JPH0571350A - Inter-cylinder injection type internal combustion engine - Google Patents

Inter-cylinder injection type internal combustion engine

Info

Publication number
JPH0571350A
JPH0571350A JP3234819A JP23481991A JPH0571350A JP H0571350 A JPH0571350 A JP H0571350A JP 3234819 A JP3234819 A JP 3234819A JP 23481991 A JP23481991 A JP 23481991A JP H0571350 A JPH0571350 A JP H0571350A
Authority
JP
Japan
Prior art keywords
fuel
injected
intake
injection
shallow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3234819A
Other languages
Japanese (ja)
Inventor
Shizuo Sasaki
▲静▼夫 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP3234819A priority Critical patent/JPH0571350A/en
Publication of JPH0571350A publication Critical patent/JPH0571350A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/26Pistons  having combustion chamber in piston head
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • F02B23/10Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder
    • F02B23/104Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder the injector being placed on a side position of the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • F02B23/10Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder
    • F02B2023/108Swirl flow, i.e. the axis of rotation of the main charge flow motion is vertical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/12Other methods of operation
    • F02B2075/125Direct injection in the combustion chamber for spark ignition engines, i.e. not in pre-combustion chamber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Abstract

PURPOSE:To promote vaporization of injected fuel. CONSTITUTION:A shallow tray part 12 is formed in the top surface of a piston 3 and a deep tray part 13 is formed in the central are of the shallow tray part 12. During low load running of an engine, fuel is injected toward a corner part 19a, formed at a connection part between the shallow tray part 12 and the deep tray part 13, through a fuel injection valve 11 arranged in a combustion chamber 5. A peripheral wall surface 12b of the shallow tray part, at which injected fuel distributed by the corner part 19a and flowing along a shallow tray part surface 12a arrives, is formed of a heat insulating material 19.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は筒内噴射式内燃機関に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cylinder injection type internal combustion engine.

【0002】[0002]

【従来の技術】ピストン頂面上に浅皿部を形成すると共
に浅皿部の中央部に深皿部を形成し、機関負荷が低いと
きには燃焼室内に配置された燃料噴射弁から深皿部内に
燃料を噴射し、深皿部内に形成された混合気を点火栓に
より着火するようにした筒内噴射式内燃機関が本出願人
により既に提案されている(特願平2−210460号
参照)。この場合、機関負荷が高くなって燃料噴射量が
増大したときに全ての噴射燃料を深皿部内に供給すると
深皿部内に形成される混合気が過濃になってしまう。そ
こでこの筒内噴射式内燃機関では機関負荷が高くなった
ときには浅皿部と深皿部の接続部に形成される角部に向
けて燃料噴射弁から燃料を噴射し、噴射燃料を深皿部内
と浅皿部内に振り分けるようにしている。
2. Description of the Related Art A shallow pan is formed on the top surface of a piston, and a deep pan is formed in the center of the shallow pan. When the engine load is low, the fuel injection valve located in the combustion chamber inserts the deep pan into the deep pan. The present applicant has already proposed a cylinder injection internal combustion engine in which fuel is injected and the air-fuel mixture formed in the basin portion is ignited by an ignition plug (see Japanese Patent Application No. 210410/1990). In this case, if all the injected fuel is supplied into the deep dish portion when the engine load increases and the fuel injection amount increases, the air-fuel mixture formed in the deep dish portion becomes excessively rich. Therefore, in this in-cylinder injection internal combustion engine, when the engine load becomes high, the fuel is injected from the fuel injection valve toward the corner formed at the connection between the shallow dish and the deep dish, and the injected fuel is injected into the deep dish. I try to distribute it in the shallow plate part.

【0003】[0003]

【発明が解決しようとする課題】しかしながらこのよう
に噴射燃料を深皿部内と浅皿部内に振り分けると浅皿部
内に振り分けられた噴射燃料が慣性力により浅皿部表面
を流れて浅皿部周壁面に到達し、浅皿部周壁面に液状の
形で滞留してしまうという問題を生ずる。
However, when the injected fuel is distributed into the deep dish and the shallow dish in this manner, the injected fuel distributed in the shallow dish flows on the surface of the shallow dish due to the inertial force, and the circumference of the shallow dish goes around. There is a problem that it reaches the wall surface and stays in liquid form on the peripheral wall surface of the shallow dish.

【0004】[0004]

【課題を解決するための手段】上記問題点を解決するた
めに本発明によればピストン頂面上に浅皿部を形成する
と共に浅皿部の中央部に深皿部を形成し、浅皿部と深皿
部の接続部に形成される角部に向けて燃焼室内に配置さ
れた燃料噴射弁から燃料を噴射するようにした筒内噴射
式内燃機関において、角部により振り分けられて浅皿部
表面に沿い流れる噴射燃料が到達する浅皿部周壁面部分
を断熱部材により形成している。
In order to solve the above problems, according to the present invention, a shallow dish portion is formed on the top surface of the piston, and a deep dish portion is formed at the center of the shallow dish portion. In a cylinder injection internal combustion engine in which fuel is injected from a fuel injection valve arranged in a combustion chamber toward a corner formed at a connecting portion between a deep section and a deep section, a shallow dish is distributed by the corner. A peripheral wall surface portion of the shallow dish portion to which the injected fuel flowing along the surface of the portion reaches is formed by a heat insulating member.

【0005】[0005]

【作用】浅皿部周壁面部分を断熱部材により形成すると
この浅皿部周壁面部分は高温に保持される。従って浅皿
部周壁面部分に到達した噴射燃料はただちに蒸発せしめ
られる。
When the peripheral wall surface portion of the shallow dish portion is formed by the heat insulating member, the peripheral wall surface portion of the shallow dish portion is maintained at a high temperature. Therefore, the injected fuel that has reached the peripheral wall surface of the shallow dish is immediately evaporated.

【0006】[0006]

【実施例】図1を参照すると機関本体1は4つの気筒1
aを具備し、これら各気筒1aの燃焼室構造が図2から
図5に示されている。図2から図5を参照すると、2は
シリンダブロック、3はシリンダブロック2内で往復動
するピストン、4はシリンダブロック2上に固締された
シリンダヘッド、5はピストン3とシリンダヘッド4間
に形成された燃焼室、6aは第1吸気弁、6bは第2吸
気弁、7aは第1吸気ポート、7bは第2吸気ポート、
8は一対の排気弁、9は一対の排気ポートを夫々示す。
図2に示されるように第1吸気ポート7aはヘリカル型
吸気ポートからなり、第2吸気ポート7bはほぼまっす
ぐに延びるストレートポートからなる。更に図2に示さ
れるようにシリンダヘッド4の内壁面の中央部には点火
栓10が配置され、第1吸気弁6aおよび第2吸気弁6
b近傍のシリンダヘッド4内壁面周辺部には燃料噴射弁
11が配置される。この燃料噴射弁11からは図2およ
び図3においてF1 およびF2 で示されるように燃料が
噴射される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to FIG. 1, an engine body 1 has four cylinders 1.
2 to 5, the combustion chamber structure of each cylinder 1a is shown. 2 to 5, 2 is a cylinder block, 3 is a reciprocating piston in the cylinder block 2, 4 is a cylinder head fixed on the cylinder block 2, and 5 is between the piston 3 and the cylinder head 4. The formed combustion chamber, 6a is a first intake valve, 6b is a second intake valve, 7a is a first intake port, 7b is a second intake port,
Reference numeral 8 indicates a pair of exhaust valves, and 9 indicates a pair of exhaust ports.
As shown in FIG. 2, the first intake port 7a is a helical intake port, and the second intake port 7b is a straight port that extends almost straight. Further, as shown in FIG. 2, a spark plug 10 is arranged at the center of the inner wall surface of the cylinder head 4, and the first intake valve 6a and the second intake valve 6 are provided.
A fuel injection valve 11 is arranged near the inner wall surface of the cylinder head 4 near b. Fuel is injected from the fuel injection valve 11 as indicated by F 1 and F 2 in FIGS. 2 and 3.

【0007】図3および図4に示されるようにピストン
3の頂面上には燃料噴射弁11の下方から点火栓10の
下方まで延びるほぼ円形の輪郭形状を有する浅皿部12
が形成され、浅皿部12の中央部にはほぼ半球形状をな
す深皿部13が形成される。また、点火栓10下方の浅
皿部12と深皿部13との接続部にはほぼ球形状をなす
凹部14が形成される。浅皿部12は環状をなす平坦な
底壁面12aと、この底壁面12aの周縁部から上方に
延びる周壁面12bとを具備する。また、深皿部13の
内周壁面上には凹部14の下端から左右に延びる段部1
3aが形成される。更に、燃料噴射弁11と反対側の浅
皿部12および深皿部13の上方部の周りには例えばセ
ラミックからなる断熱部材29が埋込まれている。図3
にこの断熱部材29の埋込み領域をハッチングで示す。
図3からわかるようにこの断熱部材29は噴射燃料
1 ,F2 が進行する方向において深皿部13の周りを
ほぼ半周に亘って延びている。図4に示されるように断
熱部材29は段部13aからピストン3の頂面まで延び
ており、従って図3においてハッチングで示す領域内で
は段部13a上方の深皿部13の周壁面部分13b、凹
部14、浅皿部底壁面12aおよび浅皿部周壁面12b
が断熱部材29によって形成されることになる。
As shown in FIGS. 3 and 4, on the top surface of the piston 3, a shallow dish portion 12 having a substantially circular contour shape extending from below the fuel injection valve 11 to below the ignition plug 10.
Is formed, and a deep dish portion 13 having a substantially hemispherical shape is formed in the central portion of the shallow dish portion 12. In addition, a recess 14 having a substantially spherical shape is formed in the connecting portion between the shallow dish portion 12 and the deep dish portion 13 below the spark plug 10. The shallow plate portion 12 includes an annular flat bottom wall surface 12a and a peripheral wall surface 12b extending upward from a peripheral edge portion of the bottom wall surface 12a. Further, on the inner peripheral wall surface of the deep plate portion 13, the step portion 1 extending from the lower end of the recess 14 to the left and right.
3a is formed. Further, a heat insulating member 29 made of, for example, ceramic is embedded around the upper portions of the shallow dish portion 12 and the deep dish portion 13 on the side opposite to the fuel injection valve 11. Figure 3
The embedded region of the heat insulating member 29 is shown by hatching.
As can be seen from FIG. 3, this heat insulating member 29 extends around the basin portion 13 over a half circumference in the direction in which the injected fuels F 1 and F 2 travel. As shown in FIG. 4, the heat insulating member 29 extends from the stepped portion 13a to the top surface of the piston 3. Therefore, in the region shown by hatching in FIG. 3, the peripheral wall surface portion 13b of the basin 13 above the stepped portion 13a, Recessed portion 14, shallow pan bottom wall surface 12a and shallow pan peripheral wall surface 12b
Will be formed by the heat insulating member 29.

【0008】図6および図7は断熱部材の別の実施例を
符号29′によって示しており、図3と同様に図6にお
いてハッチングは断熱部材29′の埋込み領域を示して
いる。図6および図7に示す実施例では浅皿部底壁面1
2aの外周部と浅皿部周壁面12bが断熱部材29′に
よって形成されており、この断熱部材29′は図6に示
すように噴射燃料F1 ,F2 の進行方向において浅皿部
12の周りをほぼ1/3周に亘って延びている。
6 and 7 show another embodiment of the heat insulating member by reference numeral 29 ', and like FIG. 3, the hatching in FIG. 6 shows the embedded region of the heat insulating member 29'. 6 and 7, in the embodiment shown in FIG.
The outer peripheral portion of 2a and the peripheral wall surface 12b of the shallow dish portion are formed by a heat insulating member 29 '. This heat insulating member 29' of the shallow dish portion 12 in the advancing direction of the injected fuels F 1 and F 2 as shown in FIG. It extends around about 1/3 of the circumference.

【0009】図1に示されるように各気筒1aの第1吸
気ポート7aおよび第2吸気ポート7bは夫々各吸気枝
管15内に形成された第1吸気通路15aおよび第2吸
気通路15bを介してサージタンク16内に連結され、
各第2吸気通路15b内には夫々吸気制御弁17が配置
される。これらの吸気制御弁17は共通のシャフト18
を介して例えばステップモータからなるアクチュエータ
19に連結される。このステップモータ19は電子制御
ユニット30の出力信号に基いて制御される。サージタ
ンク16は吸気ダクト20を介してエアクリーナ21に
連結され、吸気ダクト20内にはステップモータ22に
よって駆動されるスロットル弁23が配置される。この
スロットル弁23は機関負荷が極く低いときのみ或る程
度閉弁しており、機関負荷が少し高くなると全開状態に
保持される。一方、各気筒1aの排気ポート9は排気マ
ニホルド24に連結される。
As shown in FIG. 1, the first intake port 7a and the second intake port 7b of each cylinder 1a respectively pass through a first intake passage 15a and a second intake passage 15b formed in each intake branch pipe 15. Connected in the surge tank 16,
An intake control valve 17 is arranged in each second intake passage 15b. These intake control valves 17 have a common shaft 18
Is connected to the actuator 19 composed of, for example, a step motor. The step motor 19 is controlled based on the output signal of the electronic control unit 30. The surge tank 16 is connected to an air cleaner 21 via an intake duct 20, and a throttle valve 23 driven by a step motor 22 is arranged in the intake duct 20. The throttle valve 23 is closed to some extent only when the engine load is extremely low, and is kept fully open when the engine load is slightly higher. On the other hand, the exhaust port 9 of each cylinder 1a is connected to the exhaust manifold 24.

【0010】電子制御ユニット30はディジタルコンピ
ュータからなり、双方向性バス31を介して相互に接続
されたRAM(ランダムアクセスメモリ)32、ROM
(リードオンリメモリ)33、CPU(マイクロプロセ
ッサ)34、入力ポート35および出力ポート36を具
備する。アクセルペダル25にはアクセルペダル25の
踏込み量に比例した出力電圧を発生する負荷センサ26
が接続され、負荷センサ26の出力電圧はAD変換器3
7を介して入力ポート35に入力される。上死点センサ
27は例えば1番気筒1aが吸気上死点に達したときに
出力パルスを発生し、この出力パルスが入力ポート35
に入力される。クランク角センサ28は例えばクランク
シャフトが30度回転する毎に出力パルスを発生し、こ
の出力パルスが入力ポート35に入力される。CPU3
4では上死点センサ27の出力パルスとクランク角セン
サ28の出力パルスから現在のクランク角が計算され、
クランク角センサ28の出力パルスから機関回転数が計
算される。一方、出力ポート36は対応する駆動回路3
8を介して各燃料噴射弁11および各ステップモータ1
9,22に接続される。
The electronic control unit 30 is composed of a digital computer and has a RAM (random access memory) 32 and a ROM connected to each other via a bidirectional bus 31.
A (read only memory) 33, a CPU (microprocessor) 34, an input port 35 and an output port 36 are provided. The accelerator pedal 25 includes a load sensor 26 that generates an output voltage proportional to the depression amount of the accelerator pedal 25.
Is connected, and the output voltage of the load sensor 26 is the AD converter 3
It is input to the input port 35 via 7. The top dead center sensor 27 generates an output pulse, for example, when the first cylinder 1a reaches the intake top dead center, and this output pulse is input to the input port 35.
Entered in. The crank angle sensor 28 generates an output pulse each time the crankshaft rotates 30 degrees, for example, and this output pulse is input to the input port 35. CPU3
In 4, the current crank angle is calculated from the output pulse of the top dead center sensor 27 and the output pulse of the crank angle sensor 28,
The engine speed is calculated from the output pulse of the crank angle sensor 28. On the other hand, the output port 36 is the corresponding drive circuit 3
8 through each fuel injection valve 11 and each step motor 1
9 and 22 are connected.

【0011】本発明による実施例では図2および図3に
おいてF1 およびF2 で示されるように燃料噴射弁11
から二つの方向に向けて燃料が噴射される。図8はこの
燃料噴射弁11からの燃料噴射量と燃料噴射時期とを示
している。なお、図8においてLはアクセルペダル25
の踏込み量を示している。図8からわかるようにアクセ
ルペダル25の踏込み量LがL1 よりも小さい機関低負
荷運転時には圧縮行程末期に噴射量Q2 だけ燃料噴射が
行われる。一方、アクセルペダル25の踏込み量LがL
1 とL2 の間の機関中負荷運転時には吸気行程中に噴射
量Q1 だけ燃料噴射が行われ、圧縮行程末期に噴射量Q
2 だけ燃料が噴射される。即ち、機関中負荷運転時には
吸気行程と圧縮行程末期の2回に分けて燃料噴射が行わ
れる。また、アクセルペダル25の踏込み量LがL2
りも大きい機関高負荷運転時には吸気行程中に噴射量Q
1 だけ燃料が噴射される。なお、図8においてθS1お
よびθE1は吸気行程中に行われる燃料噴射Q1 の噴射
開始時期と噴射完了時期を夫々示しており、θS2とθ
E2は圧縮行程末期に行われる燃料噴射Q2 の噴射開始
時期と噴射完了時期を夫々示している。
In the embodiment according to the present invention, the fuel injection valve 11 is designated by F 1 and F 2 in FIGS. 2 and 3.
The fuel is injected from the two directions. FIG. 8 shows the fuel injection amount and the fuel injection timing from the fuel injection valve 11. In FIG. 8, L is the accelerator pedal 25.
Indicates the amount of depression. As can be seen from FIG. 8, during engine low load operation in which the depression amount L of the accelerator pedal 25 is smaller than L 1, fuel injection is performed by the injection amount Q 2 at the end of the compression stroke. On the other hand, the depression amount L of the accelerator pedal 25 is L
During engine load operation between 1 and L 2 , fuel is injected by the injection amount Q 1 during the intake stroke, and the injection amount Q is reached at the end of the compression stroke.
Only 2 fuel is injected. That is, at the time of engine medium load operation, fuel injection is performed in two times, the intake stroke and the end of the compression stroke. Further, during the engine high load operation in which the depression amount L of the accelerator pedal 25 is larger than L 2 , the injection amount Q during the intake stroke
Only one fuel is injected. Note that in FIG. 8, θS1 and θE1 respectively indicate the injection start timing and the injection completion timing of the fuel injection Q 1 performed during the intake stroke, and θS2 and θE2
E2 indicates the injection start timing and the injection completion timing of the fuel injection Q 2 performed at the end of the compression stroke.

【0012】ところで本発明による実施例では図2に示
されるように燃料噴射弁11からは噴射燃料F1 ,F2
が第1吸気弁6aの下方を飛行するように燃料が噴射さ
れ、機関中負荷運転時における第1回目の噴射時、即ち
吸気行程噴射時に、および機関高負荷運転時における吸
気行程噴射時に噴射燃料F1 ,F2 が第1吸気弁6aの
かさ部背面に衝突せしめられる。次にこのことについて
図9および図10を参照して説明する。
By the way, in the embodiment according to the present invention, as shown in FIG. 2, the injected fuels F 1 , F 2 are injected from the fuel injection valve 11.
Is injected so as to fly below the first intake valve 6a, and the injected fuel is injected during the first injection during engine medium load operation, that is, during intake stroke injection, and during intake stroke injection during engine high load operation. F 1 and F 2 are caused to collide with the back surface of the bulge portion of the first intake valve 6a. Next, this will be described with reference to FIGS. 9 and 10.

【0013】図9は第1吸気弁6aと第2吸気弁6bの
弁リフトXと、排気弁8の弁リフトYを示している。図
9からわかるように第1吸気弁6aおよび第2吸気弁6
bの弁リフトXは吸気行程の中央部において最も大きく
なる。図10は第1吸気弁6aと噴射燃料F1 との関係
を示している。図10に示されるように噴射燃料F1
水平面よりもわずか下向きに噴射される。図10には示
していないが噴射燃料F2 も噴射燃料F1 と同様に水平
面よりもわずか下向きに噴射される。図10からわかる
ように図10(A)に示す如く第1吸気弁6aのリフト
量が小さいときには噴射燃料F1 が第1吸気弁6aに衝
突せず、図10(B)に示すように第1吸気弁6aのリ
フト量が大きくなると噴射燃料F1 が第1吸気弁6aの
かさ部背面に衝突するように第1吸気弁6aと燃料噴射
弁11との相対位置および燃料噴射弁11からの燃料噴
射方向が定められている。図9のZは噴射燃料F1 が第
1吸気弁6aのかさ部背面に衝突するクランク角領域を
示している。なお、図10には示していないが噴射燃料
2 もこのクランク角領域Zで第1吸気弁6aのかさ部
背面に衝突する。
FIG. 9 shows the valve lift X of the first intake valve 6a and the second intake valve 6b and the valve lift Y of the exhaust valve 8. As can be seen from FIG. 9, the first intake valve 6a and the second intake valve 6
The valve lift X of b becomes the largest in the central part of the intake stroke. FIG. 10 shows the relationship between the first intake valve 6a and the injected fuel F 1 . As shown in FIG. 10, the injected fuel F 1 is injected slightly downward from the horizontal plane. Although not shown in FIG. 10, the injected fuel F 2 is also injected slightly downward from the horizontal plane like the injected fuel F 1 . As can be seen from FIG. 10, when the lift amount of the first intake valve 6a is small as shown in FIG. 10 (A), the injected fuel F 1 does not collide with the first intake valve 6a, and as shown in FIG. When the lift amount of the first intake valve 6a becomes large, the relative position of the first intake valve 6a and the fuel injection valve 11 and the relative position of the fuel injection valve 11 from the fuel injection valve 11 so that the injected fuel F 1 collides with the back surface of the bulge portion of the first intake valve 6a. The fuel injection direction is defined. Z in FIG. 9 shows a crank angle region in which the injected fuel F 1 collides with the back surface of the bulkhead portion of the first intake valve 6a. Although not shown in FIG. 10, the injected fuel F 2 also collides with the back surface of the bulge portion of the first intake valve 6a in the crank angle region Z.

【0014】上述したように燃料噴射弁11から図9に
示すクランク角領域Zにおいて燃料を噴射すれば図10
(B)に示すように噴射燃料F1 は第1吸気弁6aのか
さ部背面に衝突する。このとき噴射燃料F1 の流速が遅
いと噴射燃料F1 は第1吸気弁6aのかさ部背面に衝突
した後第1吸気弁6aのかさ部背面に沿って燃料噴射弁
11と反対側の燃焼室5の周辺部に向かうが噴射燃料F
1 の流速が速いと図10(B)に示されるように噴射燃
料F1 は吸気弁6aのかさ部背面に衝突した後反射して
第1吸気ポート7a内に向かう。同様に噴射燃料F2
流速が速ければ噴射燃料F2 は第1吸気弁6aのかさ部
背面に衝突した後反射して第1吸気ポート7a内に向か
う。本発明による実施例では各噴射燃料F1 ,F2 が第
1吸気弁6aのかさ部背面で反射した後、第1吸気ポー
ト7a内に向かうように各噴射燃料F1 ,F2 の流速が
定められている。なお、この流速は主に燃料噴射圧によ
って定まり、本発明による実施例では燃料噴射圧は70
kg/cm2 以上に設定されている。
If the fuel is injected from the fuel injection valve 11 in the crank angle region Z shown in FIG.
As shown in (B), the injected fuel F 1 collides with the back surface of the bulkhead portion of the first intake valve 6a. At this time, if the flow velocity of the injected fuel F 1 is slow, the injected fuel F 1 collides with the back surface of the bulge portion of the first intake valve 6a and then burns on the side opposite to the fuel injection valve 11 along the back surface of the bulge portion of the first intake valve 6a. Toward the periphery of chamber 5 but injected fuel F
When the flow velocity of 1 is high, the injected fuel F 1 collides with the back surface of the bulge portion of the intake valve 6a and then is reflected and travels into the first intake port 7a as shown in FIG. 10 (B). Similarly injected fuel F injected fuel F 2 if the flow velocity is fast in 2 toward the first intake port 7a is reflected after having collided with the rear bevel portion of the first intake valve 6a. In the embodiment according to the present invention, after the injected fuels F 1 and F 2 are reflected on the rear surface of the bulk of the first intake valve 6a, the flow speeds of the injected fuels F 1 and F 2 are directed toward the inside of the first intake port 7a. It is set. This flow velocity is mainly determined by the fuel injection pressure, and in the embodiment according to the present invention, the fuel injection pressure is 70.
It is set to kg / cm 2 or more.

【0015】図11は吸気制御弁17の開度とアクセル
ペダル25の踏込み量Lとの関係を示している。図11
に示されるようにアクセルペダル25の踏込み量LがL
1 よりも小さい機関低負荷運転時には吸気制御弁17は
全閉状態に保持されており、アクセルペダル25の踏込
み量LがL1 よりも大きくなると吸気制御弁17はアク
セルペダル25の踏込み量Lが大きくなるにつれて開弁
せしめられる。吸気制御弁17が全閉せしめられると吸
入空気はヘリカル状をなす第1吸気ポート7aを介して
旋回しつつ燃焼室5内に流入し、斯くして燃焼室5内に
は図2において矢印Sで示すような強力な旋回流が発生
せしめられる。一方、吸気制御弁17が開弁すると第2
吸気ポート7bからも吸入空気が燃焼室5内に流入す
る。
FIG. 11 shows the relationship between the opening degree of the intake control valve 17 and the depression amount L of the accelerator pedal 25. 11
As shown in, the depression amount L of the accelerator pedal 25 is L
The intake control valve 17 is held in the fully closed state during engine low load operation smaller than 1, and when the depression amount L of the accelerator pedal 25 becomes larger than L 1 , the intake control valve 17 changes the depression amount L of the accelerator pedal 25. The valve opens as it grows larger. When the intake control valve 17 is fully closed, the intake air swirls into the combustion chamber 5 through the first intake port 7a having a helical shape, and thus the combustion air flows into the combustion chamber 5 in the arrow S in FIG. A powerful swirling flow is generated as shown in. On the other hand, if the intake control valve 17 opens, the second
Intake air also flows into the combustion chamber 5 from the intake port 7b.

【0016】再び図8に戻ると図8には図9に示すクラ
ンク角領域Zが示されている。図8に示されるように本
発明による実施例では機関中負荷運転時における第1回
目の燃料噴射Q1 および機関高負荷運転時における燃料
噴射Q1 は共にクランク角領域Z内で行われることがわ
かる。従って本発明による実施例では吸気行程中に燃料
噴射弁11から噴射された全ての燃料は第1吸気弁6a
のかさ部背面に衝突した後第1吸気ポート7a内に流入
することになる。
Returning to FIG. 8 again, FIG. 8 shows the crank angle region Z shown in FIG. As shown in FIG. 8, in the embodiment according to the present invention, both the first fuel injection Q 1 during the engine medium load operation and the fuel injection Q 1 during the engine high load operation may be performed within the crank angle range Z. Recognize. Therefore, in the embodiment according to the present invention, all the fuel injected from the fuel injection valve 11 during the intake stroke is the first intake valve 6a.
After colliding with the rear surface of the bulge, it will flow into the first intake port 7a.

【0017】次に図8を参照しつつ図12から図15を
参照して燃焼方法について説明する。なお、図12およ
び図13は機関低負荷運転時における燃焼方法を示して
おり、図14は機関中負荷運転時における燃焼方法を示
しており、図15は機関高負荷運転時における燃焼方法
を示している。なお、図12から図15は図3および図
4に示す断熱部材19を用いた場合を示しているがこの
断熱部材19に代えて図6および図7に示す断熱部材1
9′を用いることもできる。
Next, the combustion method will be described with reference to FIGS. 12 to 15 while referring to FIG. 12 and 13 show a combustion method during engine low load operation, FIG. 14 shows a combustion method during engine medium load operation, and FIG. 15 shows a combustion method during engine high load operation. ing. 12 to 15 show the case where the heat insulating member 19 shown in FIGS. 3 and 4 is used, but instead of the heat insulating member 19, the heat insulating member 1 shown in FIGS. 6 and 7.
It is also possible to use 9 '.

【0018】図8に示されるようにアクセルペダル25
の踏込み量LがL1よりも小さい機関低負荷運転時には
圧縮行程末期に燃料が噴射される。図12(A),(B)
および図13(A)は機関低負荷運転領域において負荷
が低いときを示しており、図13(B)は機関低負荷運
転領域において負荷が少し高くなったときを示してお
り、図13(C)は機関低負荷運転領域において負荷が
高いときを示している。
As shown in FIG. 8, the accelerator pedal 25
Fuel is injected at the end of the compression stroke during engine low load operation in which the depression amount L of is smaller than L 1 . 12 (A), (B)
And FIG. 13 (A) shows when the load is low in the engine low load operating region, and FIG. 13 (B) shows when the load is slightly higher in the engine low load operating region. ) Indicates when the load is high in the engine low load operation region.

【0019】図12(A),(B)および図13(A)に
示されるように機関低負荷運転領域において負荷が低い
ときには各噴射燃料F1 ,F2 は段部13a上方の深皿
部上方周壁面13bに衝突する。深皿部上方周壁面13
bに衝突した噴射燃料F1 ,F2 は旋回流Sによって蒸
発せしめられつつ深皿部上方周壁面13bに沿って旋回
せしめられ、蒸発せしめられた一部の燃料が凹部14内
に導びかれる。また、図12および図13に示す実施例
では深皿部上方周壁面13bおよび凹部14が断熱部材
19により形成されているので深皿部上方周壁面13b
および凹部14の内壁面は高温に保持されており、従っ
て噴射燃料は深皿部上方周壁面13bおよび凹部14内
において良好に蒸発せしめられる。その結果図12
(C)に示されるように凹部14および深皿部13内に
は蒸発した燃料によって混合気Gが形成される。このと
き凹部14および深皿部13以外の燃焼室5内は空気で
満たされている。次いで混合気Gが点火栓10によって
着火せしめられる。
As shown in FIGS. 12 (A), 12 (B) and 13 (A), when the load is low in the engine low load operation region, the injected fuels F 1 and F 2 are injected into the basin portion above the step portion 13a. It collides with the upper peripheral wall surface 13b. Upper peripheral wall surface 13 of the deep plate
The injected fuels F 1 and F 2 that collide with b are swirled along the upper peripheral wall surface 13b of the deep plate while being vaporized by the swirling flow S, and a part of the vaporized fuel is guided into the recess 14. .. Further, in the embodiment shown in FIGS. 12 and 13, since the deep pan upper peripheral wall surface 13b and the recess 14 are formed by the heat insulating member 19, the deep pan upper peripheral wall surface 13b.
Also, the inner wall surface of the recess 14 is kept at a high temperature, so that the injected fuel is satisfactorily evaporated in the deep dish upper peripheral wall surface 13b and the recess 14. As a result, FIG.
As shown in (C), the air-fuel mixture G is formed in the recess 14 and the deep plate portion 13 by the evaporated fuel. At this time, the inside of the combustion chamber 5 other than the concave portion 14 and the deep plate portion 13 is filled with air. Next, the air-fuel mixture G is ignited by the spark plug 10.

【0020】一方、機関低負荷運転領域において負荷が
少し高くなり、燃料噴射量Qが増大せしめられると図8
からわかるように噴射時期が若干早められる。このとき
噴射燃料F1 ,F2 は図13(B)に示されるように浅
皿部12と深皿部13の接続部に形成される角部19a
に向けて噴射される。このとき噴射燃料F1 ,F2 は角
部19aによって深皿部上方周壁面13bと浅皿部底壁
面12aに振り分けられる。従ってこのときには噴射燃
料F1 ,F2 の一部が深皿部上方周壁面13b上に供給
され、振り分けられた噴射燃料の更に一部が凹部14内
に導びかれる。従って燃料噴射量Qが増大しても凹部1
4内に形成される混合気が過濃になることはなく、斯く
して混合気は点火栓10によって容易に着火せしめられ
る。
On the other hand, if the load becomes a little higher and the fuel injection amount Q is increased in the engine low load operation region, FIG.
As you can see, the injection timing is slightly advanced. At this time, the injected fuels F 1 and F 2 have corner portions 19a formed at the connecting portion between the shallow dish portion 12 and the deep dish portion 13 as shown in FIG. 13 (B).
Is jetted toward. At this time, the injected fuels F 1 and F 2 are distributed by the corner portion 19a to the upper peripheral wall surface 13b of the deep dish portion and the bottom wall surface 12a of the shallow dish portion. Therefore, at this time, a part of the injected fuel F 1 , F 2 is supplied onto the upper peripheral wall surface 13 b of the deep plate portion, and a further part of the distributed injected fuel is guided into the recess 14. Therefore, even if the fuel injection amount Q increases, the recess 1
The air-fuel mixture formed in 4 does not become rich, so that the air-fuel mixture is easily ignited by the spark plug 10.

【0021】一方、角部19aによって振り分けられた
噴射燃料F1 ,F2 の一部は浅皿部底壁面12a上を流
れて浅皿部周壁面12bに到達し、浅皿部周壁面12b
の根本部に滞留する。しかしながら浅皿部底壁面12a
および浅皿部周壁面12bは断熱部材19により形成さ
れているのでこれら浅皿部低壁面12aおよび浅皿部周
壁面12bは高温に保持されている。従って浅皿部低壁
面12a上を流れる噴射燃料の一部は浅皿部底壁面12
a上を流れる間に良好に蒸発せしめられ、浅皿部周壁面
12bの根本部に到達した噴射燃料も良好に蒸発せしめ
られる。このように浅皿部12内に供給された噴射燃料
も良好に蒸発せしめられるので全噴射燃料が良好に燃焼
せしめられることになる。
On the other hand, a part of the injected fuels F 1 and F 2 distributed by the corners 19a flow on the bottom wall surface 12a of the shallow plate and reach the peripheral wall surface 12b of the shallow plate portion, and the peripheral wall surface 12b of the shallow plate portion.
Stay at the root of. However, the bottom wall surface 12a of the shallow plate portion
Since the shallow dish portion peripheral wall surface 12b is formed by the heat insulating member 19, the shallow dish portion low wall surface 12a and the shallow dish portion peripheral wall surface 12b are maintained at a high temperature. Therefore, a part of the injected fuel flowing on the shallow dish portion lower wall surface 12a is part of the shallow dish portion bottom wall surface 12
The vaporized fuel is satisfactorily vaporized while flowing over a, and the injected fuel that has reached the root of the shallow dish peripheral wall surface 12b is also vaporized satisfactorily. In this way, the injected fuel supplied into the shallow dish portion 12 is also vaporized satisfactorily, so that the entire injected fuel is satisfactorily burned.

【0022】機関低負荷運転時において負荷が高くなる
と図8からわかるように噴射時期が更に早められ、この
ときには図13(C)に示されるように噴射燃料F1
2 はピストン3の頂面と浅皿部周壁面12bの接続部
に形成される角部19bに衝突する。このときにも噴射
燃料F1 ,F2 は角部19bによってピストン3の頂面
と浅皿部周壁面12bに振り分けられる。従ってこのと
きにも角部19bによって振り分けられた噴射燃料の一
部が浅皿部周壁面12bの根本部に送り込まれて浅皿部
周壁面12bの根本部に滞留する。しかしながら上述し
たように浅皿部周壁面12bの根本部の周りは高温に保
持されているので浅皿部周壁面12bの根本部に滞留し
た噴射燃料は良好に蒸発せしめられる。従ってこのとき
にも良好な燃焼が得られることになる。
As the load increases during engine low load operation, the injection timing is further advanced, as can be seen from FIG. 8. At this time, as shown in FIG. 13 (C), the injected fuel F 1 ,
F 2 collides with a corner portion 19b formed at the connecting portion between the top surface of the piston 3 and the shallow dish peripheral wall surface 12b. Also at this time, the injected fuels F 1 and F 2 are distributed to the top surface of the piston 3 and the peripheral wall surface 12b of the shallow dish by the corner portions 19b. Therefore, also at this time, part of the injected fuel distributed by the corner portion 19b is sent to the root portion of the shallow dish peripheral wall surface 12b and stays at the root portion of the shallow dish peripheral wall surface 12b. However, as described above, since the temperature around the root of the shallow dish peripheral wall 12b is maintained at a high temperature, the injected fuel that has accumulated in the root of the shallow dish peripheral wall 12b can be evaporated well. Therefore, good combustion can be obtained at this time as well.

【0023】一方、図8においてアクセルペダル25の
踏込み量LがL1 とL2 の間である機関中負荷運転時に
は吸気行程中のクランク角領域Zにおいて第1回目の燃
料噴射Q1 が行われ、次いで圧縮行程末期に第2回目の
燃料噴射Q2 が行われる。即ち、先ず初めに図14
(A)に示されるように第1吸気弁6aのかさ部背面に
向けて燃料噴射が行われ、これら噴射燃料は第1吸気弁
6aのかさ部背面で反射して第1吸気ポート7a内に流
入する。次いでこれらの噴射燃料は吸入空気と共に再び
燃焼室5内に流入し、この噴射燃料によって燃焼室5内
に稀薄混合気が形成される。
On the other hand, in FIG. 8, the first fuel injection Q 1 is performed in the crank angle region Z during the intake stroke during engine load operation in which the depression amount L of the accelerator pedal 25 is between L 1 and L 2. Then, the second fuel injection Q 2 is performed at the end of the compression stroke. That is, first of all, FIG.
As shown in (A), fuel is injected toward the back surface of the first intake valve 6a, and the injected fuel is reflected by the back surface of the first intake valve 6a and enters the first intake port 7a. Inflow. Next, these injected fuels flow into the combustion chamber 5 again together with the intake air, and the injected fuel forms a lean mixture in the combustion chambers 5.

【0024】次いで圧縮行程末期に第2回目の燃料噴射
が行われる。図8からわかるように機関中負荷運転時の
圧縮行程噴射Q2 の噴射時期は機関低負荷運転時におけ
る中間負荷のときの噴射時期とほぼ等しくなる。従って
このときには図14(B)に示されるように深皿部13
と浅皿部12の接続部に形成される角部19aに向けて
燃料が噴射され、図14(C)に示されるようにこの噴
射燃料によって凹部14および深皿部13内には火種と
なる着火可能な混合気Gが形成される。この混合気Gは
点火栓10によって着火せしめられ、この着火火炎によ
って燃焼室5内全体の稀薄混合気が燃焼せしめられる。
この場合、圧縮行程末期に噴射される燃料は火種を作れ
ば十分であるので図8に示されるように機関中負荷運転
時にはアクセルペダル25の踏込み量Lにかかわらずに
圧縮行程末期の燃料噴射量Q2 は一定に維持される。こ
れに対して吸気行程初期の燃料噴射量Q1 はアクセルペ
ダル25の踏込み量Lが大きくなるにつれて増大する。
Next, the second fuel injection is performed at the end of the compression stroke. As can be seen from FIG. 8, the injection timing of the compression stroke injection Q 2 during the engine medium load operation is almost the same as the injection timing during the intermediate load during the engine low load operation. Therefore, at this time, as shown in FIG.
The fuel is injected toward the corner 19a formed at the connecting portion between the shallow dish 12 and the shallow dish 12, and as shown in FIG. 14 (C), the injected fuel causes a spark in the recess 14 and the deep dish 13. An ignitable mixture G is formed. The air-fuel mixture G is ignited by the spark plug 10, and the ignition flame burns the lean air-fuel mixture in the entire combustion chamber 5.
In this case, it suffices that the fuel injected at the end of the compression stroke produces a spark, so as shown in FIG. 8, the fuel injection amount at the end of the compression stroke is irrespective of the depression amount L of the accelerator pedal 25 during engine medium load operation. Q 2 is kept constant. On the other hand, the fuel injection amount Q 1 at the beginning of the intake stroke increases as the depression amount L of the accelerator pedal 25 increases.

【0025】図8においてアクセルペダル25の踏込み
量LがL2 よりも大きい機関高負荷運転時には吸気行程
中のクランク角領域Z内において燃料が噴射される。従
ってこのときには図15に示されるように第1吸気弁6
aのかさ部背面に向けて燃料噴射が行われ、これら噴射
燃料は第1吸気弁6aのかさ部背面で反射して第1吸気
ポート7a内に流入する。次いでこれらの噴射燃料は吸
入空気と共に再び燃焼室5内に流入し、この噴射燃料に
よって燃焼室5内には均一混合気が形成される。このと
きの燃料噴射量Q1 は図8に示されるようにアクセルペ
ダル25の踏込み量Lが大きくなるにつれて増大する。
In FIG. 8, during the engine high load operation in which the depression amount L of the accelerator pedal 25 is larger than L 2 , the fuel is injected in the crank angle region Z during the intake stroke. Therefore, at this time, as shown in FIG. 15, the first intake valve 6
Fuel is injected toward the rear surface of the bulkhead portion of a, and the injected fuel is reflected by the rear surface of the bulkhead portion of the first intake valve 6a and flows into the first intake port 7a. Next, these injected fuels flow into the combustion chamber 5 again together with the intake air, and the injected fuel forms a uniform air-fuel mixture in the combustion chambers 5. The fuel injection amount Q 1 at this time increases as the depression amount L of the accelerator pedal 25 increases as shown in FIG.

【0026】図14(A)および図15に示すように第
1吸気弁6aで反射した噴射燃料が第1吸気ポート7a
内に送り込まれるとこの噴射燃料は第1吸気ポート7a
内において吸入空気と混合し、次いで十分に混合された
噴射燃料と吸入空気が燃焼室5内に供給される。即ち、
予混合気が第1吸気弁6aを介して燃焼室5内に供給さ
れたのと同じことになるので噴射燃料は燃焼室5内に均
一に分散されることになる。また、噴射燃料が第1吸気
弁6aにおいて反射した後に第1吸気ポート7a内に流
入するように噴射燃料の流速を速めると噴射燃料が第1
吸気弁6aのかさ部背面に高速度で衝突せしめられるの
で衝突時に燃料が微粒化され、微粒化された燃料が第1
吸気ポート7a内に向かって進行する。このとき燃料の
進行方向と吸入空気流の流入方向とは逆向きになるため
に燃料は吸入空気によって強力な剪断力を受け、斯くし
て燃料は更に微粒化せしめられることになる。このよう
に噴射燃料は衝突時に微粒化せしめられ、次いで強力な
剪断力によって微粒化せしめられるので噴射燃料は良好
に気化せしめられることになる。このように噴射燃料は
良好に気化せしめられ、しかも燃焼室5内に均一に分散
せしめられるので混合気は良好に燃焼せしめられること
になる。
As shown in FIGS. 14A and 15, the injected fuel reflected by the first intake valve 6a is the first intake port 7a.
When injected into the first intake port 7a
The injected fuel and the intake air, which are mixed with the intake air in the inside, are then supplied into the combustion chamber 5 in a sufficiently mixed manner. That is,
Since the premixed air is supplied to the combustion chamber 5 via the first intake valve 6a, the injected fuel is uniformly dispersed in the combustion chamber 5. Further, when the flow velocity of the injected fuel is increased so that the injected fuel is reflected by the first intake valve 6a and then flows into the first intake port 7a, the injected fuel becomes the first injected fuel.
The fuel is atomized at the high speed against the back surface of the air intake valve 6a, so that the atomized fuel is the first atomized fuel.
It advances toward the inside of the intake port 7a. At this time, since the advancing direction of the fuel and the inflow direction of the intake air flow are opposite to each other, the fuel is subjected to a strong shearing force by the intake air, and thus the fuel is further atomized. Thus, the injected fuel is atomized at the time of collision and then atomized by a strong shearing force, so that the injected fuel is vaporized well. In this way, the injected fuel is vaporized well, and moreover, it is evenly dispersed in the combustion chamber 5, so that the air-fuel mixture is burned well.

【0027】本発明による実施例では図8において吸気
行程噴射Q1 の噴射開始時期θS1および圧縮行程噴射
2 の噴射開始時期θS2は予め定められており、これ
ら噴射開始時期θS1およびθS2はアクセルペダル2
5の踏込み量Lの関数の形で予めROM33内に記憶さ
れている。従って噴射完了時期θE1およびθE2が噴
射量Q1 およびQ2 に基いて制御されることになる。
In the embodiment according to the present invention, the injection start timing θS1 of the intake stroke injection Q 1 and the injection start timing θS2 of the compression stroke injection Q 2 are predetermined in FIG. 8, and these injection start timings θS1 and θS2 are the accelerator pedal. Two
It is stored in advance in the ROM 33 in the form of a function of the depression amount L of 5. Therefore, the injection completion timings θE1 and θE2 are controlled based on the injection amounts Q 1 and Q 2 .

【0028】図16は燃料噴射を制御するためのルーチ
ンを示しており、このルーチンは繰返し実行される。図
16を参照すると、まず初めにステップ40において燃
料噴射量Qが計算される。この燃料噴射量Qは図17に
示すように機関回転数Nおよびアクセルペダル25の踏
込み量Lの関数として予めROM33内に記憶されてい
る。次いでステップ41ではアクセルペダル25の踏込
み量LがL1 よりも小さいか否か、即ち低負荷運転時で
あるか否かが判別される。L<L1 のときにはステップ
42に進んで圧縮行程噴射の噴射開始時期θS2が算出
される。次いでステップ43では噴射開始時期θS2、
燃料噴射量Qおよび機関回転数Nから噴射完了時期θE
2が算出される。
FIG. 16 shows a routine for controlling fuel injection, and this routine is repeatedly executed. Referring to FIG. 16, first, at step 40, the fuel injection amount Q is calculated. This fuel injection amount Q is stored in advance in the ROM 33 as a function of the engine speed N and the depression amount L of the accelerator pedal 25, as shown in FIG. Next, at step 41, it is judged if the depression amount L of the accelerator pedal 25 is smaller than L 1 , that is, if it is during low load operation. When L <L 1, the routine proceeds to step 42, where the injection start timing θS2 of the compression stroke injection is calculated. Next, at step 43, the injection start timing θS2,
Injection completion timing θE from the fuel injection amount Q and the engine speed N
2 is calculated.

【0029】一方、ステップ41においてL≧L1 であ
ると判別されたときにはステップ44に進んでアクセル
ペダル25の踏込み量LがL2 よりも小さいか否か、即
ち中負荷運転時であるか否かが判別される。中負荷運転
時にはステップ45に進んで吸気行程噴射量Q1 と圧縮
行程噴射量Q2 が算出される。次いでステップ46では
吸気行程噴射の噴射開始時期θS1が算出される。次い
でステップ47では噴射開始時期θS1、吸気行程噴射
量Q1 および機関回転数Nから噴射完了時期θE1が算
出される。次いでステップ48では圧縮行程噴射の噴射
開始時期θS2が算出される。次いでステップ49では
噴射開始時期θS2、圧縮行程噴射量Q 2 および機関回
転数Nから噴射完了時期θE2が算出される。
On the other hand, in step 41, L ≧ L1And
If it is determined that the accelerator pedal
Depression amount L of pedal 25 is L2Immediately less than
Then, it is determined whether or not it is during the medium load operation. Medium load operation
Sometimes the routine proceeds to step 45, where the intake stroke injection amount Q1And compression
Stroke injection amount Q2Is calculated. Then in step 46
The injection start timing θS1 of the intake stroke injection is calculated. Next
At step 47, the injection start timing θS1 and the intake stroke injection
Quantity Q1And the injection completion timing θE1 is calculated from the engine speed N
Will be issued. Next, at step 48, injection of compression stroke injection
The start timing θS2 is calculated. Then in step 49
Injection start timing θS2, compression stroke injection amount Q 2And engine times
The injection completion timing θE2 is calculated from the number of revolutions N.

【0030】ステップ44においてL≧L2 であると判
別されたとき、即ち機関高負荷運転時にはステップ50
に進んで吸気行程噴射の噴射開始時期θS1が算出され
る。次いでステップ51では噴射開始時期θS1、燃料
噴射量Qおよび機関回転数Nから噴射完了時期θE1が
算出される。各燃料噴射弁11からはこのようにして算
出された噴射開始時期θS1,θS2および噴射完了時
期θE1,θE2に基いて燃料噴射が行われる。
When it is determined in step 44 that L ≧ L 2, that is, when the engine is under high load operation, step 50
Then, the injection start timing θS1 of the intake stroke injection is calculated. Next, at step 51, the injection completion timing θE1 is calculated from the injection start timing θS1, the fuel injection amount Q and the engine speed N. Fuel injection is performed from each fuel injection valve 11 based on the injection start timings θS1 and θS2 and the injection completion timings θE1 and θE2 calculated in this way.

【0031】[0031]

【発明の効果】浅皿部と深皿部の接続部に形成される角
部に向けて燃料を噴射するようにした場合において、角
部により振り分けられて浅皿部の周壁面に到達した噴射
燃料の蒸発を促進することができ、斯くして良好な燃焼
を得ることができる。
EFFECTS OF THE INVENTION In the case where fuel is injected toward the corner formed at the connecting portion of the shallow dish and the deep dish, the injection is distributed by the corner and reaches the peripheral wall surface of the shallow dish. The evaporation of the fuel can be promoted and thus good combustion can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】内燃機関の全体図である。FIG. 1 is an overall view of an internal combustion engine.

【図2】シリンダヘッドの平面断面図である。FIG. 2 is a plan sectional view of a cylinder head.

【図3】ピストン頂面の平面図である。FIG. 3 is a plan view of the top surface of the piston.

【図4】図2のIV−IV線に沿ってみた断面図である。4 is a sectional view taken along line IV-IV in FIG.

【図5】図2のV−V線に沿ってみた断面図である。5 is a cross-sectional view taken along the line VV of FIG.

【図6】別の実施例を示すピストン頂面の平面図であ
る。
FIG. 6 is a plan view of a piston top surface showing another embodiment.

【図7】図6のVII −VII 線に沿ってみた断面図であ
る。
7 is a sectional view taken along line VII-VII of FIG.

【図8】燃料噴射量および燃料噴射時期を示す図であ
る。
FIG. 8 is a diagram showing a fuel injection amount and a fuel injection timing.

【図9】吸気弁および排気弁のリフト量を示す線図であ
る。
FIG. 9 is a diagram showing lift amounts of an intake valve and an exhaust valve.

【図10】図5と同じ断面に沿ってみた側面断面図であ
る。
10 is a side sectional view taken along the same section as FIG.

【図11】吸気制御弁の開度を示す線図である。FIG. 11 is a diagram showing an opening of an intake control valve.

【図12】低負荷運転時における燃焼方法を説明するた
めの図である。
FIG. 12 is a diagram for explaining a combustion method during low load operation.

【図13】低負荷運転時における燃焼方法を説明するた
めの図である。
FIG. 13 is a diagram for explaining a combustion method during low load operation.

【図14】中負荷運転時における燃焼方法を説明するた
めの図である。
FIG. 14 is a diagram for explaining a combustion method during medium load operation.

【図15】高負荷運転時における燃焼方法を説明するた
めの図である。
FIG. 15 is a diagram for explaining a combustion method during high load operation.

【図16】メインルーチンを実行するためのフローチャ
ートである。
FIG. 16 is a flowchart for executing a main routine.

【図17】燃料噴射量を示す線図である。FIG. 17 is a diagram showing a fuel injection amount.

【符号の説明】[Explanation of symbols]

6a,6b…吸気弁 7a,7b…吸気ポート 11…燃料噴射弁 12…浅皿部 12b…浅皿部周壁面 13…深皿部 19,19′…断熱部材 19a…角部 6a, 6b ... intake valve 7a, 7b ... intake port 11 ... fuel injection valve 12 ... shallow pan 12b ... shallow pan peripheral wall 13 ... dish pan 19,19 '... heat insulating member 19a ... corner

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ピストン頂面上に浅皿部を形成すると共
に浅皿部の中央部に深皿部を形成し、浅皿部と深皿部の
接続部に形成される角部に向けて燃焼室内に配置された
燃料噴射弁から燃料を噴射するようにした筒内噴射式内
燃機関において、上記角部により振り分けられて浅皿部
表面に沿い流れる噴射燃料が到達する浅皿部周壁面部分
を断熱部材により形成した筒内噴射式内燃機関。
1. A shallow dish portion is formed on a top surface of a piston, and a deep dish portion is formed at a central portion of the shallow dish portion toward a corner formed at a connecting portion between the shallow dish portion and the deep dish portion. In a cylinder injection type internal combustion engine in which fuel is injected from a fuel injection valve arranged in a combustion chamber, a peripheral wall surface portion of a shallow plate portion to which the injected fuel distributed along the surface of the shallow plate portion distributed by the corners reaches In-cylinder injection internal combustion engine in which a heat insulating member is formed.
JP3234819A 1991-09-13 1991-09-13 Inter-cylinder injection type internal combustion engine Pending JPH0571350A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3234819A JPH0571350A (en) 1991-09-13 1991-09-13 Inter-cylinder injection type internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3234819A JPH0571350A (en) 1991-09-13 1991-09-13 Inter-cylinder injection type internal combustion engine

Publications (1)

Publication Number Publication Date
JPH0571350A true JPH0571350A (en) 1993-03-23

Family

ID=16976884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3234819A Pending JPH0571350A (en) 1991-09-13 1991-09-13 Inter-cylinder injection type internal combustion engine

Country Status (1)

Country Link
JP (1) JPH0571350A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0639703A1 (en) * 1993-07-22 1995-02-22 Toyota Jidosha Kabushiki Kaisha A spark ignition engine with a fuel injector for injecting fuel directly into the cylinder
US5806482A (en) * 1995-03-28 1998-09-15 Mitsubishi Jidosha Kogyo Kabushiki Kaisha In-cylinder injection internal combustion engine
US6125816A (en) * 1997-09-01 2000-10-03 Suzuki Motor Corporation Cylinder injection system engine
AT521273A4 (en) * 2018-03-09 2019-12-15 Avl List Gmbh Internal combustion engine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0639703A1 (en) * 1993-07-22 1995-02-22 Toyota Jidosha Kabushiki Kaisha A spark ignition engine with a fuel injector for injecting fuel directly into the cylinder
US5505173A (en) * 1993-07-22 1996-04-09 Toyota Jidosha Kabushiki Kaisha Spark ignition engine with a fuel injector for injecting fuel directly into the cylinder
US5806482A (en) * 1995-03-28 1998-09-15 Mitsubishi Jidosha Kogyo Kabushiki Kaisha In-cylinder injection internal combustion engine
US6125816A (en) * 1997-09-01 2000-10-03 Suzuki Motor Corporation Cylinder injection system engine
AT521273A4 (en) * 2018-03-09 2019-12-15 Avl List Gmbh Internal combustion engine
AT521273B1 (en) * 2018-03-09 2019-12-15 Avl List Gmbh Internal combustion engine

Similar Documents

Publication Publication Date Title
JP2531322B2 (en) Internal combustion engine
US5271362A (en) Two-stroke engine
JPH04219445A (en) Fuel injection control device for multicylinder internal combustion engine
JPH11153034A (en) Direct injection spark ignition type engine
US7104249B2 (en) Direct fuel injection/spark ignition engine control device
JPH0735726B2 (en) Internal combustion engine and operating method thereof
JP4054223B2 (en) In-cylinder injection engine and control method for in-cylinder injection engine
US5101785A (en) Control device for an internal combustion engine
JP2871220B2 (en) In-cylinder internal combustion engine
JPH0579370A (en) Cylinder injection type internal combustion engine
EP0463613A1 (en) A two-stroke engine
JPS60230544A (en) Fuel injector for engine
JP2751626B2 (en) In-cylinder direct injection spark ignition engine
JPH0571350A (en) Inter-cylinder injection type internal combustion engine
JPH11173180A (en) Cylinder injection type spark ignition engine
JPH0579337A (en) Inter-cylinder injection type internal combustion engine
JP2531378B2 (en) Cylinder injection internal combustion engine
JPH0121180Y2 (en)
JPH05321718A (en) Control device of internal combustion engine
JP2936803B2 (en) In-cylinder internal combustion engine
JPH0571343A (en) Inter-cylinder injection type internal combustion engine
JPS61164037A (en) Fuel supply device of internal-combustion engine
JPH04187819A (en) Cylinder direct injection type spark ignition engine
JPH0571383A (en) Inter-cylinder injection type internal combustion engine
JPH0433377Y2 (en)