JPH0579337A - Inter-cylinder injection type internal combustion engine - Google Patents

Inter-cylinder injection type internal combustion engine

Info

Publication number
JPH0579337A
JPH0579337A JP3239582A JP23958291A JPH0579337A JP H0579337 A JPH0579337 A JP H0579337A JP 3239582 A JP3239582 A JP 3239582A JP 23958291 A JP23958291 A JP 23958291A JP H0579337 A JPH0579337 A JP H0579337A
Authority
JP
Japan
Prior art keywords
fuel
load
engine
intake
injected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3239582A
Other languages
Japanese (ja)
Inventor
Takanobu Ueda
貴宣 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP3239582A priority Critical patent/JPH0579337A/en
Publication of JPH0579337A publication Critical patent/JPH0579337A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/42Shape or arrangement of intake or exhaust channels in cylinder heads
    • F02F1/4214Shape or arrangement of intake or exhaust channels in cylinder heads specially adapted for four or more valves per cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • F02B23/10Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder
    • F02B23/104Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder the injector being placed on a side position of the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/26Pistons  having combustion chamber in piston head
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To provide a proper combustion in spite of lean air-mixture by increasing the intensity of a swirl stream when an engine load stays between the first set load and the second set load in comparison with the intensity of a swirl stream when the engine load is lower than the first set load or higher than the second set load. CONSTITUTION:A shallow dish part 12 which has a circular contour shape extending from the bottom of a fuel injection valve 11 to the bottom of an ignition plug 10 is formed on the top face of a piston 3, and a deep dish part 13 in approximately semi-sphere shape is formed in the central part of the shallow dish part 12. A spherical concave part 14 is formed at the connection part between the shallow dish part 12 and the deep dish part 13 below the ignition plug 10. A fuel injection quantity is small and air-mixture occupying the whole inside of a combustion chamber 5 becomes lean at the time of middle load operation of the engine. Since an intake air control valve is fully closed and strong swirl is generated inside the combustion chamber 5, the air-mixture inside the combustion chamber 5 formed by a first fuel injection becomes considerably lean, but flame is rapidly propagated by strong swirl, and thereby proper combustion is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は筒内噴射式内燃機関に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cylinder injection type internal combustion engine.

【0002】[0002]

【従来の技術】燃料噴射弁を燃焼室内に配置すると共に
ピストン頂面上に凹溝を形成し、機関負荷が予め定めら
れた設定負荷よりも低い機関低負荷運転時には圧縮行程
末期に凹溝内に燃料を噴射して凹溝内に形成された混合
気を点火栓により着火し、機関負荷が設定負荷よりも高
いときには吸気行程中に燃料を凹溝以外の領域に噴射し
て燃焼室内全体を満たす均一混合気を形成するようにし
た筒内噴射式内燃機関が公知である(特開平2−169834
号公報参照)。
2. Description of the Related Art A fuel injection valve is arranged in a combustion chamber and a groove is formed on the top surface of a piston so that the engine load is lower than a preset load when the engine is under low load. When the engine load is higher than the set load, the fuel is injected into the region other than the groove to inject the fuel into the region other than the groove to inject the fuel into the region inside the groove to ignite the mixture formed in the groove. A cylinder injection type internal combustion engine is known which is designed to form a uniform mixture to be filled (Japanese Patent Laid-Open No. 2-169834).
(See the official gazette).

【0003】[0003]

【発明が解決しようとする課題】ところが機関負荷が低
くなるほど燃料噴射量は減少するために上述の如く機関
負荷が設定負荷よりも高いときに燃焼室内全体を満たす
均一混合気を形成するとこの均一混合気は機関負荷が低
くなるほど稀薄となる。その結果、機関負荷が設定負荷
よりも高い運転領域において機関負荷が低い方の領域で
は混合気がかなり稀薄となるために着火火炎が良好に伝
播せず、斯くして良好な燃焼を得ることができないとい
う問題がある。
However, since the fuel injection amount decreases as the engine load decreases, forming a uniform mixture that fills the entire combustion chamber when the engine load is higher than the set load as described above. Qi becomes leaner as the engine load becomes lower. As a result, in the operating region where the engine load is higher than the set load, the air-fuel mixture becomes considerably lean in the region where the engine load is low, so the ignition flame does not propagate well, and thus good combustion can be obtained. There is a problem that you can not.

【0004】[0004]

【課題を解決するための手段】上記問題点を解決するた
めに本発明によれば燃料噴射弁を燃焼室内に配置すると
共にピストン頂面上に凹溝を形成し、機関負荷が予め定
められた第1の設定負荷よりも低い機関低負荷運転時に
は圧縮行程末期に凹溝内に燃料を噴射して凹溝内に噴射
された燃料を点火栓により着火し、機関負荷が第1の設
定負荷よりも高いときには吸気行程中に燃料を噴射する
ようにした筒内噴射式内燃機関において、燃焼室内に流
入する吸入空気流により燃焼室内に発生せしめられる旋
回流の強さを機関負荷に応じて制御する旋回流制御装置
を具備し、この旋回流制御装置によって機関負荷が第1
の設定負荷と、第1の設定負荷よりも高い第2の設定負
荷との間にあるときの旋回流の強さを機関負荷が第1の
設定負荷よりも低いときおよび機関負荷が第2の設定負
荷よりも高いときの旋回流の強さに比べて強くするよう
にしている。
According to the present invention, in order to solve the above problems, a fuel injection valve is arranged in a combustion chamber and a groove is formed on the top surface of a piston, so that an engine load is predetermined. During engine low load operation lower than the first set load, fuel is injected into the groove at the end of the compression stroke, and the fuel injected into the groove is ignited by the spark plug, so that the engine load is lower than the first set load. In a cylinder injection internal combustion engine in which fuel is injected during the intake stroke when is too high, the strength of the swirl flow generated in the combustion chamber by the intake air flow flowing into the combustion chamber is controlled according to the engine load. A swirling flow control device is provided, and the engine load is first
Of the swirling flow between the second set load higher than the first set load and the second set load higher than the first set load when the engine load is lower than the first set load and when the engine load is the second set load. It is designed to be stronger than the strength of the swirling flow when it is higher than the set load.

【0005】[0005]

【作用】機関負荷が第1の設定負荷と第2の設定負荷と
の間にあるときに旋回流が最も強められ、燃焼火炎の伝
播速度が速められる。
When the engine load is between the first set load and the second set load, the swirl flow is maximized and the propagation speed of the combustion flame is increased.

【0006】[0006]

【実施例】図1を参照すると機関本体1は4つの気筒1
aを具備し、これら各気筒1aの燃焼室構造が図2から
図5に示されている。図2から図5を参照すると、2は
シリンダブロック、3はシリンダブロック2内で往復動
するピストン、4はシリンダブロック2上に固締された
シリンダヘッド、5はピストン3とシリンダヘッド4間
に形成された燃焼室、6aは第1吸気弁、6bは第2吸
気弁、7aは第1吸気ポート、7bは第2吸気ポート、
8は一対の排気弁、9は一対の排気ポートを夫々示す。
図2に示されるように第1の吸気ポート7aはヘリカル
型吸気ポートからなり、第2の吸気ポート7bはほぼま
っすぐに延びるストレートポートからなる。更に図2に
示されるようにシリンダヘッド4の内壁面の中央部には
点火栓10が配置され、第1吸気弁6aおよび第2吸気
弁6b近傍のシリンダヘッド4内壁面周辺部には燃料噴
射弁11が配置される。図3および図4に示されるよう
にピストン3の頂面上には燃料噴射弁11の下方から点
火栓10の下方まで延びるほぼ円形の輪郭形状を有する
浅皿部12が形成され、浅皿部12の中央部にはほぼ半
球形状をなす深皿部13が形成される。また、点火栓1
0下方の浅皿部12と深皿部13との接続部にはほぼ球
形状をなす凹部14が形成される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to FIG. 1, an engine body 1 has four cylinders 1.
2 to 5, the combustion chamber structure of each cylinder 1a is shown. 2 to 5, 2 is a cylinder block, 3 is a reciprocating piston in the cylinder block 2, 4 is a cylinder head fixed on the cylinder block 2, and 5 is between the piston 3 and the cylinder head 4. The formed combustion chamber, 6a is a first intake valve, 6b is a second intake valve, 7a is a first intake port, 7b is a second intake port,
Reference numeral 8 indicates a pair of exhaust valves, and 9 indicates a pair of exhaust ports.
As shown in FIG. 2, the first intake port 7a is a helical intake port, and the second intake port 7b is a straight port that extends almost straight. Further, as shown in FIG. 2, a spark plug 10 is arranged at the center of the inner wall surface of the cylinder head 4, and fuel is injected to the peripheral portion of the inner wall surface of the cylinder head 4 near the first intake valve 6a and the second intake valve 6b. The valve 11 is arranged. As shown in FIGS. 3 and 4, on the top surface of the piston 3, there is formed a shallow dish portion 12 having a substantially circular contour shape extending from below the fuel injection valve 11 to below the spark plug 10. A basin portion 13 having a substantially hemispherical shape is formed in the central portion of 12. Also, the spark plug 1
A concave portion 14 having a substantially spherical shape is formed at a connecting portion between the shallow dish portion 12 and the deep dish portion 13 below 0.

【0007】図1に示されるように各気筒1aの第1吸
気ポート7aおよび第2の吸気ポート7bは夫々各吸気
枝管15内に形成された第1吸気通路15aおよび第2
吸気通路15bを介してサージタンク16内に連結さ
れ、各第2吸気通路15b内には夫々吸気制御弁17が
配置される。これらの吸気制御弁17は共通のシャフト
18を介して例えばステップモータからなるアクチュエ
ータ19に連結される。このステップモータ19は電子
制御ユニット30の出力信号に基いて制御される。サー
ジタンク16は吸気ダクト20を介してエアクリーナ2
1に連結され、吸気ダクト20内にはステップモータ2
2によって駆動されるスロットル弁23が配置される。
このスロットル弁23は機関負荷が極く低いときのみ或
る程度閉弁しており、機関負荷が少し高くなると全開状
態に保持される。一方、各気筒1aの排気ポート9は排
気マニホルド24に連結される。
As shown in FIG. 1, the first intake port 7a and the second intake port 7b of each cylinder 1a are respectively provided with a first intake passage 15a and a second intake passage 15a formed in each intake branch pipe 15, respectively.
The surge tank 16 is connected through the intake passage 15b, and the intake control valves 17 are arranged in the respective second intake passages 15b. These intake control valves 17 are connected via a common shaft 18 to an actuator 19 composed of, for example, a step motor. The step motor 19 is controlled based on the output signal of the electronic control unit 30. The surge tank 16 receives the air cleaner 2 through the intake duct 20.
1, the step motor 2 is installed in the intake duct 20.
A throttle valve 23 driven by 2 is arranged.
The throttle valve 23 is closed to some extent only when the engine load is extremely low, and is kept fully open when the engine load is slightly higher. On the other hand, the exhaust port 9 of each cylinder 1a is connected to the exhaust manifold 24.

【0008】電子制御ユニット30はディジタルコンピ
ュータからなり、双方向性バス31を介して相互に接続
されたRAM(ランダムアクセスメモリ)32、ROM
(リードオンリメモリ)33、CPU(マイクロプロセ
ッサ)34、入力ポート35および出力ポート36を具
備する。アクセルペダル25にはアクセルペダル25の
踏込み量に比例した出力電圧を発生する負荷センサ26
が接続され、負荷センサ26の出力電圧はAD変換器3
7を介して入力ポート35に入力される。上死点センサ
27は例えば1番気筒1aが吸気上死点に達したときに
出力パルスを発生し、この出力パルスが入力ポート35
に入力される。クランク角センサ28は例えばクランク
シャフトが30度回転する毎に出力パルスを発生し、こ
の出力パルスが入力ポート35に入力される。CPU3
4では上死点センサ27の出力パルスとクランク角セン
サ28の出力パルスから現在のクランク角が計算され、
クランク角センサ28の出力パルスから機関回転数が計
算される。一方、出力ポート36は対応する駆動回転3
8を介して各燃料噴射弁11および各ステップモータ1
9,22に接続される。
The electronic control unit 30 comprises a digital computer, and a RAM (random access memory) 32 and a ROM connected to each other via a bidirectional bus 31.
A (read only memory) 33, a CPU (microprocessor) 34, an input port 35 and an output port 36 are provided. The accelerator pedal 25 includes a load sensor 26 that generates an output voltage proportional to the depression amount of the accelerator pedal 25.
Is connected, and the output voltage of the load sensor 26 is the AD converter 3
It is input to the input port 35 via 7. The top dead center sensor 27 generates an output pulse, for example, when the first cylinder 1a reaches the intake top dead center, and this output pulse is input to the input port 35.
Entered in. The crank angle sensor 28 generates an output pulse each time the crankshaft rotates 30 degrees, for example, and this output pulse is input to the input port 35. CPU3
In 4, the current crank angle is calculated from the output pulse of the top dead center sensor 27 and the output pulse of the crank angle sensor 28,
The engine speed is calculated from the output pulse of the crank angle sensor 28. On the other hand, the output port 36 has a corresponding drive rotation 3
8 through each fuel injection valve 11 and each step motor 1
9 and 22 are connected.

【0009】本発明による実施例では図2および図3に
おいてF1 ,F2 およびF3 で示されるように燃料噴射
弁11から三つの方向に向けて燃料が噴射される。図6
はこの燃料噴射弁11からの燃料噴射量と燃料噴射時期
とを示している。なお、図6においてLはアクセルペダ
ル25の踏込み量を示している。図6からわかるように
アクセルペダル25の踏込み量LがL1 よりも小さい機
関低負荷運転時には圧縮行程末期に噴射量Q2 だけ燃料
噴射が行われる。一方、アクセルペダル25の踏込み量
LがL1 とL2 の間の機関中負荷運転時には吸気行程中
に噴射量Q1 だけ燃料噴射が行われ、圧縮行程末期に噴
射量Q2 だけ燃料が噴射される。即ち、機関中負荷運転
時には吸気行程と圧縮行程末期の2回に分けて燃料噴射
が行われる。また、アクセルペダル25の踏込み量Lが
2 よりも大きい機関高負荷運転時には吸気行程中に噴
射量Q1 だけ燃料が噴射される。なお、図6においてθ
S1およびθE1は吸気行程中に行われる燃料噴射Q1
の噴射開始時期と噴射完了時期を夫々示しており、θS
2とθE2は圧縮行程末期に行われる燃料噴射Q2 の噴
射開始時期と噴射完了時期を夫々示している。
In the embodiment according to the present invention, fuel is injected from the fuel injection valve 11 in three directions as shown by F 1 , F 2 and F 3 in FIGS. 2 and 3. Figure 6
Indicates the fuel injection amount from the fuel injection valve 11 and the fuel injection timing. In addition, in FIG. 6, L indicates the depression amount of the accelerator pedal 25. As can be seen from FIG. 6, during the engine low load operation in which the depression amount L of the accelerator pedal 25 is smaller than L 1, fuel is injected by the injection amount Q 2 at the end of the compression stroke. On the other hand, at the time of engine medium load operation in which the depression amount L of the accelerator pedal 25 is between L 1 and L 2 , fuel is injected by the injection amount Q 1 during the intake stroke, and fuel is injected by the injection amount Q 2 at the end of the compression stroke. To be done. That is, at the time of engine medium load operation, fuel injection is performed in two times, the intake stroke and the end of the compression stroke. Further, during the engine high load operation in which the depression amount L of the accelerator pedal 25 is larger than L 2, the fuel is injected by the injection amount Q 1 during the intake stroke. In addition, in FIG.
S1 and θE1 are fuel injection Q 1 performed during the intake stroke
The injection start timing and the injection completion timing of
2 and θE2 respectively indicate the injection start timing and the injection completion timing of the fuel injection Q 2 performed at the end of the compression stroke.

【0010】ところで本発明による実施例では図2に示
されるように燃料噴射弁11からは噴射燃料料F1 ,F
2 が第1吸気弁6aの下方を飛行し、噴射燃料F3 が第
2吸気弁6bの下方を飛行するように燃料が噴射され、
機関中負荷運転時における第1回目の噴射時、即ち吸気
行程噴射時に、および機関高負荷運転時における吸気行
程噴射時に噴射燃料F1 ,F2 が第1吸気弁6aのかさ
部背面に衝突し、噴射燃料F3が第2吸気弁6bのかさ
部背面に衝突せしめられる。次にこのことについて図7
および図8を参照して説明する。
By the way, the injected fuel charge F 1 from the fuel injection valve 11 as shown in FIG. 2 in the embodiment according to the present invention F
2 is flying below the first intake valve 6a, the injected fuel F 3 fuel to fly below the second intake valve 6b is injected,
The injected fuels F 1 and F 2 collide with the back surface of the bulkhead portion of the first intake valve 6a during the first injection during the engine medium load operation, that is, during the intake stroke injection, and during the intake stroke injection during the engine high load operation. The injected fuel F 3 is caused to collide with the back surface of the bulkhead portion of the second intake valve 6b. Next, regarding this,
And it demonstrates with reference to FIG.

【0011】図7は第1吸気弁6aと第2吸気弁6bの
弁リフトXと、排気弁8の弁リフトYを示している。図
7からわかるように第1吸気弁6aおよび第2吸気弁6
bの弁リフトXは吸気行程の中央部において最も大きく
なる。図8は第1吸気弁6aと噴射燃料F1 との関係を
示している。図8に示されるように噴射燃料F1 は水平
面よりもわずか下向きに噴射される。図8には示してい
ないが噴射燃料F2 ,F3 も燃料噴射F1と同様に水平
面よりもわずか下向きに噴射される。図8からわかるよ
うに図8(A)に示す如く第1吸気弁6aのリフト量が
小さいときには噴射燃料F1 が第1吸気弁6aに衝突せ
ず、図8(B)に示すように第1吸気弁6aのリフト量
が大きくなると噴射燃料F1 が第1吸気弁6aのかさ部
背面に衝突するように第1吸気弁6aと燃料噴射弁11
との相対位置および燃料噴射弁11からの燃料噴射方向
が定められている。図7のZは噴射燃料F1 が第1吸気
弁6aのかさ部背面に衝突するクランク角領域を示して
いる。なお、図8には示していないが噴射燃料F2 もこ
のクランク角領域Zで第1吸気弁6aのかさ部背面に衝
突し、噴射燃料F3 もこのクランク角領域Zで第2吸気
弁6bのかさ部背面に衝突する。
FIG. 7 shows the valve lift X of the first intake valve 6a and the second intake valve 6b and the valve lift Y of the exhaust valve 8. As can be seen from FIG. 7, the first intake valve 6a and the second intake valve 6
The valve lift X of b becomes the largest in the central part of the intake stroke. FIG. 8 shows the relationship between the first intake valve 6a and the injected fuel F 1 . As shown in FIG. 8, the injected fuel F 1 is injected slightly downward from the horizontal plane. Although not shown in FIG. 8, the injected fuels F 2 and F 3 are also injected slightly downward from the horizontal plane like the fuel injection F 1 . As can be seen from FIG. 8, when the lift amount of the first intake valve 6a is small as shown in FIG. 8A, the injected fuel F 1 does not collide with the first intake valve 6a, and as shown in FIG. When the lift amount of the first intake valve 6a increases, the injected fuel F 1 collides with the back surface of the bulkhead of the first intake valve 6a so that the first intake valve 6a and the fuel injection valve 11
The relative position and the fuel injection direction from the fuel injection valve 11 are determined. Z in FIG. 7 shows a crank angle region where the injected fuel F 1 collides with the rear surface of the first intake valve 6a at the bulge portion. Although not shown in FIG. 8, the injected fuel F 2 also collides with the back surface of the bulge portion of the first intake valve 6a in the crank angle region Z, and the injected fuel F 3 also in the crank angle region Z in the second intake valve 6b. It collides with the back of the umbrella.

【0012】上述したように燃料噴射弁11から図7に
示すクランク角領域Zにおいて燃料を噴射すれば図8
(B)に示すように噴射燃料F1 は第1吸気弁6aのか
さ部背面に衝突する。このとき噴射燃料F1 の流速が遅
いと噴射燃料F1 は第1吸気弁6aのかさ部背面に衝突
した後第1吸気弁6aのかさ部背面に沿って燃料噴射弁
11と反対側の燃焼室5の周辺部に向かうが噴射燃料F
1 の流速が速いと図8(B)に示されるように噴射燃料
1 は吸気弁6aのかさ部背面に衝突した後反射して第
1吸気ポート7a内に向かう。同様に噴射燃料F2 の流
速が速ければ噴射燃料F2 は第1吸気弁6aのかさ部背
面に衝突した後反射して第1吸気ポート7a内に向か
い、噴射燃料F3 の流速が速ければ噴射燃料F3 は第2
吸気弁6bのかさ部背面に衝突した後反射して第2吸気
ポート7b内に向かう。本発明による実施例では各噴射
燃料F1 ,F2,F3 が対応する吸気弁6a,6bのか
さ部背面で反射した後、夫々対応する吸気ポート7a,
7b内に向かうように各噴射燃料F1 ,F2 ,F3 の流
速が定められている。なお、この流速は主に燃料噴射圧
によって定まり、本発明による実施例では燃料噴射圧は
70Kg/cm2 以上に設定されている。
If the fuel is injected from the fuel injection valve 11 in the crank angle region Z shown in FIG. 7 as described above, FIG.
As shown in (B), the injected fuel F 1 collides with the back surface of the bulkhead portion of the first intake valve 6a. At this time, if the flow velocity of the injected fuel F 1 is slow, the injected fuel F 1 collides with the back surface of the bulge portion of the first intake valve 6a and then burns on the side opposite to the fuel injection valve 11 along the back surface of the bulge portion of the first intake valve 6a. Toward the periphery of chamber 5 but injected fuel F
When the flow velocity of 1 is high, the injected fuel F 1 collides with the back surface of the bulge portion of the intake valve 6a and then is reflected and travels into the first intake port 7a as shown in FIG. 8 (B). Similarly injected injected fuel F 2 if the flow velocity is fast in the fuel F 2 is directed into the first intake port 7a is reflected after having collided with the rear bevel portion of the first intake valve 6a, if the flow rate of the injected fuel F 3 is fast The injected fuel F 3 is the second
After colliding with the rear surface of the bulge portion of the intake valve 6b, it is reflected and travels into the second intake port 7b. In the embodiment according to the present invention, after each of the injected fuels F 1 , F 2 , F 3 is reflected on the back surface of the corresponding air intake valve 6 a, 6 b, the corresponding intake port 7 a,
The flow velocity of each of the injected fuels F 1 , F 2 and F 3 is set so as to be directed to the inside of 7b. The flow velocity is mainly determined by the fuel injection pressure, and in the embodiment of the present invention, the fuel injection pressure is set to 70 kg / cm 2 or more.

【0013】図9は吸気制御弁17の目標開度Sとアク
セルペダル25の踏込み量Lとの関係を示している。図
9に示されるようにアクセルペダル25の踏込み量Lが
1 よりも小さい機関低負荷運転時には吸気制御弁17
はわずかばかり開弁せしめられ、アクセルペダル25の
踏込み量LがL1 とL2 との間である機関中負荷運転時
には吸気制御弁17は全閉せしめられ、アクセルペダル
25の踏込み量LがL 2 よりも大きな機関高負荷運転時
には吸気制御弁17は全開せしめられる。なお、機関低
負荷運転から中負荷運転に移行する際の吸気制御弁17
の目標開度Sは実線で示すように定めることもできる
し、破線で示すように定めることもできる。
FIG. 9 shows the target opening S of the intake control valve 17 and the actuation.
The relationship with the depression amount L of the cell pedal 25 is shown. Figure
As shown in 9, the depression amount L of the accelerator pedal 25 is
L1Intake control valve 17 during engine low load operation smaller than
Is opened only slightly and the accelerator pedal 25
Depression amount L is L1And L2During engine load operation between
The intake control valve 17 is fully closed in the
The stepping amount L of 25 is L 2Larger engine under heavy load operation
The intake control valve 17 is fully opened. The engine is low
Intake control valve 17 when shifting from load operation to medium load operation
The target opening S of can be set as shown by the solid line.
However, it can also be set as shown by a broken line.

【0014】機関中負荷運転時におけるように吸気制御
弁17が全閉せしめられると吸入空気はヘリカル状をな
す第1吸気ポート7aのみから燃焼室5内に供給され
る。このとき吸入空気は第1吸気ポート7aから旋回し
つつ燃焼室5内に流入し、斯くして燃焼室5内には図2
において矢印Sで示すような強力な旋回流が発生せしめ
られる。一方、低負荷運転時には吸気制御弁17がわず
かばかり開弁せしめられるので少量の空気が第2吸気ポ
ート17bから燃焼室5内に流入する。このときには中
負荷運転時に比べて燃焼室5内に発生する旋回流が弱め
られるが吸入空気の流路断面積が増大せしめられるため
にポンピング損失が低減せしめられる。一方、機関高負
荷運転時には吸気制御弁17が全開せしめられるのでこ
のときには燃焼室5内にはほとんど旋回流は発生しな
い。なお、図9に示す吸気制御弁17の目標開度Sとア
クセルペダル25の踏込み量Lとの関係は予めROM3
3内に記憶されている。
When the intake control valve 17 is fully closed as in the engine medium load operation, intake air is supplied into the combustion chamber 5 only from the first intake port 7a having a helical shape. At this time, the intake air flows into the combustion chamber 5 while swirling from the first intake port 7a, and thus, the combustion air in the combustion chamber 5 is changed to that shown in FIG.
At, a strong swirl flow is generated as shown by the arrow S. On the other hand, at the time of low load operation, the intake control valve 17 is opened slightly so that a small amount of air flows into the combustion chamber 5 from the second intake port 17b. At this time, the swirling flow generated in the combustion chamber 5 is weakened as compared with the case of the medium load operation, but the flow passage cross-sectional area of the intake air is increased, so that the pumping loss is reduced. On the other hand, during engine high load operation, the intake control valve 17 is fully opened, so at this time almost no swirl flow is generated in the combustion chamber 5. The relationship between the target opening degree S of the intake control valve 17 and the depression amount L of the accelerator pedal 25 shown in FIG.
It is stored in 3.

【0015】再び図6に戻ると図6には図7に示すクラ
ンク角領域Zが示されている。図6に示されるように本
発明による実施例では機関中負荷運転時における第1回
目の燃料噴射Q1 および機関高負荷運転時における燃料
噴射Q1 は共にクランク角領域Z内で行われることがわ
かる。従って本発明による実施例では吸気行程中に燃料
噴射弁11から噴射された全ての燃料は対応する吸気弁
6a,6bのかさ部背面に衝突した後対応する吸気ポー
ト7a,7b内に流入することになる。
Returning to FIG. 6 again, FIG. 6 shows the crank angle region Z shown in FIG. As shown in FIG. 6, in the embodiment according to the present invention, both the first fuel injection Q 1 during the engine medium load operation and the fuel injection Q 1 during the engine high load operation may be performed within the crank angle range Z. Recognize. Therefore, in the embodiment according to the present invention, all the fuel injected from the fuel injection valve 11 during the intake stroke must flow into the corresponding intake ports 7a, 7b after colliding with the back surface of the corresponding intake valve 6a, 6b. become.

【0016】次に図6を参照しつつ図10から図12を
参照して燃焼方法について説明する。なお、図10は機
関低負荷運転時における燃焼方法を示しており、図11
は機関中負荷運転時における燃焼方法を示しており、図
12は機関高負荷運転時における燃焼方法を示してい
る。図6に示されるようにアクセルペダル25の踏込み
量LがL1 よりも小さい機関低負荷運転時には圧縮行程
末期に燃料が噴射される。このとき各噴射燃料F1 ,F
2 ,F3 は図10(A)および(B)に示されるように
深皿部13の周壁面に衝突する。このときの噴射量Q2
は図6に示されるようにアクセルペダル25の踏込み量
Lが大きくなるにつれて増大する。深皿部13の周壁面
に衝突した燃料は旋回流Sによって気化せしめられつつ
拡散され、それによって図10(C)に示されるように
凹部14および深皿部13内に混合気Gが形成される。
このとき凹部14および深皿部13以外の燃焼室5内は
空気で満たされている。次いで混合気Gが点火栓10に
よって着火せしめられる。
Next, a combustion method will be described with reference to FIGS. 10 to 12 while referring to FIG. It should be noted that FIG. 10 shows a combustion method during engine low load operation.
Shows the combustion method during engine medium load operation, and FIG. 12 shows the combustion method during engine high load operation. As shown in FIG. 6, during the engine low load operation in which the depression amount L of the accelerator pedal 25 is smaller than L 1 , fuel is injected at the end of the compression stroke. At this time, each injected fuel F 1 , F
2 and F 3 collide with the peripheral wall surface of the basin 13 as shown in FIGS. 10 (A) and 10 (B). Injection amount Q 2 at this time
6 increases as the depression amount L of the accelerator pedal 25 increases, as shown in FIG. The fuel that has collided with the peripheral wall surface of the deep dish portion 13 is diffused while being vaporized by the swirling flow S, thereby forming the air-fuel mixture G in the recess 14 and the deep dish portion 13 as shown in FIG. It
At this time, the inside of the combustion chamber 5 other than the concave portion 14 and the deep plate portion 13 is filled with air. Next, the air-fuel mixture G is ignited by the spark plug 10.

【0017】一方、図6においてアクセルペダル25の
踏込み量LがL1 とL2 の間である機関中負荷運転時に
は吸気行程中のクランク角領域Zにおいて第1回目の燃
料噴射Q1 が行われ、次いで圧縮行程末期に第2回目の
燃料噴射Q2 が行われる。即ち、まず初めに図11
(A)に示されるように角吸気弁6a,6bのかさ部背
面に向けて燃料噴射が行われ、これら噴射燃料は吸気弁
6a,6bのかさ部背面で反射して各吸気ポート7a,
7b内に流入する。次いでこれらの噴射燃料は吸入空気
と共に再び燃焼室5内に流入し、この噴射燃料によって
燃焼室5内に稀薄混合気が形成される。
On the other hand, in FIG. 6, the first fuel injection Q 1 is performed in the crank angle region Z during the intake stroke during engine medium load operation in which the depression amount L of the accelerator pedal 25 is between L 1 and L 2. Then, the second fuel injection Q 2 is performed at the end of the compression stroke. That is, first, in FIG.
As shown in (A), the fuel is injected toward the back surface of the bulge portion of the corner intake valves 6a and 6b, and the injected fuel is reflected by the back surface of the bulge portion of the intake valves 6a and 6b, so that each intake port 7a,
It flows into 7b. Next, these injected fuels flow into the combustion chamber 5 again together with the intake air, and the injected fuel forms a lean mixture in the combustion chambers 5.

【0018】次いで圧縮行程末期に第2回目の燃料噴射
が行われる。図6からわかるように機関中負荷運転時の
圧縮行程噴射Q2 の噴射時期は機関低負荷運転時に比べ
て若干早められる。従ってこのときには図11(B)に
示されるように深皿部13および浅皿部12の双方に向
けて燃料が噴射され、図11(C)に示されるようにこ
の噴射燃料によって凹部14および深皿部13内には火
種となる着火可能な混合気Gが形成される。この混合気
Gは点火栓10によって着火せしめられ、この着火火炎
によって燃焼室5内全体を占める稀薄混合気が燃焼せし
められる。
Next, the second fuel injection is performed at the end of the compression stroke. As can be seen from FIG. 6, the injection timing of the compression stroke injection Q 2 during the engine medium load operation is slightly advanced as compared with the engine low load operation. Therefore, at this time, as shown in FIG. 11B, the fuel is injected toward both the deep pan portion 13 and the shallow pan portion 12, and as shown in FIG. An ignitable air-fuel mixture G is formed in the plate portion 13 as the ignition source. The air-fuel mixture G is ignited by the spark plug 10, and the lean flame ignites the lean air-fuel mixture occupying the entire combustion chamber 5.

【0019】ところで機関中負荷運転時には機関高負荷
運転時に比べて燃料噴射量が少なく、従って燃焼室5内
全体を占める混合気はかなり稀薄となる。しかしながら
このときには図9に示されるように吸気制御弁17が全
閉せしめられるために燃焼室5内には強力な旋回流が発
生せしめられる。このように機関中負荷運転時には第1
回目の燃料噴射により形成された燃焼室5内全体を占め
る混合気はかなり稀薄となるが強力な旋回流が発生せし
められるために火炎が稀薄混合気中を急速に伝播し、斯
くして混合気が稀薄であっても良好な燃焼が得られるこ
とになる。なお、この場合、圧縮行程末期に噴射される
燃料は火種を作れば十分であるので図6に示されるよう
に機関中負荷運転時にはアクセルペダル25の踏込み量
Lにかかわらずに圧縮行程末期の燃料噴射量Q2 は一定
に維持される。これに対して吸気行程初期の燃料噴射量
1 はアクセルペダル25の踏込み量Lが大きくなるに
つれて増大する。
By the way, the amount of fuel injection during the engine medium load operation is smaller than that during the engine high load operation, so that the air-fuel mixture occupying the entire combustion chamber 5 becomes considerably lean. However, at this time, the intake control valve 17 is fully closed as shown in FIG. 9, so that a strong swirling flow is generated in the combustion chamber 5. In this way, the first
The air-fuel mixture formed by the fuel injection of the first time and occupying the entire interior of the combustion chamber 5 becomes considerably lean, but since a powerful swirling flow is generated, the flame rapidly propagates in the lean air-fuel mixture, and thus the air-fuel mixture Even if it is lean, good combustion can be obtained. In this case, since it is sufficient to generate a spark for the fuel injected at the end of the compression stroke, as shown in FIG. 6, during the engine medium load operation, the fuel at the end of the compression stroke is irrespective of the depression amount L of the accelerator pedal 25. The injection amount Q 2 is maintained constant. On the other hand, the fuel injection amount Q 1 at the beginning of the intake stroke increases as the depression amount L of the accelerator pedal 25 increases.

【0020】図6においてアクセルペダル25の踏込み
量LがL2 よりも大きい機関高負荷運転時には吸気行程
中のクランク角領域Z内において燃料が噴射される。従
ってこのときには図12に示されるように各吸気弁6
a,6bのかさ部背面に向けて燃料噴射が行われ、これ
ら噴射燃料は吸気弁6a,6bのかさ部背面で反射して
各吸気ポート7a,7b内に流入する。次いでこれらの
噴射燃料は吸入空気と共に再び燃焼室5内に流入し、こ
の噴射燃料によって燃焼室5内には均一混合気が形成さ
れる。このときの燃料噴射量Q1 は図6に示されるよう
にアクセルペダル25の踏込み量Lが大きくなるにつれ
て増大する。
In FIG. 6, during the engine high load operation in which the depression amount L of the accelerator pedal 25 is larger than L 2 , the fuel is injected in the crank angle region Z during the intake stroke. Therefore, at this time, as shown in FIG. 12, each intake valve 6
Fuel injection is performed toward the rear surface of the bulk portions of a and 6b, and the injected fuel is reflected by the rear surface of the bulk portions of the intake valves 6a and 6b and flows into the intake ports 7a and 7b. Next, these injected fuels flow into the combustion chamber 5 again together with the intake air, and the injected fuel forms a uniform air-fuel mixture in the combustion chambers 5. The fuel injection amount Q 1 at this time increases as the depression amount L of the accelerator pedal 25 increases as shown in FIG.

【0021】図11(A)および図12に示すように各
吸気弁6a,6bで反射した噴射燃料が各吸気ポート7
a,7b内に送り込まれるとこの噴射燃料は各吸気ポー
ト7a,7b内において吸入空気と混合し、次いで十分
に混合された噴射燃料と吸入空気が燃焼室5内に供給さ
れる。即ち、予混合気が各吸気弁6a,6bを介して燃
焼室5内に供給されたのと同じことになるので噴射燃料
は燃焼室5内に均一に分散されることになる。また、噴
射燃料が各吸気弁6a,6bにおいて反射した後に各吸
気ポート7a,7b内に流入するように噴射燃料の流速
を速めると噴射燃料が各吸気弁6a,6bのかさ部背面
に高速度で衝突せしめられるので衝突時に燃料が微粒化
され、微粒化された燃料が各吸気ポート7a,7b内に
向かって進行する。このとき燃料の進行方向と吸入空気
流の流入方向とは逆向きになるために燃料は吸入空気に
よって強力な剪断力を受け、斯くして燃料は更に微粒化
せしめられることになる。このように噴射燃料は衝突時
に微粒化せしめられ、次いで強力な剪断力によって微粒
化せしめられるので噴射燃料は良好に気化せしめられる
ことになる。このように噴射燃料は良好に気化せしめら
れ、しかも燃焼室5内に均一に分散せしめられるので混
合気は良好に燃焼せしめられることになる。
As shown in FIGS. 11A and 12, the injected fuel reflected by the intake valves 6a and 6b is transferred to the intake ports 7a and 7b.
When injected into the combustion chamber 5, the injected fuel is mixed with the intake air in the intake ports 7a and 7b, and then the injection fuel and the intake air that are sufficiently mixed are supplied into the combustion chamber 5. That is, since the premixed air is supplied to the combustion chamber 5 via the intake valves 6a and 6b, the injected fuel is uniformly dispersed in the combustion chamber 5. Further, when the flow velocity of the injected fuel is increased so that the injected fuel flows into the intake ports 7a, 7b after being reflected by the intake valves 6a, 6b, the injected fuel has a high velocity on the rear surface of the cap portion of the intake valves 6a, 6b. The fuel is atomized at the time of collision, and the atomized fuel advances into the intake ports 7a and 7b. At this time, since the advancing direction of the fuel and the inflow direction of the intake air flow are opposite to each other, the fuel is subjected to a strong shearing force by the intake air, and thus the fuel is further atomized. Thus, the injected fuel is atomized at the time of collision and then atomized by a strong shearing force, so that the injected fuel is vaporized well. In this way, the injected fuel is vaporized well, and moreover, it is evenly dispersed in the combustion chamber 5, so that the air-fuel mixture is burned well.

【0022】本発明による実施例では図6において吸気
行程噴射Q1 の噴射開始時期θS1および圧縮行程噴射
2 の噴射開始時期θS2は予め定められており、これ
ら噴射開始時期θS1およびθS2はアクセルペダル2
5の踏込み量Lの関数の形で予めROM33内に記憶さ
れている。従って噴射完了時期θE1およびθE2が噴
射量Q1 およびQ2 に基いて制御されることになる。
In the embodiment of the present invention, the injection start timing θS1 of the intake stroke injection Q 1 and the injection start timing θS2 of the compression stroke injection Q 2 are predetermined in FIG. 6, and these injection start timings θS1 and θS2 are the accelerator pedal. Two
It is stored in advance in the ROM 33 in the form of a function of the depression amount L of 5. Therefore, the injection completion timings θE1 and θE2 are controlled based on the injection amounts Q 1 and Q 2 .

【0023】図13は燃料噴射を制御するためのルーチ
ンを示しており、このルーチンは繰返し実行される。図
13を参照すると、まず初めにステップ40において燃
料噴射量Qが計算される。この燃料噴射量Qは図14に
示すように機関回転数Nおよびアクセルペダル25の踏
込み量Lの関数として予めROM33内に記憶されてい
る。次いでステップ41ではアクセルペダル25の踏込
み量LがL1 よりも小さいか否か、即ち低負荷運転時で
あるか否かが判別される。L<L1 のときにはステップ
42に進んで圧縮行程噴射の噴射開始時期θS2が算出
される。次いでステップ43では噴射開始時期θS2、
燃料噴射量Qおよび機関回転数Nから噴射完了時期θE
2が算出され、次いでステップ52に進む。
FIG. 13 shows a routine for controlling fuel injection, and this routine is repeatedly executed. Referring to FIG. 13, first, at step 40, the fuel injection amount Q is calculated. This fuel injection amount Q is stored in advance in the ROM 33 as a function of the engine speed N and the depression amount L of the accelerator pedal 25, as shown in FIG. Next, at step 41, it is judged if the depression amount L of the accelerator pedal 25 is smaller than L 1 , that is, if it is during low load operation. When L <L 1, the routine proceeds to step 42, where the injection start timing θS2 of the compression stroke injection is calculated. Next, at step 43, the injection start timing θS2,
Injection completion timing θE from the fuel injection amount Q and the engine speed N
2 is calculated, and then the process proceeds to step 52.

【0024】一方、ステップ41においてL≧L1 であ
ると判別されたときにはステップ44に進んでアクセル
ペダル25の踏込み量LがL2 よりも小さいか否か、即
ち中負荷運転時であるか否かが判別される。中負荷運転
時にはステップ45に進んで吸気行程噴射量Q1 と圧縮
行程噴射量Q2 が算出される。次いでステップ46では
吸気行程噴射の噴射開始時期θS1が算出される。次い
でステップ47では噴射開始時期θS1、吸気行程噴射
量Q1 および機関回転数Nから噴射完了時期θE1が算
出される。次いでステップ48では圧縮行程噴射の噴射
開始時期θS2が算出れる。次いでステップ49では噴
射開始時期θS2、圧縮行程噴射量Q2 および機関回転
数Nから噴射完了時期θE2が算出され、次いでステッ
プ52に進む。
On the other hand, if it is judged at step 41 that L ≧ L 1 , then the routine proceeds to step 44, at which it is judged whether or not the depression amount L of the accelerator pedal 25 is smaller than L 2 , that is, at the time of medium load operation. Is determined. During medium load operation, the routine proceeds to step 45, where the intake stroke injection amount Q 1 and the compression stroke injection amount Q 2 are calculated. Next, at step 46, the injection start timing θS1 of the intake stroke injection is calculated. Next, at step 47, the injection completion timing θE1 is calculated from the injection start timing θS1, the intake stroke injection amount Q 1 and the engine speed N. Next, at step 48, the injection start timing θS2 of the compression stroke injection is calculated. Next, at step 49, the injection completion timing θE2 is calculated from the injection start timing θS2, the compression stroke injection amount Q 2 and the engine speed N, and then the routine proceeds to step 52.

【0025】ステップ44においてL≧L2 であると判
別されたとき、即ち機関高負荷運転時にはステップ50
に進んで吸気行程噴射の噴射開始時期θS1が算出され
る。次いでステップ51では噴射開始時期θS1、燃料
噴射量Qおよび機関回転数Nから噴射完了時期θE1が
算出され、次いでステップ52に進む。各燃料噴射弁1
1からはこのようにして算出された噴射開始時期θS
1,θS2および噴射完了時期θE1,θE2に基いて
燃料噴射が行われる。
When it is judged in step 44 that L ≧ L 2, that is, when the engine is under high load operation, step 50
Then, the injection start timing θS1 of the intake stroke injection is calculated. Next, at step 51, the injection completion timing θE1 is calculated from the injection start timing θS1, the fuel injection amount Q and the engine speed N, and then the routine proceeds to step 52. Each fuel injection valve 1
From 1, the injection start timing θS calculated in this way
1, θS2 and fuel injection completion timings θE1, θE2.

【0026】ステップ52ではROM33内に記憶され
た図9に示す関係からアクセルペダル25の踏込み量L
に応じた吸気制御弁17の目標開度Sが算出される。次
いでステップ53では吸気制御弁17の開度が目標開度
Sとなるようにステップモータ19の駆動処理が行われ
る。
In step 52, the depression amount L of the accelerator pedal 25 is calculated from the relationship shown in FIG. 9 stored in the ROM 33.
The target opening degree S of the intake control valve 17 is calculated according to Next, at step 53, the step motor 19 is driven so that the opening degree of the intake control valve 17 becomes the target opening degree S.

【0027】[0027]

【発明の効果】機関負荷が第1の設定負荷と第2の設定
負荷との間であるときに燃焼室内に強力な旋回流が発生
せしめられるので吸気行程中に噴射された燃料によって
燃焼室内に稀薄な混合気が形成されていたとしても着火
火炎はこの稀薄混合気中を急速に伝播し、斯くして良好
な燃焼を得ることができる。
When the engine load is between the first set load and the second set load, a strong swirling flow is generated in the combustion chamber, so that the fuel injected during the intake stroke enters the combustion chamber. Even if a lean air-fuel mixture is formed, the ignition flame rapidly propagates in this lean air-fuel mixture, and thus good combustion can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】内燃機関の全体図である。FIG. 1 is an overall view of an internal combustion engine.

【図2】シリンダヘッドの平面断面図である。FIG. 2 is a plan sectional view of a cylinder head.

【図3】ピストン頂面の平面図である。FIG. 3 is a plan view of the top surface of the piston.

【図4】図2にIV−IV線に沿ってみた断面図である。FIG. 4 is a sectional view taken along line IV-IV in FIG.

【図5】図2にV−V線に沿ってみた断面図である。FIG. 5 is a cross-sectional view taken along line VV in FIG.

【図6】燃料噴射量および燃料噴射時期を示す図であ
る。
FIG. 6 is a diagram showing a fuel injection amount and a fuel injection timing.

【図7】吸気弁および排気弁のリフト量を示す線図であ
る。
FIG. 7 is a diagram showing lift amounts of an intake valve and an exhaust valve.

【図8】図5と同じ断面に沿ってみた側面断面図であ
る。
FIG. 8 is a side sectional view taken along the same section as FIG.

【図9】吸気制御弁の開度を示す線図である。FIG. 9 is a diagram showing an opening of an intake control valve.

【図10】低負荷運転時における燃焼方法を説明するた
めの図である。
FIG. 10 is a diagram for explaining a combustion method during low load operation.

【図11】中負荷運転時における燃焼方法を説明するた
めの図である。
FIG. 11 is a diagram for explaining a combustion method during medium load operation.

【図12】高負荷運転時における燃焼方法を説明するた
めの図である。
FIG. 12 is a diagram for explaining a combustion method during high load operation.

【図13】メインルーチンを実行するためのフローチャ
ートである。
FIG. 13 is a flowchart for executing a main routine.

【図14】燃料噴射量を示す線図である。FIG. 14 is a diagram showing a fuel injection amount.

【符号の説明】 6a,6b…吸気弁 7a,7b…吸気ポート 11…燃料噴射弁 17…吸気制御弁[Explanation of reference numerals] 6a, 6b ... Intake valves 7a, 7b ... Intake port 11 ... Fuel injection valve 17 ... Intake control valve

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 F02D 45/00 310 H 8109−3G ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location F02D 45/00 310 H 8109-3G

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 燃料噴射弁を燃焼室内に配置すると共に
ピストン頂面上に凹溝を形成し、機関負荷が予め定めら
れた第1の設定負荷よりも低い機関低負荷運転時には圧
縮行程末期に該凹溝内に燃料を噴射して凹溝内に噴射さ
れた燃料を点火栓により着火し、機関負荷が第1の設定
負荷よりも高いときには吸気行程中に燃料を噴射するよ
うにした筒内噴射式内燃機関において、燃焼室内に流入
する吸入空気流により燃焼室内に発生せしめられる旋回
流の強さを機関負荷に応じて制御する旋回流制御装置を
具備し、該旋回流制御装置によって機関負荷が上記第1
の設定負荷と、該第1の設定負荷よりも高い第2の設定
負荷との間にあるときの旋回流の強さを機関負荷が該第
1の設定負荷よりも低いときおよび機関負荷が該第2の
設定負荷よりも高いときの旋回流の強さに比べて強くす
るようにした筒内噴射式内燃機関。
1. A fuel injection valve is arranged in the combustion chamber, a groove is formed on the top surface of the piston, and the engine load is lower than a predetermined first set load during engine low load operation at the end of the compression stroke. A cylinder in which fuel is injected into the groove and the fuel injected into the groove is ignited by a spark plug, and fuel is injected during an intake stroke when the engine load is higher than a first set load An injection type internal combustion engine is equipped with a swirl flow control device for controlling the strength of a swirl flow generated in a combustion chamber by an intake air flow flowing into the combustion chamber according to the engine load, and the swirl flow control device controls the engine load. Is the first
Of the swirling flow when the engine load is lower than the first set load and the engine load is the second set load higher than the first set load. An in-cylinder injection internal combustion engine in which the swirl flow is made stronger than the second set load when the load is higher than the second set load.
JP3239582A 1991-09-19 1991-09-19 Inter-cylinder injection type internal combustion engine Pending JPH0579337A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3239582A JPH0579337A (en) 1991-09-19 1991-09-19 Inter-cylinder injection type internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3239582A JPH0579337A (en) 1991-09-19 1991-09-19 Inter-cylinder injection type internal combustion engine

Publications (1)

Publication Number Publication Date
JPH0579337A true JPH0579337A (en) 1993-03-30

Family

ID=17046936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3239582A Pending JPH0579337A (en) 1991-09-19 1991-09-19 Inter-cylinder injection type internal combustion engine

Country Status (1)

Country Link
JP (1) JPH0579337A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0639703A1 (en) * 1993-07-22 1995-02-22 Toyota Jidosha Kabushiki Kaisha A spark ignition engine with a fuel injector for injecting fuel directly into the cylinder
WO1996030632A1 (en) * 1995-03-28 1996-10-03 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Cylinder injection type internal combustion engine
WO1996030633A1 (en) * 1995-03-28 1996-10-03 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Cylinder injection type internal combustion engine
US5806482A (en) * 1995-03-28 1998-09-15 Mitsubishi Jidosha Kogyo Kabushiki Kaisha In-cylinder injection internal combustion engine
US5960769A (en) * 1996-11-18 1999-10-05 Toyota Jidosha Kabushiki Kaisha Air intake method and controller for engines performing stratified charge combustion
US6240894B1 (en) 1999-02-05 2001-06-05 Mitsubishi Denki Kabushiki Kaisha Control system for cylinder injection type internal combustion engine

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0639703A1 (en) * 1993-07-22 1995-02-22 Toyota Jidosha Kabushiki Kaisha A spark ignition engine with a fuel injector for injecting fuel directly into the cylinder
US5505173A (en) * 1993-07-22 1996-04-09 Toyota Jidosha Kabushiki Kaisha Spark ignition engine with a fuel injector for injecting fuel directly into the cylinder
WO1996030632A1 (en) * 1995-03-28 1996-10-03 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Cylinder injection type internal combustion engine
WO1996030633A1 (en) * 1995-03-28 1996-10-03 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Cylinder injection type internal combustion engine
US5711269A (en) * 1995-03-28 1998-01-27 Mitsubishi Jidosha Kogyo Kabushiki Kaisha In-cylinder injection internal combustion engine
US5806482A (en) * 1995-03-28 1998-09-15 Mitsubishi Jidosha Kogyo Kabushiki Kaisha In-cylinder injection internal combustion engine
US5960769A (en) * 1996-11-18 1999-10-05 Toyota Jidosha Kabushiki Kaisha Air intake method and controller for engines performing stratified charge combustion
US6019082A (en) * 1996-11-18 2000-02-01 Toyota Jidosha Kabushiki Kaisha Air intake method and controller for engines performing stratified charge combustion
US6240894B1 (en) 1999-02-05 2001-06-05 Mitsubishi Denki Kabushiki Kaisha Control system for cylinder injection type internal combustion engine

Similar Documents

Publication Publication Date Title
US5357925A (en) Internal combustion engine
US5086737A (en) Fuel injection timing control system for an internal combustion engine with a direct fuel injection system
US20020038645A1 (en) Method for operating an internal combustion engine operated with a self-ignitable fuel
JPH04219445A (en) Fuel injection control device for multicylinder internal combustion engine
JPH0781534B2 (en) Adjustment method for fuel injection type engine
JPH0735726B2 (en) Internal combustion engine and operating method thereof
JPH11153034A (en) Direct injection spark ignition type engine
JPH0552145A (en) Control device for internal combustion engine
JP2023020225A (en) engine system
JP2871220B2 (en) In-cylinder internal combustion engine
JP2023020229A (en) engine system
JPH0579370A (en) Cylinder injection type internal combustion engine
JP2023020227A (en) engine system
JPS60230544A (en) Fuel injector for engine
JPH0579337A (en) Inter-cylinder injection type internal combustion engine
GB2175643A (en) Control of exhaust in ported two-stroke engines
JP2751626B2 (en) In-cylinder direct injection spark ignition engine
JPH0478812B2 (en)
JP2929708B2 (en) In-cylinder direct injection spark ignition engine
JPH0571350A (en) Inter-cylinder injection type internal combustion engine
JP2531378B2 (en) Cylinder injection internal combustion engine
JPH05321718A (en) Control device of internal combustion engine
JPH08200116A (en) Cylinder fuel injection-type internal combustion engine
JPH0571768B2 (en)
JPH0634580Y2 (en) Double intake valve engine