JP2936803B2 - In-cylinder internal combustion engine - Google Patents

In-cylinder internal combustion engine

Info

Publication number
JP2936803B2
JP2936803B2 JP3160329A JP16032991A JP2936803B2 JP 2936803 B2 JP2936803 B2 JP 2936803B2 JP 3160329 A JP3160329 A JP 3160329A JP 16032991 A JP16032991 A JP 16032991A JP 2936803 B2 JP2936803 B2 JP 2936803B2
Authority
JP
Japan
Prior art keywords
groove
fuel
wall surface
fuel injection
injected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3160329A
Other languages
Japanese (ja)
Other versions
JPH0510134A (en
Inventor
辰夫 小林
徳彦 中村
憲一 野村
栄嗣 大野
裕昭 仁平
浩一 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP3160329A priority Critical patent/JP2936803B2/en
Publication of JPH0510134A publication Critical patent/JPH0510134A/en
Application granted granted Critical
Publication of JP2936803B2 publication Critical patent/JP2936803B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/42Shape or arrangement of intake or exhaust channels in cylinder heads
    • F02F1/4214Shape or arrangement of intake or exhaust channels in cylinder heads specially adapted for four or more valves per cylinder
    • F02F1/4221Shape or arrangement of intake or exhaust channels in cylinder heads specially adapted for four or more valves per cylinder particularly for three or more inlet valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/12Other methods of operation
    • F02B2075/125Direct injection in the combustion chamber for spark ignition engines, i.e. not in pre-combustion chamber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は筒内噴射式内燃機関に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a direct injection internal combustion engine.

【0002】[0002]

【従来の技術】ピストン頂面上に凹溝を形成すると共に
燃料噴射弁から凹溝内に向けて燃料を噴射し、燃焼室内
にシリンダ軸線回りの旋回流を発生させてこの旋回流に
より点火栓の周りに着火可能な混合気を形成するように
した筒内噴射式内燃機関が公知である(実開平1−1240
42号公報参照)。
2. Description of the Related Art A groove is formed on the top surface of a piston, and fuel is injected from a fuel injection valve into the groove to generate a swirling flow around a cylinder axis in a combustion chamber. An in-cylinder injection type internal combustion engine in which an ignitable air-fuel mixture is formed around an engine is known.
No. 42).

【0003】[0003]

【発明が解決しようとする課題】しかしながらこの筒内
噴射式内燃機関ではシリンダ軸線周りの旋回流を発生さ
せることが必須の要件であるのでシリンダ軸線回りの旋
回流を発生させない場合にはもはやこの噴射方法を採用
することができない。また、旋回流の強さは機関の運転
状態により変化するので点火栓周りの混合気の形成を全
面的に旋回流に依存しているとあらゆる機関の運転状態
に対して最適な混合気を点火栓の周りに形成するのは困
難であるという問題がある。
However, in this in-cylinder injection type internal combustion engine, it is essential to generate a swirling flow around the cylinder axis. Therefore, when the swirling flow around the cylinder axis is not generated, the injection is no longer performed. The method cannot be adopted. In addition, since the strength of the swirl flow varies depending on the operating state of the engine, if the formation of the air-fuel mixture around the ignition plug is entirely dependent on the swirl flow, the optimal air-fuel mixture will be ignited for any operating state of the engine There is a problem that it is difficult to form around the stopper.

【0004】[0004]

【課題を解決するための手段】上記問題点を解決するた
めに本発明によればシリンダヘッド内壁面の中心部に点
火栓を配置し、シリンダヘッド内壁面の周縁部に燃料噴
射弁を配置し、点火栓の下方から燃料噴射弁側に向けて
次第に拡開しつつ延びる一対の側壁面とほぼ平坦をなす
底壁面とにより画定される凹溝をピストン頂面上に形成
すると共に燃料噴射弁から凹溝底壁面に向け斜めに燃料
を噴射して凹溝底壁面に衝突した噴射燃料を凹溝側壁面
に沿いつつ点火栓下方の凹溝端部に向かわせ、凹溝端部
と燃料噴射弁とを含む垂直平面内に沿って延びる燃料案
内溝を凹溝底壁面上に形成すると共に各凹溝側壁面を凹
溝端部から燃料噴射弁側に向けてほぼまっすぐに延設し
ている。
According to the present invention, an ignition plug is disposed at the center of the inner wall surface of a cylinder head, and a fuel injection valve is disposed at a peripheral portion of the inner wall surface of the cylinder head. Forming a groove on the piston top surface defined by a pair of side wall surfaces extending from the lower part of the ignition plug toward the fuel injection valve side and a substantially flat bottom wall surface, and from the fuel injection valve. The fuel is injected obliquely toward the groove bottom wall surface and the injected fuel colliding with the groove bottom wall surface is directed along the groove side wall surface toward the groove end below the spark plug, and the groove end and the fuel injection valve are connected. The fuel guide groove extending along the vertical plane including the groove is formed on the bottom wall surface of the groove, and the side wall surface of each groove extends substantially straight from the end of the groove toward the fuel injection valve.

【0005】[0005]

【作用】噴射燃料の一部は燃料案内溝により案内されて
凹溝端部に到達し、他の噴射燃料は凹溝側壁面に向か
い、次いで凹溝側壁面に沿って流れる。この場合、各凹
溝側壁面が凹溝端部から燃料噴射弁側に向けてほぼまっ
すぐに延設されていると凹溝側壁面に沿って凹溝端部に
向かい始める燃料の流速は凹溝端部に近いほど速くな
る。従って凹溝側壁面に沿い流れる各燃料が凹溝端部に
到達するまでには時間差を生じ、凹溝側壁面に沿って早
期に凹溝端部に到達した燃料および燃料案内溝に沿って
凹溝端部に到達した燃料によって点火栓周りに可燃混合
気が形成される。
A part of the injected fuel is guided by the fuel guide groove to reach the end of the groove, and the other injected fuel flows toward the groove side wall surface and then flows along the groove side wall surface. In this case, when each groove side wall surface extends substantially straight from the groove end portion toward the fuel injection valve side, the flow rate of the fuel that starts toward the groove end portion along the groove side wall surface is equal to the groove end portion. The closer, the faster. Therefore, there is a time lag before each fuel flowing along the groove side wall surface reaches the groove end portion, and the fuel that has reached the groove end portion early along the groove side wall surface and the groove end portion along the fuel guide groove. A combustible air-fuel mixture is formed around the ignition plug by the fuel that has reached.

【0006】[0006]

【実施例】図3および図4を参照すると、1はシリンダ
ブロック、2はシリンダブロック1内で往復動するピス
トン、3はシリンダブロック1上に固定されたシリンダ
ヘッド、4はシリンダヘッド3の内壁面3aとピストン
2の頂面間に形成された燃焼室を夫々示す。シリンダヘ
ッド内壁面3a上には凹溝5が形成され、この凹溝5の
底壁面をなすシリンダヘッド内壁面部分3b上に一対の
給気弁6が配置される。一方、凹溝5を除くシリンダへ
ッド内壁面部分3cは傾斜したほぼ平坦をなし、このシ
リンダヘッド内壁面部分3c上に3個の排気弁7が配置
される。シリンダヘッド内壁面部分3bとシリンダヘッ
ド内壁面部分3cは凹溝5の周壁8を介して互いに接続
されている。
3 and 4, reference numeral 1 denotes a cylinder block, 2 denotes a piston reciprocating in the cylinder block 1, 3 denotes a cylinder head fixed on the cylinder block 1, and 4 denotes a cylinder head. The combustion chamber formed between the wall surface 3a and the top surface of the piston 2 is shown. A concave groove 5 is formed on the cylinder head inner wall surface 3a, and a pair of air supply valves 6 are arranged on the cylinder head inner wall surface portion 3b that forms the bottom wall surface of the concave groove 5. On the other hand, the cylinder head inner wall surface portion 3c excluding the concave groove 5 is inclined and substantially flat, and three exhaust valves 7 are arranged on the cylinder head inner wall surface portion 3c. The cylinder head inner wall surface portion 3b and the cylinder head inner wall surface portion 3c are connected to each other via the peripheral wall 8 of the concave groove 5.

【0007】この凹溝周壁8は給気弁6の周縁部に極め
て近接配置されかつ給気弁6の周縁部に沿って円弧状に
延びる一対のマスク壁8aと、給気弁6間に位置する新
気ガイド壁8bと、シリンダヘッド内壁面3aの周壁と
給気弁6間に位置する一対の新気ガイド壁8cとにより
構成される。各マスク壁8aは最大リフト位置にある給
気弁6よりも下方まで燃焼室4に向けて延びており、従
って排気弁7側に位置する給気弁6周縁部と弁座9間の
開口は給気弁6の開弁期間全体に亙ってマスク壁8aに
より閉鎖されることになる。また、各新気ガイド壁8
b,8cはほぼ同一平面内に位置しており、更にこれら
の新気ガイド壁8b,8cは両給気弁6の中心を結ぶ線
に対してほぼ平行に延びている。点火栓10はシリンダヘ
ッド内壁面3aの中心に位置するようにシリンダヘッド
内壁面部分3c上に配置されている。一方、排気弁7に
対しては排気弁7と弁座11間の開口を覆うマスク壁が設
けられておらず、従って排気弁7が開弁すると排気弁7
と弁座11間に形成される開口はその全体が燃焼室4内に
開口することになる。
The peripheral wall 8 of the concave groove is located between the pair of mask walls 8a, which are disposed very close to the peripheral edge of the air supply valve 6 and extend in an arc along the peripheral edge of the air supply valve 6, and the air supply valve 6. And a pair of fresh air guide walls 8c located between the supply wall 6 and the peripheral wall of the cylinder head inner wall surface 3a. Each mask wall 8a extends toward the combustion chamber 4 below the intake valve 6 at the maximum lift position, so that the opening between the peripheral portion of the intake valve 6 located on the exhaust valve 7 side and the valve seat 9 is formed. The air supply valve 6 is closed by the mask wall 8a throughout the opening period of the air supply valve 6. In addition, each fresh guide wall 8
The fresh air guide walls 8b and 8c extend substantially parallel to a line connecting the centers of the two air supply valves 6. The ignition plug 10 is disposed on the cylinder head inner wall surface portion 3c so as to be located at the center of the cylinder head inner wall surface 3a. On the other hand, the exhaust valve 7 is not provided with a mask wall that covers the opening between the exhaust valve 7 and the valve seat 11, so that when the exhaust valve 7 is opened, the exhaust valve 7
The entire opening formed between the valve seat 11 and the valve seat 11 opens into the combustion chamber 4.

【0008】シリンダヘッド3内には給気弁6に対して
給気ポート12が形成され、排気弁7に対して排気ポート
13が形成される。一方、両給気弁6の間のシリンダヘッ
ド内壁面3aの周縁部には燃料噴射弁14が配置され、こ
の燃料噴射弁14から燃料が燃焼室4内に向けて噴射され
る。
An air supply port 12 is formed in the cylinder head 3 for the air supply valve 6, and an exhaust port is formed for the exhaust valve 7.
13 is formed. On the other hand, a fuel injection valve 14 is arranged at the peripheral portion of the cylinder head inner wall surface 3 a between the two supply valves 6, and fuel is injected from the fuel injection valve 14 into the combustion chamber 4.

【0009】図1および図3に示されるようにピストン
2の頂面上には点火栓10の下方から燃料噴射弁14の先端
部の下方まで延びる凹溝15が形成される。この凹溝15は
点火栓10下方の凹溝端部15aから燃料噴射弁14側に向け
て次第に拡開しつつ延びる一対の側壁面15bと、ほぼ平
坦をなす底壁面15cとにより画定され、図3に示される
ように凹溝端部15aは燃料噴射弁14と反対側に向けて凹
んだ凹状断面形状を有する。また、図1からわかるよう
に凹溝端部15aは点火栓10と燃料噴射弁14とを含む垂直
平面K−K上に形成されており、各側壁面15bはこの垂
直平面K−Kに関して対称的な形状を有する。従って凹
溝15は垂直平面K−Kに関して対称的な形状を有するこ
とになる。また、図1に示されるように凹溝底壁面15c
上には垂直平面K−Kに沿って延びる燃料案内溝16が形
成される。この燃料案内溝16は図2に示されるように凹
状の断面形状を有する。また図3に示されるようにピス
トン2が上死点に達すると点火栓10に関し凹溝15と反対
側に位置するピストン2の頂面部分とシリンダヘッド内
壁面部分3cとの間にはスキッシュエリア17が形成され
る。
As shown in FIGS. 1 and 3, a recessed groove 15 is formed on the top surface of the piston 2 from below the spark plug 10 to below the tip of the fuel injection valve 14. The concave groove 15 is defined by a pair of side wall surfaces 15b extending gradually from the concave groove end 15a below the ignition plug 10 toward the fuel injection valve 14 and a substantially flat bottom wall surface 15c. As shown in FIG. 5, the concave groove end 15a has a concave cross-sectional shape that is concave toward the side opposite to the fuel injection valve 14. 1, the groove end 15a is formed on a vertical plane KK including the ignition plug 10 and the fuel injection valve 14, and each side wall surface 15b is symmetrical with respect to this vertical plane KK. It has a unique shape. Accordingly, the concave groove 15 has a symmetrical shape with respect to the vertical plane KK. Also, as shown in FIG.
A fuel guide groove 16 extending along a vertical plane KK is formed thereon. The fuel guide groove 16 has a concave cross-sectional shape as shown in FIG. As shown in FIG. 3, when the piston 2 reaches the top dead center, a squish area is provided between the top surface portion of the piston 2 located on the side opposite to the concave groove 15 with respect to the ignition plug 10 and the cylinder head inner wall surface portion 3c. 17 is formed.

【0010】図5に示されるように図1から図4に示す
実施例では排気弁7が吸気弁6よりも先に開弁し、排気
弁7が吸気弁6よりも先に開弁する。また、図5におい
てI l は機関低負荷運転時における燃料噴射時期を示し
ており、Im1およびIm2は機関中負荷運転時における燃
料噴射時期を示しており、Ih は機関高負荷運転時にお
ける燃料噴射時期を示している。図5から機関高負荷運
転時における燃料噴射Ih は排気弁7が閉弁する頃に行
われ、機関低負荷運転時における燃料噴射Ilは高負荷
運転時に比べてかなり遅い時期に行われることがわか
る。また、機関中負荷運転時には2回に分けて燃料噴射
m1およびIm2が行われ、このとき第1回目の燃料噴射
m1は機関高負荷運転時とほぼ同じ時期に行われ、第2
回目の燃料噴射Im2は機関低負荷運転時とほぼ同じ時期
に行われることがわかる。
As shown in FIG. 5, shown in FIGS.
In the embodiment, the exhaust valve 7 is opened before the intake valve 6 and the exhaust valve 7 is opened.
The valve 7 opens before the intake valve 6. Also, in FIG.
I lIndicates the fuel injection timing during low engine load operation.
And Im1And Im2Is the fuel during medium load operation of the engine.
The fuel injection timing.hDuring engine high load operation
FIG. Fig. 5 High engine load operation
Fuel injection I at the time of rotationhGoes around when the exhaust valve 7 closes.
The fuel injection I at the time of engine low load operationlIs high load
It turns out that it is done much later than when driving
You. In addition, during engine middle load operation, fuel injection is divided into two
Im1And Im2Is performed, and at this time, the first fuel injection
Im1Is performed at about the same time as during high-load operation of the engine.
Second fuel injection Im2Is about the same time as when the engine is operating at low load
It can be seen that this is done.

【0011】図6に示されるように給気弁6および排気
弁7が開弁すると給気弁6を介して燃焼室4内に空気が
流入する。このとき、排気弁7側の給気弁6の開口はマ
スク壁8aによって覆われているので空気はマスク壁8
aと反対側の給気弁6の開口から燃焼室4内に流入す
る。この空気は矢印Wで示すように給気弁6下方のシリ
ンダボア内壁面に沿い下降し、次いでピストン2の頂面
に沿い進んで排気弁7下方のシリンダボア内壁面に沿い
上昇し、斯くして空気は燃焼室4内をループ状に流れる
ことになる。このループ状に流れる空気Wによって燃焼
室4内の既燃ガスが排気弁7を介して排出され、更にこ
のループ状に流れる空気Wによって燃焼室4内には垂直
面内で旋回する旋回流Xが発生せしめられる。次いでピ
ストン2が下死点BDCを過ぎて上昇を開始するとその
後燃料噴射弁14からの燃料噴射が開始される。
As shown in FIG. 6, when the air supply valve 6 and the exhaust valve 7 are opened, air flows into the combustion chamber 4 via the air supply valve 6. At this time, since the opening of the air supply valve 6 on the exhaust valve 7 side is covered by the mask wall 8a, air is
The gas flows into the combustion chamber 4 from the opening of the air supply valve 6 on the side opposite to the side a. This air descends along the inner wall surface of the cylinder bore below the air supply valve 6 as indicated by the arrow W, and then travels along the top surface of the piston 2 and rises along the inner wall surface of the cylinder bore below the exhaust valve 7, and Will flow in a loop in the combustion chamber 4. The burned gas in the combustion chamber 4 is discharged through the exhaust valve 7 by the air W flowing in the loop, and the swirling flow X swirling in the vertical plane in the combustion chamber 4 by the air W flowing in the loop. Is generated. Next, when the piston 2 starts rising after passing through the bottom dead center BDC, fuel injection from the fuel injection valve 14 is started thereafter.

【0012】次に図7から図10を参照して機関低負荷運
転時、機関中負荷運転時および機関高負荷運転時におけ
る燃料噴射方法について説明する。なお、図7は機関低
負荷運転時における燃料噴射Il および機関中負荷運転
時における第2回目の燃料噴射Im2を示しており、図8
は機関中負荷運転時における第1回目の燃料噴射Im1
よび機関高負荷運転時における燃料噴射Ih を示してい
る。
Next, with reference to FIGS. 7 to 10, a description will be given of a fuel injection method at the time of low load operation of the engine, at the time of medium load operation of the engine, and at the time of high load operation of the engine. FIG. 7 shows the fuel injection Il during the low engine load operation and the second fuel injection Im2 during the medium engine load operation.
Shows a fuel injection I h in the first fuel injection I m1 and engine high load operation during medium load operation the engine.

【0013】図1および図7に示されるように機関低負
荷運転時および機関中負荷運転時の2回目の燃料噴射時
には燃料は燃料噴射弁14から垂直平面K−Kに沿い凹溝
底壁面15cに向けて斜めに噴射され、この噴射燃料は凹
溝底壁面15c上に衝突した後凹溝底壁面15c上を凹溝端
部15aに向けて進行する。次にこのときの噴射燃料の挙
動について図9を参照しつつ説明する。図9において鎖
線Rは凹溝底壁面15c上における噴射燃料の衝突領域を
示している。また矢印F1 ,F2 は凹溝側壁面15bに向
けて流れる噴射燃料の代表的な2つの流れを示してお
り、矢印F3は燃料案内溝16に沿って凹溝端部15aに向
かう流れを示している。即ち、燃料噴射弁14から噴射さ
れた一部の燃料F3 は慣性力により燃料案内溝16内を進
んでただちに凹溝端部15aに到達し、残りの噴射燃料F
1 ,F2 は凹溝底壁面15c上に衝突後も慣性力によって
噴射方向に進行し、次いで凹溝側壁面15bまで進んだ後
に凹溝側壁面15bに沿いつつ凹溝端部15aに向けて進行
する。従って凹溝側壁面15bに沿って進行する燃料
1 ,F2 は燃料案内溝16内を進行する燃料F3 よりも
遅れて凹溝端部15aに到達する。
As shown in FIGS. 1 and 7, at the time of the second fuel injection during the low load operation of the engine and the middle load operation of the engine, the fuel flows from the fuel injection valve 14 along the vertical plane KK along the groove bottom wall surface 15c. Is injected obliquely toward the groove, and the injected fuel collides with the groove bottom wall surface 15c, and then proceeds on the groove bottom wall surface 15c toward the groove end portion 15a. Next, the behavior of the injected fuel at this time will be described with reference to FIG. In FIG. 9, a dashed line R indicates a collision area of the injected fuel on the groove bottom wall surface 15c. Arrows F 1 and F 2 show two typical flows of the injected fuel flowing toward the groove side wall surface 15b, and arrow F 3 shows a flow along the fuel guide groove 16 toward the groove end 15a. Is shown. That is, a part of the fuel F 3 injected from the fuel injection valve 14 advances in the fuel guide groove 16 due to the inertial force and immediately reaches the concave groove end 15a, and the remaining fuel F 3 is injected.
1 and F 2 proceed in the injection direction by inertial force even after colliding on the groove bottom wall surface 15c, and then proceed to the groove side wall surface 15b and then proceed toward the groove end portion 15a along the groove side wall surface 15b. I do. Therefore, the fuels F 1 and F 2 that travel along the groove side wall surface 15b arrive at the groove end 15a later than the fuel F 3 that advances in the fuel guide groove 16.

【0014】次に燃料F1 ,F2 について注目してみる
と各凹溝側壁面15bは凹溝端部15aから燃料噴射弁14側
に向けてほぼまっすぐに延びているので凹溝側壁面15b
に対する各噴射燃料F1 ,F2 の入射角θ1 ,θ2 は噴
射中心に近い噴射燃料ほど小さくなり、従って凹溝側壁
面15bに沿って進行を開始しはじめたときの各噴射燃料
1 ,F2 の流動速度v1 ,v2 は噴射中心に近い噴射
燃料ほど速くなる。
Next, paying attention to the fuels F 1 and F 2 , since each groove side wall surface 15 b extends almost straight from the groove end portion 15 a toward the fuel injection valve 14, the groove side wall surface 15 b
Each injection fuel F 1 for the incident angle theta 1 of F 2, theta 2 becomes smaller as the injected fuel near the injection center, therefore the injected fuel F 1 when started to start traveling along the recessed groove side wall 15b , flow velocity v 1 of the F 2, v 2 becomes faster as the injected fuel closer to the injection center.

【0015】これに対して図10に示されるようにピスト
ン2′の頂面上に形成された凹溝15′の輪郭形状を円形
とし、燃料噴射弁14′から凹溝15′の平坦な底壁面15
c′上に燃料を噴射すると凹溝側壁面15b′に対する各
噴射燃料F1 ′,F2 ′の入射角θ1 ′,θ2 ′は噴射
中心に近い噴射燃料ほど大きくなり、従って凹溝側壁面
15b′に沿って進行を開始しはじめたときの噴射燃料F
1 ′,F2 ′の流動速度v1 ′,v2 ′は噴射中心に近
い噴射燃料ほど遅くなる。ところがこのようにv 1 ′>
2 ′なる関係があると各凹溝側壁面15b′に沿って流
れる燃料又は混合気はほぼ同時期に凹溝端部15a′に集
まり、次いでほぼ同時期に凹溝端部15a′に沿って上昇
して点火栓10の周りに混合気を形成することになる。従
ってこの場合には常にほぼ全噴射燃料によって点火栓10
の周りに混合気が形成されることになり、従ってこのと
き点火栓10周りに形成される混合気の濃度は燃料噴射量
を制御する以外の方法によっては制御することができな
いことになる。斯くして例えば燃料噴射量が少ないとき
に点火栓10の周りに最適な混合気を形成しようとすると
燃料噴射量が増大したときには点火栓10周りに形成され
る混合気は過濃となり、斯くして点火栓10による良好な
着火が得られないばかりでなく、たとえ着火したとして
も多量の未燃HC,COが発生することになる。
On the other hand, as shown in FIG.
The contour of the concave groove 15 'formed on the top surface of the
From the fuel injection valve 14 'to the flat bottom wall 15 of the concave groove 15'.
When fuel is injected onto c ', each of the
Injected fuel F1', FTwo'Incident angle θ1', ΘTwo′ Is injection
The closer the injection fuel is to the center, the larger it is
Injected fuel F when it starts to proceed along 15b '
1', FTwo'Flow velocity v1', VTwo′ Is near the injection center
The slower the injected fuel, the slower it will be. However, like this 1'>
vTwo′, The flow along each groove side wall surface 15b ′
The fuel or air-fuel mixture collected at the groove end 15a 'at about the same time.
And then rises along the groove end 15a 'at about the same time
As a result, an air-fuel mixture is formed around the ignition plug 10. Obedience
In this case, the ignition plug 10
A mixture is formed around the
The concentration of the mixture formed around the spark plug 10 is the fuel injection amount
Cannot be controlled by any method other than controlling
Will be. Thus, for example, when the fuel injection amount is small
Try to form the optimal mixture around spark plug 10
When the fuel injection amount increases, it is formed around the spark plug 10
The air-fuel mixture becomes excessively rich, thus
Not only can not get the ignition, even if the ignition
As a result, a large amount of unburned HC and CO is generated.

【0016】これに対して図9に示されるようにv1
2 なる関係があると噴射燃料F2 が凹溝端部15aに到
達しても噴射燃料F1 は依然として凹溝端部15aに向け
て進行中であり、従って各噴射燃料F1 ,F2 が凹溝端
部15aに到達するのに時間差を生ずることになる。ま
た、前述したように噴射燃料F3は噴射燃料F2 ,F3
よりも早く凹溝端部15aに到達し、斯くして各噴射燃料
1 ,F2 ,F3 は凹溝端部15aに到達するのに時間差
を生ずることになる。
On the other hand, as shown in FIG. 9, v 1 <
v injected fuel F 1 even 2 becomes associated with the injected fuel F 2 has reached the groove end portion 15a is still in progress toward the groove end 15a, so that each injection fuel F 1, F 2 is concave There will be a time lag to reach the groove end 15a. Further, the injected fuel as described above F 3 are injected fuel F 2, F 3
The injected fuels F 1 , F 2 , and F 3 arrive at the groove end 15a earlier than before, so that there is a time difference in reaching the groove end 15a.

【0017】このように各噴射燃料F1 ,F2 ,F3
凹溝端部15aに到達するのに時間差を生ずると点火栓10
周りに形成される混合気は時間を経過するにつれて次第
に濃くなることになり、従ってこの場合には燃料噴射量
が一定であっても燃料噴射から点火が行われるまでの時
間を制御することによって点火が行われるときに点火栓
10周に形成される混合気の濃度を制御できることにな
る。云い換えると点火が行われるときに点火栓10周りに
最適な濃度の混合気が形成されるように点火時期又は噴
射時期を制御することによって点火が行われるときに点
火栓10周りに常に最適な混合気を形成できることにな
る。従って図9に示すような形状の凹溝15を用いると燃
料噴射量によらずに点火栓10による良好な着火を確保で
きることになる。
As described above, if there is a time difference between each of the injected fuels F 1 , F 2 and F 3 reaching the groove end 15a, the ignition plug 10
The mixture formed around the fuel gradually becomes thicker as time elapses.Therefore, in this case, even if the fuel injection amount is constant, the ignition time is controlled by controlling the time from fuel injection to ignition. When the spark plug is made
The concentration of the air-fuel mixture formed in 10 laps can be controlled. In other words, by controlling the ignition timing or the injection timing such that an optimum concentration of the mixture is formed around the ignition plug 10 when the ignition is performed, the optimum around the ignition plug 10 is always achieved when the ignition is performed. An air-fuel mixture can be formed. Therefore, if the concave groove 15 having the shape as shown in FIG. 9 is used, it is possible to secure good ignition by the ignition plug 10 irrespective of the fuel injection amount.

【0018】一方、噴射燃料が凹溝底壁面15c上に衝突
したときに噴射燃料が凹溝底壁面15c上において広範囲
に分散すると広範囲に分散すればするほど凹溝15内にお
いて気化して凹溝15内にとどまる燃料量が増大する。ま
た、この場合燃料噴射量が少なくなればなるほど単位体
積当りの燃料に加えられる熱量が増大するために燃料噴
射量が少なくなればなるほど凹溝15内で気化せしめられ
る燃料割合が増大する。凹溝15内において気化せしめら
れる燃料量が増大することは好ましい方向ではあるが凹
溝15内で気化せしめられる燃料量が増大すれば増大する
ほど凹溝端部15aに到達する燃料量が少なくなる。従っ
て噴射燃料を広範囲に分散せしめると特に燃料噴射量が
少量となったときに点火栓10周りに着火可能な混合気を
形成できなくなる危険性がある。
On the other hand, when the injected fuel collides with the groove bottom wall surface 15c when the injected fuel is widely dispersed on the groove bottom wall surface 15c, the more widely the injected fuel is dispersed, the more the fuel is vaporized within the groove 15 and the groove is formed. The amount of fuel remaining within 15 increases. Also, in this case, the smaller the fuel injection amount, the greater the amount of heat applied to the fuel per unit volume. Therefore, the smaller the fuel injection amount, the greater the proportion of fuel vaporized in the groove 15. It is a preferable direction that the amount of fuel vaporized in the groove 15 increases. However, as the amount of fuel vaporized in the groove 15 increases, the amount of fuel reaching the groove end portion 15a decreases. Therefore, if the injected fuel is dispersed over a wide range, there is a risk that an ignitable air-fuel mixture cannot be formed around the ignition plug 10 particularly when the fuel injection amount becomes small.

【0019】ところが図9に示すように凹溝底壁面15c
上に燃料案内溝16を形成しておくとこの燃料案内溝16内
に噴射された燃料は周囲に拡散することなく凹溝端部15
aに送り込まれる。従って燃料噴射量が少ないときであ
っても一定量の燃料が確実に凹溝端部15aに送り込まれ
ることになり、斯くして燃料噴射量が少ないときであっ
ても点火栓10の周りに着火可能な混合気を確実に形成す
ることができることになる。
However, as shown in FIG.
When the fuel guide groove 16 is formed on the upper side, the fuel injected into the fuel guide groove 16 does not diffuse to the periphery and the groove end 15
sent to a. Therefore, even when the fuel injection amount is small, a certain amount of fuel is surely fed into the groove end 15a, and thus, even when the fuel injection amount is small, it is possible to ignite around the ignition plug 10. Thus, a proper air-fuel mixture can be reliably formed.

【0020】ところで図6に示されるように燃焼室4内
に発生した旋回流Xはピストン2が上昇するにつれて減
衰しつつ旋回半径が次第に小さくなり、ピストン2が上
死点に近づくと図7に示されるように凹溝底壁面15cに
沿う旋回流Xとなる。また、ピストン2が更に上死点に
近づくと図7において矢印Sで示すようにスキッシュエ
リア17からスキッシュ流が噴出し、このスキッシュ流S
も凹溝底壁面15cに沿って進む。従ってこれら旋回流X
およびスキッシュ流Sによって噴射燃料の気化が促進さ
れることになる。なお、凹溝底壁面15cをセラミック層
で覆うと凹溝底壁面15cの温度が上昇する。従って噴射
燃料の気化を更に促進するためには凹溝底壁面15c上に
セラミックコーティングを施こすことが好ましい。
By the way, as shown in FIG. 6, the swirling flow X generated in the combustion chamber 4 is attenuated as the piston 2 rises and the turning radius gradually decreases while decreasing. As shown, the swirling flow X is along the groove bottom wall surface 15c. When the piston 2 further approaches the top dead center, a squish flow squirts from the squish area 17 as shown by an arrow S in FIG.
Also advances along the groove bottom wall surface 15c. Therefore, these swirling flows X
The squish flow S promotes the vaporization of the injected fuel. When the bottom wall surface 15c is covered with the ceramic layer, the temperature of the bottom wall surface 15c rises. Therefore, in order to further promote the vaporization of the injected fuel, it is preferable to apply a ceramic coating on the groove bottom wall surface 15c.

【0021】一方、機関高負荷運転時および機関中負荷
運転時の第1回目の燃料噴射時には図8に示されるよう
にピストン2が低い位置にあるときに燃料噴射が開始さ
れる。従ってこのときには噴射燃料がピストン2の頂面
の広い領域に亘って衝突するために燃料は燃焼室4内に
良好に分散せしめられる。機関中負荷運転時にはこの第
1回目の燃料噴射Im1によって燃焼室4内に稀薄な混合
気が形成され、この稀薄混合気は第2回目の燃料噴射I
m2により点火栓10周りに形成された混合気が着火源とな
って燃焼せしめられる。これに対して機関高負荷運転時
には図8に示すように噴射された燃料により燃焼室4内
に形成された混合気が点火栓10により着火せしめられ
る。
On the other hand, at the time of the first fuel injection during the engine high load operation and the engine medium load operation, the fuel injection is started when the piston 2 is at the low position as shown in FIG. Therefore, at this time, the injected fuel collides over a wide area on the top surface of the piston 2, so that the fuel is well dispersed in the combustion chamber 4. During medium load operation the engine lean air-fuel mixture in the combustion chamber 4 by the fuel injection I m1 of the first time is formed, the lean air-fuel mixture is the second fuel injection I
The air-fuel mixture formed around the ignition plug 10 by m2 is burned as an ignition source. On the other hand, at the time of engine high load operation, an air-fuel mixture formed in the combustion chamber 4 is ignited by the spark plug 10 by the injected fuel as shown in FIG.

【0022】なお、これまで本発明を筒内噴射式2サイ
クル機関に適用した場合について説明してきたが本発明
を筒内噴射式4サイクル機関にも適用することができ
る。
Although the present invention has been described with reference to the case where the present invention is applied to a direct injection two-stroke engine, the present invention can also be applied to a direct injection four-cycle engine.

【0023】[0023]

【発明の効果】ピストン頂面に形成された凹溝内に燃料
を噴射するようにした場合において点火が行われるとき
に燃料噴射量にかかわらずに点火栓周りに常に最適な濃
度の混合気を形成することができる。
According to the present invention, when fuel is injected into the groove formed on the top surface of the piston, when the ignition is performed, an air-fuel mixture having an optimum concentration is always produced around the ignition plug regardless of the fuel injection amount. Can be formed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ピストン頂面の平面図である。FIG. 1 is a plan view of a piston top surface.

【図2】図1のII−II線に沿ってみた拡大断面図であ
る。
FIG. 2 is an enlarged sectional view taken along line II-II of FIG.

【図3】2サイクル機関の側面断面図である。FIG. 3 is a side sectional view of the two-stroke engine.

【図4】シリンダヘッドの底面図である。FIG. 4 is a bottom view of the cylinder head.

【図5】給排気弁の開弁期間と燃料噴射時期を示す線図
である。
FIG. 5 is a diagram showing a valve opening period of a supply / exhaust valve and a fuel injection timing.

【図6】掃気行程時を示す2サイクル機関の側面断面図
である。
FIG. 6 is a side sectional view of the two-stroke engine during a scavenging stroke.

【図7】低負荷運転時の燃料噴射および中負荷運転時の
第2回目の燃料噴射を示す2サイクル機関の側面断面図
である。
FIG. 7 is a side cross-sectional view of a two-cycle engine showing fuel injection during low-load operation and second fuel injection during medium-load operation.

【図8】中負荷運転時の第1回目の燃料噴射および高負
荷運転時の燃料噴射を示す2サイクル機関の側面断面図
である。
FIG. 8 is a side cross-sectional view of the two-cycle engine showing a first fuel injection during a medium load operation and a fuel injection during a high load operation.

【図9】図1と同様のピストン頂面の平面図である。FIG. 9 is a plan view of a piston top surface similar to FIG. 1;

【図10】好ましくない例を示すピストン頂面の平面図で
ある。
FIG. 10 is a plan view of a piston top surface showing an unfavorable example.

【符号の説明】[Explanation of symbols]

2…ピストン 10…点火栓 14…燃料噴射弁 15…凹溝 15a…凹溝端部 15b…凹溝側壁面 16…燃料案内溝 2 ... piston 10 ... spark plug 14 ... fuel injection valve 15 ... concave groove 15a ... concave groove end 15b ... concave groove side wall surface 16 ... fuel guide groove

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大野 栄嗣 愛知県豊田市トヨタ町1番地 トヨタ自 動車株式会社内 (72)発明者 仁平 裕昭 愛知県豊田市トヨタ町1番地 トヨタ自 動車株式会社内 (72)発明者 中田 浩一 愛知県豊田市トヨタ町1番地 トヨタ自 動車株式会社内 (56)参考文献 特開 平4−370319(JP,A) 実開 平3−65864(JP,U) 実開 平1−124042(JP,U) 実開 平3−52333(JP,U) 実開 昭57−33231(JP,U) (58)調査した分野(Int.Cl.6,DB名) F02B 23/10 F02F 3/26 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Eiji Ohno 1 Toyota Town, Toyota City, Aichi Prefecture Inside Toyota Motor Corporation (72) Inventor Hiroaki Nihei 1 Toyota Town, Toyota City, Aichi Prefecture Inside Toyota Motor Corporation ( 72) Inventor Koichi Nakata 1 Toyota Town, Toyota City, Aichi Prefecture Inside Toyota Motor Corporation (56) References JP-A-4-370319 (JP, A) JP-A-3-65864 (JP, U) JP-A 1-124042 (JP, U) JP-A 3-52333 (JP, U) JP-A 57-33231 (JP, U) (58) Fields investigated (Int. Cl. 6 , DB name) F02B 23/10 F02F 3/26

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 シリンダヘッド内壁面の中心部に点火栓
を配置し、シリンダヘッド内壁面の周縁部に燃料噴射弁
を配置し、点火栓の下方から燃料噴射弁側に向けて次第
に拡開しつつ延びる一対の側壁面とほぼ平坦をなす底壁
面とにより画定される凹溝をピストン頂面上に形成する
と共に該燃料噴射弁から該凹溝底壁面に向け斜めに燃料
を噴射して凹溝底壁面に衝突した噴射燃料を凹溝側壁面
に沿いつつ点火栓下方の凹溝端部に向かわせ、該凹溝端
部と燃料噴射弁とを含む垂直平面内に沿って延びる燃料
案内溝を凹溝底壁面上に形成すると共に各凹溝側壁面を
該凹溝端部から燃料噴射弁側に向けてほぼまっすぐに延
設した筒内噴射式内燃機関。
An ignition plug is arranged at the center of an inner wall surface of a cylinder head, a fuel injection valve is arranged at a peripheral portion of an inner wall surface of the cylinder head, and is gradually expanded from below the ignition plug toward the fuel injection valve. A groove is formed on the piston top surface defined by a pair of extending side wall surfaces and a substantially flat bottom wall surface, and fuel is obliquely injected from the fuel injection valve toward the groove bottom wall surface. The fuel injected against the bottom wall is directed toward the end of the groove below the spark plug along the side wall surface of the groove, and the fuel guide groove extending along a vertical plane including the end of the groove and the fuel injection valve is formed as a groove. An in-cylinder injection type internal combustion engine formed on a bottom wall surface and having a side wall surface of each groove extending substantially straight from an end of the groove toward a fuel injection valve.
JP3160329A 1991-07-01 1991-07-01 In-cylinder internal combustion engine Expired - Lifetime JP2936803B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3160329A JP2936803B2 (en) 1991-07-01 1991-07-01 In-cylinder internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3160329A JP2936803B2 (en) 1991-07-01 1991-07-01 In-cylinder internal combustion engine

Publications (2)

Publication Number Publication Date
JPH0510134A JPH0510134A (en) 1993-01-19
JP2936803B2 true JP2936803B2 (en) 1999-08-23

Family

ID=15712613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3160329A Expired - Lifetime JP2936803B2 (en) 1991-07-01 1991-07-01 In-cylinder internal combustion engine

Country Status (1)

Country Link
JP (1) JP2936803B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100365114B1 (en) * 1996-11-22 2003-03-15 기아자동차주식회사 Structure of shape of piston head of direct injection type gasoline engine
US6223715B1 (en) * 1998-03-23 2001-05-01 Yamaha Hatsudoki Kabushiki Kaisha Combustion chamber for direct injected engine
WO2004066024A1 (en) * 2003-01-23 2004-08-05 Kuraray Co., Ltd. Lenticular lens sheet, rear projection type screen, and rear projection type projector, and lenticular lens sheet producing method

Also Published As

Publication number Publication date
JPH0510134A (en) 1993-01-19

Similar Documents

Publication Publication Date Title
EP1069291B1 (en) In-cylinder direct-injection spark-ignition engine
JPS6145044B2 (en)
JP2936803B2 (en) In-cylinder internal combustion engine
JP2940232B2 (en) In-cylinder internal combustion engine
JP2841748B2 (en) In-cylinder two-stroke internal combustion engine
JPH04370319A (en) Cylinder fuel injection type internal combustion engine
JP2936804B2 (en) In-cylinder internal combustion engine
JP2841791B2 (en) Fuel injection type internal combustion engine
JP2936798B2 (en) In-cylinder internal combustion engine
JPH04166612A (en) Cylinder injection type internal combustion engine
JPS59231120A (en) Three-valve head type internal-combustion engine
JPH05179961A (en) Intra-cylinder injection type internal combustion engine
JP2936806B2 (en) In-cylinder internal combustion engine
JP2936805B2 (en) In-cylinder internal combustion engine
JP2867772B2 (en) In-cylinder internal combustion engine
JP2906665B2 (en) In-cylinder internal combustion engine
JPH0518244A (en) Injection-in-cylinder type internal combustion engine
JPH05248244A (en) Cylinder injection type internal combustion engine
JP4294188B2 (en) Piston for engine
JPH082429Y2 (en) Cylinder injection internal combustion engine
JPH0510137A (en) Cylinder injection type internal combustion engine
JPH0526047A (en) Cylinder fuel injection type two-cycle internal combustion engine
JPH05256137A (en) Inter-cylinder injection type internal combustion engine
JP2874689B2 (en) In-cylinder internal combustion engine
JPH0510136A (en) Cylinder injection type internal combustion engine