and the Zunawa compression stroke injection is not executed,
In step 70 and step 71, the ignition timing ■,
is advanced.

一方、ステップ64においてTW≧70℃と判定される
と、ステップ65に進み、平均燃料噴射量QAが次式に
より計算される。
On the other hand, if it is determined in step 64 that TW≧70° C., the process proceeds to step 65 and the average fuel injection amount QA is calculated using the following equation.

QA−ΣQゎ/η ここでΣQ、、は現在に最も近い過去n回分の全燃料噴
射量Qの総和を示しており、従ってΣQ、 /nによっ
て過去1回分の平均燃料噴射量を計算することができる
。シリンダ内温度は燃料噴射量が多い程高(なり、従っ
てQAはシリンダ内温度を間接的に示している。すなわ
ちQAが小さいということはシリンダ内温度が低いとい
うことを示している。次いでステップ66では今回の全
燃料噴射量Oと平均燃料噴射量QA との差を計算する
。OQAが予め定められた値、例えば15mm3以上に
なると、シリンダ内温度が相対的に低いということを示
している。例えば低負荷運転時から加速運転をした場合
にはQ−QA〉15となる。この場合にも機関冷間時と
同様に、良好な着火および燃焼が得られないという問題
がある。従って、Q−QA〉15の場合、ステップ67
以下に進み、圧縮行程噴射が実行される場合には、圧縮
行程燃料噴射時期Acおよび点火時期I、を進角せしめ
、圧縮行程噴射が実行されない場合には点火時期だけを
進角せしめる。
QA-ΣQゎ/η Here, ΣQ,, indicates the sum of all fuel injection amounts Q for the past n times closest to the present, and therefore, the average fuel injection amount for the past one time can be calculated by ΣQ, /n. I can do it. The larger the fuel injection amount, the higher the temperature inside the cylinder. Therefore, QA indirectly indicates the temperature inside the cylinder. In other words, a small QA indicates that the temperature inside the cylinder is low. Next, step 66 Now, calculate the difference between the current total fuel injection amount O and the average fuel injection amount QA.When OQA exceeds a predetermined value, for example 15 mm3, it indicates that the cylinder internal temperature is relatively low. For example, when accelerating from low-load operation, Q-QA>15. In this case as well, there is a problem that good ignition and combustion cannot be obtained, as in the case when the engine is cold. - If QA〉15, step 67
Proceeding below, when compression stroke injection is executed, the compression stroke fuel injection timing Ac and ignition timing I are advanced, and when compression stroke injection is not executed, only the ignition timing is advanced.

一方、Q  QA ≦15と判定された場合には本ルー
チンを終了する。すなわちシリンダ内が低温時でない場
合には圧縮行程燃料噴射時期A。および点火時期■、は
進角せしめられない。
On the other hand, if it is determined that Q QA ≦15, this routine ends. That is, if the inside of the cylinder is not at low temperature, the compression stroke fuel injection timing is A. and ignition timing ■, cannot be advanced.

なお、本実施例では1つの燃料噴射弁9によって吸気行
程噴射および圧縮行程噴射を実行するようにしているが
、2つの燃料噴射弁を有し、一方の燃料噴射弁で吸気行
程噴射を実行すると共に他方の燃料噴射弁によって圧縮
行程噴射を実行するようにしてもよい。
In this embodiment, one fuel injection valve 9 is used to perform intake stroke injection and compression stroke injection, but there are two fuel injection valves, and one fuel injection valve is used to perform intake stroke injection. At the same time, the compression stroke injection may be performed by the other fuel injection valve.

〔発明の効果〕〔Effect of the invention〕

シリンダ内低温時においても良好な混合気を形成できる
ため、良好な燃焼を得ることができる。
Since a good air-fuel mixture can be formed even when the temperature inside the cylinder is low, good combustion can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は内燃機関の全体図、第2図は機関本体の縦断面
図、第3図は圧縮行程噴射と吸気行程噴射の制御パター
ンの一例を示す線図、第4図は第3図の制御パターンを
負荷とクランク角との関係で表わした線図、第5図は燃
料噴射の状態を示す説明図、第6図は圧縮行程燃料噴射
時期および点火時期を計算するためのフローチャートで
ある。 4・・・シリンダ室、    9・・・燃料噴射弁、1
2・・・点火栓、     26・・・水温センサ。 第2図 第3図 吸気行程初期 (a) (b) 圧縮行程後期 (C) 信 燃焼行程 (d) 5図
Figure 1 is an overall view of the internal combustion engine, Figure 2 is a vertical cross-sectional view of the engine body, Figure 3 is a diagram showing an example of control patterns for compression stroke injection and intake stroke injection, and Figure 4 is the same as Figure 3. FIG. 5 is an explanatory diagram showing the state of fuel injection, and FIG. 6 is a flowchart for calculating the compression stroke fuel injection timing and ignition timing. 4... Cylinder chamber, 9... Fuel injection valve, 1
2... Spark plug, 26... Water temperature sensor. Figure 2 Figure 3 Early intake stroke (a) (b) Late compression stroke (C) Fierce combustion stroke (d) Figure 5

Claims (1)

【特許請求の範囲】[Claims] 圧縮行程にシリンダ内に燃料を直接噴射せしめて点火栓
によって着火せしめるようにした内燃機関において、シ
リンダ内低温時においては圧縮行程噴射の燃料噴射時期
を進角せしめると共に点火時期を進角せしめるようにし
た筒内直接噴射式火花点火機関。
In an internal combustion engine in which fuel is directly injected into the cylinder during the compression stroke and ignited by the ignition plug, when the temperature inside the cylinder is low, the fuel injection timing of the compression stroke injection is advanced and the ignition timing is advanced. In-cylinder direct injection spark ignition engine.
JP2311658A 1990-11-19 1990-11-19 In-cylinder direct injection spark ignition engine Expired - Lifetime JP2751626B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2311658A JP2751626B2 (en) 1990-11-19 1990-11-19 In-cylinder direct injection spark ignition engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2311658A JP2751626B2 (en) 1990-11-19 1990-11-19 In-cylinder direct injection spark ignition engine

Publications (2)

Publication Number Publication Date
JPH04183924A true JPH04183924A (en) 1992-06-30
JP2751626B2 JP2751626B2 (en) 1998-05-18

Family

ID=18019929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2311658A Expired - Lifetime JP2751626B2 (en) 1990-11-19 1990-11-19 In-cylinder direct injection spark ignition engine

Country Status (1)

Country Link
JP (1) JP2751626B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0824188A2 (en) 1996-08-09 1998-02-18 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Control apparatus for an in-cylinder injection internal combustion engine
DE19650518C1 (en) * 1996-12-05 1998-06-10 Siemens Ag Method for controlling a direct injection internal combustion engine
EP0790407A3 (en) * 1996-02-16 1999-03-31 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Apparatus and method for controlling the ignition timing of a cylinder-injection internal combustion engine
EP0864734A3 (en) * 1997-03-14 1999-06-09 AVL List GmbH Method of feeding fuel into the combustion chamber of a direct injection spark ignited engine
FR2801074A1 (en) * 1999-11-12 2001-05-18 Bosch Gmbh Robert METHOD FOR IMPLEMENTING AN INTERNAL COMBUSTION ENGINE
WO2003027493A1 (en) * 2001-08-30 2003-04-03 Robert Bosch Gmbh Method for operating a direct-injection internal combustion engine
JP2009062919A (en) * 2007-09-07 2009-03-26 Toyota Motor Corp Control system of internal combustion engine
CN112412624A (en) * 2016-11-07 2021-02-26 保罗·约翰·威廉·玛利亚·努奥伊耶恩 Method of controlling operation of internal combustion engine including crankshaft and cylinder

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999067514A1 (en) * 1998-06-22 1999-12-29 Hitachi, Ltd. Cylinder-injection type internal combustion engine, method of controlling the engine, and fuel injection nozzle

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0790407A3 (en) * 1996-02-16 1999-03-31 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Apparatus and method for controlling the ignition timing of a cylinder-injection internal combustion engine
KR100320489B1 (en) * 1996-02-16 2002-06-26 나까무라히로까즈 Apparatus and method for ignition timing of a cylinder-injection flame-ignition internal combustion engine
EP0824188A2 (en) 1996-08-09 1998-02-18 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Control apparatus for an in-cylinder injection internal combustion engine
US5797367A (en) * 1996-08-09 1998-08-25 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Control apparatus for an in-cylinder injection internal combustion engine
EP0824188B1 (en) * 1996-08-09 2003-06-04 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Control apparatus for an in-cylinder injection internal combustion engine
DE19650518C1 (en) * 1996-12-05 1998-06-10 Siemens Ag Method for controlling a direct injection internal combustion engine
EP0864734A3 (en) * 1997-03-14 1999-06-09 AVL List GmbH Method of feeding fuel into the combustion chamber of a direct injection spark ignited engine
FR2801074A1 (en) * 1999-11-12 2001-05-18 Bosch Gmbh Robert METHOD FOR IMPLEMENTING AN INTERNAL COMBUSTION ENGINE
WO2003027493A1 (en) * 2001-08-30 2003-04-03 Robert Bosch Gmbh Method for operating a direct-injection internal combustion engine
JP2009062919A (en) * 2007-09-07 2009-03-26 Toyota Motor Corp Control system of internal combustion engine
CN112412624A (en) * 2016-11-07 2021-02-26 保罗·约翰·威廉·玛利亚·努奥伊耶恩 Method of controlling operation of internal combustion engine including crankshaft and cylinder

Also Published As

Publication number Publication date
JP2751626B2 (en) 1998-05-18

Similar Documents

Publication Publication Date Title
US5170759A (en) Fuel injection control device for an internal combustion engine
US4955339A (en) Internal combustion engine
JP4032690B2 (en) In-cylinder injection gasoline engine
JP3325232B2 (en) In-cylinder injection engine
US7096853B2 (en) Direct fuel injection/spark ignition engine control device
JPH04187851A (en) Cylinder direct-injection type spark ignition engine
JPH05113146A (en) Internal combustion engine
JPH02169834A (en) Inner-cylinder direct jet type spark ignition engine
EP1559889B1 (en) Direct fuel injection/spark ignition engine control device
JPH0552145A (en) Control device for internal combustion engine
JPH05118245A (en) Internal combustion engine
KR20000017110A (en) Control device for direct injection engine
JP4054223B2 (en) In-cylinder injection engine and control method for in-cylinder injection engine
US5101785A (en) Control device for an internal combustion engine
JP2016180326A (en) Fuel injection control device of direct injection engine
JPH04183924A (en) Direct injection in-cylinder type spark ignition engine
JP2871220B2 (en) In-cylinder internal combustion engine
JP2987925B2 (en) In-cylinder direct injection spark ignition engine
JPH0579370A (en) Cylinder injection type internal combustion engine
JPS60230544A (en) Fuel injector for engine
JPH08193536A (en) Fuel injection controller of cylinder injection type internal combustion engine
JP2929708B2 (en) In-cylinder direct injection spark ignition engine
JPH04187819A (en) Cylinder direct injection type spark ignition engine
JPH0579337A (en) Inter-cylinder injection type internal combustion engine
JP3196674B2 (en) In-cylinder injection spark ignition engine

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080227

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100227

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110227

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110227

Year of fee payment: 13