JP2867772B2 - In-cylinder internal combustion engine - Google Patents

In-cylinder internal combustion engine

Info

Publication number
JP2867772B2
JP2867772B2 JP3340921A JP34092191A JP2867772B2 JP 2867772 B2 JP2867772 B2 JP 2867772B2 JP 3340921 A JP3340921 A JP 3340921A JP 34092191 A JP34092191 A JP 34092191A JP 2867772 B2 JP2867772 B2 JP 2867772B2
Authority
JP
Japan
Prior art keywords
fuel
fuel injection
groove
wall surface
injected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3340921A
Other languages
Japanese (ja)
Other versions
JPH05171939A (en
Inventor
裕昭 仁平
憲一 野村
辰夫 小林
浩一 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP3340921A priority Critical patent/JP2867772B2/en
Publication of JPH05171939A publication Critical patent/JPH05171939A/en
Application granted granted Critical
Publication of JP2867772B2 publication Critical patent/JP2867772B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/42Shape or arrangement of intake or exhaust channels in cylinder heads
    • F02F1/4214Shape or arrangement of intake or exhaust channels in cylinder heads specially adapted for four or more valves per cylinder
    • F02F1/4221Shape or arrangement of intake or exhaust channels in cylinder heads specially adapted for four or more valves per cylinder particularly for three or more inlet valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • F02B23/10Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder
    • F02B23/104Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder the injector being placed on a side position of the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/12Other methods of operation
    • F02B2075/125Direct injection in the combustion chamber for spark ignition engines, i.e. not in pre-combustion chamber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は筒内噴射式内燃機関に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a direct injection internal combustion engine.

【0002】[0002]

【従来の技術】シリンダヘッド内壁面の中心部に点火栓
を配置し、シリンダヘッド内壁面の周縁部に燃料噴射弁
を配置し、点火栓の下方から燃料噴射弁側に向けて次第
に拡開しつつほぼまっすぐに延びる一対の側壁面とほぼ
平坦をなす底壁面とにより画定される凹溝をピストン頂
面上に形成すると共に凹溝周りのピストン頂面を図12
において破線2′aで示すようにピストン頂面の中心部
からピストン頂面の周縁部に向けて下降しつつ延びるほ
ぼ円錐面に形成し、燃料噴射時期が早められたときには
燃料噴射弁から主に凹溝周りの円錐状をなすピストン頂
面2′aに向けて斜めに燃料を噴射し、燃料噴射時期が
遅くされたときには燃料噴射弁から凹溝の底壁面に向け
斜めに燃料を噴射して凹溝底壁面に衝突した噴射燃料を
凹溝の側壁面に沿いつつ点火栓下方の凹溝端部に向かわ
せるようにした筒内噴射式内燃機関が本出願人により既
に提案されている(特願平3−160639号参照)。
2. Description of the Related Art An ignition plug is disposed at the center of an inner wall surface of a cylinder head, and a fuel injection valve is disposed at a peripheral portion of the inner wall surface of the cylinder head. The fuel injection valve is gradually expanded from below the ignition plug toward the fuel injection valve. While a groove defined by a pair of side walls extending substantially straight and a substantially flat bottom wall is formed on the piston top surface, and the piston top surface around the groove is shown in FIG.
As shown by a broken line 2'a in FIG. 3, a substantially conical surface extending downward from the center of the piston top surface toward the peripheral portion of the piston top surface is formed. When the fuel injection timing is advanced, the fuel injection valve mainly The fuel is obliquely injected toward the conical piston top surface 2'a around the groove, and when the fuel injection timing is delayed, the fuel is injected obliquely from the fuel injection valve toward the bottom wall surface of the groove. The applicant has already proposed a direct injection type internal combustion engine in which the injected fuel colliding with the bottom wall of the groove is directed along the side wall surface of the groove toward the end of the groove below the ignition plug (Japanese Patent Application No. 2002-214,197). (See Japanese Unexamined Patent Publication No. Hei 3-160636)

【0003】この筒内噴射式内燃機関では燃料噴射時期
が早められたときには噴射燃料を主に凹溝周り円錐状
をなすピストン頂面2′aに衝突させることにより燃料
を燃焼室内に拡散させてできるだけ均一な混合気を燃焼
室内に形成し、燃料噴射時期が遅らされたときには凹溝
内に燃料を噴射して点火栓周りに混合気を集めるように
している。
In this direct injection type internal combustion engine, when the fuel injection timing is advanced, the injected fuel mainly collides with the conical piston top surface 2'a around the concave groove to diffuse the fuel into the combustion chamber. As a result, an air-fuel mixture as uniform as possible is formed in the combustion chamber, and when the fuel injection timing is delayed, fuel is injected into the groove to collect the air-fuel mixture around the spark plug.

【0004】[0004]

【発明が解決しようとする課題】このようにこの筒内噴
射式内燃機関では燃料噴射時期が早められたときには噴
射燃料が主に凹溝周りの円錐状をなすピストン頂面2′
aに衝突せしめられるが図12からわかるように噴射燃
料が衝突するピストン頂面部分2′aは噴射燃料の進行
方向に向けて下降しており、従ってこのときピストン頂
面部分2′aと噴射燃料F′とのなす角、即ち衝突角
θ′はかなり小さくなる。ところが衝突作用に基く燃料
の微粒化作用はこの衝突角θ′が大きくなればなるほど
促進され、従って図12のθ′で示されるように衝突角
が小さい場合には噴射燃料F′を十分に微粒化できない
ことになる。
As described above, in this direct injection type internal combustion engine, when the fuel injection timing is advanced, the injected fuel mainly has a conical piston top surface 2 'around the concave groove.
12, the piston top surface portion 2'a on which the injected fuel collides is lowered in the direction of travel of the injected fuel, as shown in FIG. The angle between the fuel F 'and the collision angle θ' becomes considerably small. However, the atomization effect of the fuel based on the collision effect is promoted as the collision angle θ 'is increased. Therefore, when the collision angle is small as shown by θ' in FIG. Can not be converted.

【0005】また、衝突角θ′が小さいと衝突後の噴射
燃料F′の水平方向の速度成分が大きく、しかも衝突後
の噴射燃料F′の進行方向は矢印で示すように水平方向
に近くなるので衝突点から噴射燃料F′の進行方向に沿
うシリンダボア内壁面までの距離が短かくなる。即ち、
噴射燃料F′がピストン頂面部分2′aに衝突してから
反射した噴射燃料F′がシリンダボア内壁面に達するま
での時間が短かくなる。その結果、反射燃料F′はこの
間に十分に気化されず、斯くしてシリンダボア内壁面に
付着する噴射燃料量が増大するために噴射燃料によって
潤滑油が稀釈されてしまうという問題も生ずる。
[0005] When the collision angle θ 'is small, the horizontal velocity component of the injected fuel F' after the collision is large, and the traveling direction of the injected fuel F 'after the collision is close to the horizontal direction as shown by the arrow. Therefore, the distance from the collision point to the inner wall surface of the cylinder bore along the traveling direction of the injected fuel F 'becomes shorter. That is,
The time from when the injected fuel F 'collides with the piston top surface portion 2'a to when the reflected injected fuel F' reaches the inner wall surface of the cylinder bore is shortened. As a result, the reflected fuel F 'is not sufficiently vaporized during this time, and thus the amount of the injected fuel adhering to the inner wall surface of the cylinder bore increases, thereby causing a problem that the lubricating oil is diluted by the injected fuel.

【0006】[0006]

【発明が解決しようとする課題】上記問題点を解決する
ために本発明によれば、シリンダヘッド内壁面の中心部
に点火栓を配置し、シリンダヘッド内壁面の周縁部に燃
料噴射弁を配置し、点火栓の下方から燃料噴射弁側に向
けて次第に拡開しつつまっすぐに延びる一対の側壁面と
平坦をなす底壁面とにより画定される凹溝をピストン頂
面上に形成すると共に凹溝を除くピストン頂面をシリン
ダ軸線に対してほぼ垂直をなす平坦面に形成し、燃料噴
射時期が早められたときには燃料噴射弁から主に凹溝周
りの平坦なピストン頂面に向けて斜めに燃料を噴射し、
燃料噴射時期が遅くされたときには燃料噴射弁から凹溝
の底壁面に向け斜めに燃料を噴射して凹溝底壁面に衝突
した噴射燃料を凹溝の側壁面に沿いつつ点火栓下方の凹
溝端部に向かわせるようにしている。
According to the present invention, an ignition plug is disposed at the center of the inner wall surface of a cylinder head, and a fuel injection valve is disposed at a peripheral portion of the inner wall surface of the cylinder head. A groove defined by a pair of side wall surfaces and a flat bottom wall surface, which gradually expands from the lower part of the spark plug toward the fuel injection valve, is formed on the piston top surface, and the groove is formed. The top surface of the piston, except for, is formed as a flat surface that is almost perpendicular to the cylinder axis, and when the fuel injection timing is advanced, the fuel is injected diagonally from the fuel injection valve mainly toward the flat piston top surface around the concave groove. Jet,
When the fuel injection timing is delayed, the fuel is injected obliquely from the fuel injection valve toward the bottom wall surface of the groove, and the injected fuel colliding with the bottom wall surface of the groove extends along the side wall surface of the groove, and the end of the groove below the ignition plug. To the club.

【0007】[0007]

【作用】ピストン頂面をシリンダ軸線に対してほぼ垂直
をなす平坦面に形成することによって図12においてθ
で示すように噴射燃料Fの衝突角が大きくなる。
By forming the piston top surface as a flat surface substantially perpendicular to the cylinder axis, θ in FIG.
As shown by, the collision angle of the injected fuel F increases.

【0008】[0008]

【実施例】図1および図2を参照すると、1はシリンダ
ブロック、2はシリンダブロック1内で往復動するピス
トン、3はシリンダブロック1上に固定されたシリンダ
ヘッド、4はシリンダヘッド3の内壁面3aとピストン
2の頂面間に形成された燃焼室を夫々示す。シリンダヘ
ッド内壁面3a上には凹溝5が形成され、この凹溝5の
底壁面をなすシリンダヘッド内壁面部分3b上に一対の
給気弁6が配置される。一方、凹溝5を除くシリンダヘ
ッド内壁面部分3cは傾斜したほぼ平坦をなし、このシ
リンダヘッド内壁面部分3c上に3個の排気弁7が配置
される。シリンダヘッド内壁面部分3bとシリンダヘッ
ド内壁面部分3cは凹溝5の周壁8を介して互いに接続
されている。
1 and 2, reference numeral 1 denotes a cylinder block, 2 denotes a piston which reciprocates in the cylinder block 1, 3 denotes a cylinder head fixed on the cylinder block 1, and 4 denotes a cylinder head. The combustion chamber formed between the wall surface 3a and the top surface of the piston 2 is shown. A concave groove 5 is formed on the cylinder head inner wall surface 3a, and a pair of air supply valves 6 are arranged on the cylinder head inner wall surface portion 3b that forms the bottom wall surface of the concave groove 5. On the other hand, the cylinder head inner wall surface portion 3c excluding the concave groove 5 is inclined and substantially flat, and three exhaust valves 7 are arranged on the cylinder head inner wall surface portion 3c. The cylinder head inner wall surface portion 3b and the cylinder head inner wall surface portion 3c are connected to each other via the peripheral wall 8 of the concave groove 5.

【0009】この凹溝周壁8は給気弁6の周縁部に極め
て近接配置されかつ給気弁6の周縁部に沿って円弧状に
延びる一対のマスク壁8aと、給気弁6間に位置する新
気ガイド壁8bと、シリンダヘッド内壁面3aの周壁と
給気弁6間に位置する一対の新気ガイド壁8cとにより
構成される。各マスク壁8aは最大リフト位置にある給
気弁6よりも下方まで燃焼室4に向けて延びており、従
って排気弁7側に位置する給気弁6周縁部と弁座9間の
開口は給気弁6の開弁期間全体に亘ってマスク壁8aに
より閉鎖されることになる。また、各新気ガイド壁8
b,8cはほぼ同一平面内に位置しており、更にこれら
の新気ガイド壁8b,8cは両給気弁6の中心を結ぶ線
に対してほぼ平行に延びている。点火栓10はシリンダ
ヘッド内壁面3aの中心に位置するようにシリンダヘッ
ド内壁面部分3c上に配置されている。一方、排気弁7
に対しては排気弁7と弁座11間の開口を覆うマスク壁
が設けられておらず、従って排気弁7が開弁すると排気
弁7と弁座11間に形成される開口はその全体が燃焼室
4内に開口することになる。
The peripheral wall 8 of the concave groove is located between the pair of mask walls 8 a which are arranged very close to the peripheral edge of the air supply valve 6 and extend in an arc along the peripheral edge of the air supply valve 6, and between the air supply valve 6. And a pair of fresh air guide walls 8c located between the supply wall 6 and the peripheral wall of the cylinder head inner wall surface 3a. Each mask wall 8a extends toward the combustion chamber 4 below the intake valve 6 at the maximum lift position, so that the opening between the peripheral portion of the intake valve 6 located on the exhaust valve 7 side and the valve seat 9 is formed. The air supply valve 6 is closed by the mask wall 8a over the entire valve open period. In addition, each fresh guide wall 8
The fresh air guide walls 8b and 8c extend substantially parallel to a line connecting the centers of the two air supply valves 6. The ignition plug 10 is arranged on the cylinder head inner wall surface portion 3c so as to be located at the center of the cylinder head inner wall surface 3a. On the other hand, the exhaust valve 7
Is not provided with a mask wall that covers the opening between the exhaust valve 7 and the valve seat 11. Therefore, when the exhaust valve 7 opens, the opening formed between the exhaust valve 7 and the valve seat 11 It opens into the combustion chamber 4.

【0010】シリンダヘッド3内には給気弁6に対して
給気ポート12が形成され、排気弁7に対して排気ポー
ト13が形成される。一方、各給気弁6近傍のシリンダ
ヘッド内壁面3aの周縁部には一対の燃料噴射弁、即ち
第1燃料噴射弁14aと第2燃料噴射弁14bとが配置
され、図3からわかるようにこれら燃料噴射弁14a,
14bからはシリンダ軸線方向に向けて燃料が噴射され
る。
In the cylinder head 3, an air supply port 12 is formed for the air supply valve 6, and an exhaust port 13 is formed for the exhaust valve 7. On the other hand, a pair of fuel injection valves, that is, a first fuel injection valve 14a and a second fuel injection valve 14b are arranged at the peripheral portion of the cylinder head inner wall surface 3a near each air supply valve 6, as can be seen from FIG. These fuel injection valves 14a,
Fuel is injected from 14b in the cylinder axis direction.

【0011】図1および図3に示されるようにピストン
2の頂面上には点火栓10の下方から燃料噴射弁14
a,14bの先端部の下方まで延びる凹溝15が形成さ
れる。この凹溝15は点火栓10下方の凹溝端部15a
から燃料噴射弁14a,14b側に向けて次第に拡開し
つつまっすぐに延びる一対の側壁面15bと、平坦をな
す底壁面15cとにより画定される。また、図3からわ
かるように凹溝端部15aは点火栓10と燃料噴射弁1
4a,14bの中間とを通る垂直平面K−K上に形成さ
れており、各側壁面15bはこの垂直平面K−Kに関し
て対称的な形状を有する。従って凹溝15は垂直平面K
−Kに関して対称的な形状を有することになる。また、
図1に示されるようにピストン2が上死点に達すると点
火栓10に関し凹溝15と反対側に位置するピストン2
の頂面部分とシリンダヘッド内壁面部分3cとの間には
スキッシュエリア16が形成される。
As shown in FIGS. 1 and 3, the fuel injection valve 14 is provided on the top surface of the piston 2 from below the spark plug 10.
A concave groove 15 is formed to extend below the distal ends of the a and b . The groove 15 is formed at a groove end 15a below the ignition plug 10.
, Are defined by a pair of side wall surfaces 15b extending straight and gradually expanding toward the fuel injection valves 14a and 14b , and a flat bottom wall surface 15c. Further, as can be seen from FIG. 3, the end 15a of the concave groove is formed between the ignition plug 10 and the fuel injection valve 1.
It is formed on a vertical plane KK passing through the middle between 4a and 14b, and each side wall surface 15b has a symmetrical shape with respect to this vertical plane KK. Therefore, the concave groove 15 has a vertical plane K
It will have a symmetrical shape with respect to -K. Also,
When the piston 2 reaches the top dead center as shown in FIG.
A squish area 16 is formed between the top surface of the cylinder head and the cylinder head inner wall surface portion 3c.

【0012】図4に示されるように図1から図3に示す
実施例では排気弁7が給気弁6よりも先に開弁し、排気
弁7が給気弁6よりも先に閉弁する。また、図4におい
てI l は機関低負荷運転時における燃料噴射時期を示し
ており、Im1およびIm2は機関中負荷運転時における燃
料噴射時期を示しており、Ih1およびIh2は機関高負荷
運転時における燃料噴射時期を示している。図4から機
関高負荷運転時における燃料噴射Ih1およびIh2は排気
弁7が閉弁する頃に行われ、機関低負荷運転時における
燃料噴射Il は高負荷運転時に比べてかなり遅い時期に
行われることがわかる。また、機関中負荷運転時には2
回に分けて燃料噴射Im1およびIm2が行われ、このとき
第1回目の燃料噴射Im1は機関高負荷運転時とほぼ同じ
時期に行われ、第2回目の燃料噴射Im2は機関低負荷運
転時とほぼ同じ時期に行われることがわかる。
As shown in FIG. 4, shown in FIGS.
In the embodiment, the exhaust valve 7 opens before the air supply valve 6 and the exhaust valve 7 is opened.
The valve 7 closes before the air supply valve 6. Also, in FIG.
I lIndicates the fuel injection timing during low engine load operation.
And Im1And Im2Is the fuel during medium load operation of the engine.
The fuel injection timing.h1And Ih2Means high engine load
This shows the fuel injection timing during operation. From Fig. 4
Fuel Injection I at High Load Operationh1And Ih2Is exhaust
This is performed when the valve 7 is closed, and is performed during engine low load operation.
Fuel injection IlIs much later than during high-load operation.
You can see what happens. In addition, during engine middle load operation, 2
Fuel injection Im1And Im2Is done at this time
First fuel injection Im1Is almost the same as during high engine load operation
The second fuel injection Im2Means engine low load luck
It can be seen that the operation is performed at about the same time as the turning.

【0013】なお、図1から図3に示す実施例では機関
低負荷運転時における燃料噴射Il および機関中負荷運
転時における第2回目の燃料噴射Im2は第1燃料噴射弁
14aにより行われ、機関中負荷運転時における第1回
目の燃料噴射Im1は第2燃料噴射弁14bにより行わ
れ、機関高負荷運転時における燃料噴射Ih1およびIh2
は第1燃料噴射弁14aおよび第2燃料噴射弁14bの
双方により行われる。
In the embodiment shown in FIGS. 1 to 3, the fuel injection Il during the low engine load operation and the second fuel injection Im2 during the intermediate engine load operation are performed by the first fuel injection valve 14a. , the first fuel injection I m1 during in the engine load operation performed by the second fuel injection valve 14b, the fuel injection at the time of engine high load operation I h1 and I h2
Is performed by both the first fuel injection valve 14a and the second fuel injection valve 14b.

【0014】図5に示されるように給気弁6および排気
弁7が開弁すると給気弁6を介して燃焼室4内に空気が
流入する。このとき、排気弁7側の給気弁6の開口はマ
スク壁8aによって覆われているので空気はマスク壁8
aと反対側の給気弁6の開口から燃焼室4内に流入す
る。この空気は矢印Wで示すように給気弁6下方のシリ
ンダボア内壁面に沿い下降し、次いでピストン2の頂面
に沿い進んで排気弁7下方のシリンダボア内壁面に沿い
上昇し、斯くして空気は燃焼室4内をループ状に流れる
ことになる。このループ状に流れる空気Wによって燃焼
室4内の既燃ガスが排気弁7を介して排出され、更にこ
のループ状に流れる空気Wによって燃焼室4内には垂直
面内で旋回する旋回流Xが発生せしめられる。次いでピ
ストン2が下死点BDCを過ぎて上昇を開始するとその
後各燃料噴射弁14a,14bからの燃料噴射が開始れ
る。
As shown in FIG. 5, when the air supply valve 6 and the exhaust valve 7 are opened, air flows into the combustion chamber 4 via the air supply valve 6. At this time, since the opening of the air supply valve 6 on the exhaust valve 7 side is covered by the mask wall 8a, air is
The gas flows into the combustion chamber 4 from the opening of the air supply valve 6 on the side opposite to the side a. This air descends along the inner wall surface of the cylinder bore below the air supply valve 6 as indicated by the arrow W, and then travels along the top surface of the piston 2 and rises along the inner wall surface of the cylinder bore below the exhaust valve 7, and Will flow in a loop in the combustion chamber 4. The burned gas in the combustion chamber 4 is discharged through the exhaust valve 7 by the air W flowing in the loop, and the swirling flow X swirling in the vertical plane in the combustion chamber 4 by the air W flowing in the loop. Is generated. Next, when the piston 2 starts rising after passing the bottom dead center BDC, fuel injection from each of the fuel injection valves 14a and 14b is thereafter started.

【0015】次に図6から図8を参照して機関低負荷運
転時、機関中負荷運転時および機関高負荷運転時におけ
る燃料噴射方法について説明する。なお、図6は機関低
負荷運転時における燃料噴射Il および機関中負荷運転
時における第2回目の燃料噴射Im2を示しており、図7
は機関中負荷運転時における第1回目の燃料噴射Im1
よび機関高負荷運転時における燃料噴射Ih2を示してお
り、図8は機関高負荷運転時における燃料噴射Ih1を示
している。
Next, with reference to FIGS. 6 to 8, a description will be given of the fuel injection method at the time of low load operation of the engine, at the time of medium load operation of the engine and at the time of high load operation of the engine. FIG. 6 shows the fuel injection Il during the low engine load operation and the second fuel injection Im2 during the medium engine load operation.
Shows the fuel injection I h2 in the first fuel injection I m1 and engine high load operation during medium load operation the engine, Figure 8 shows a fuel injection I h1 at the time of engine high load operation.

【0016】図6に示されるように機関低負荷運転時お
よび機関中負荷運転時の2回目の燃料噴射時には燃料は
燃料噴射弁14aから凹溝底壁面15cに向けて斜めに
噴射される。この噴射燃料は凹溝底壁面15c上に衝突
した後凹溝側壁面15bに沿いつつ凹溝端部15aに向
けて進行する。次にこのときの噴射燃料の挙動について
図9を参照しつつ説明する。
As shown in FIG. 6, fuel is injected obliquely from the fuel injection valve 14a toward the concave groove bottom wall surface 15c during the second fuel injection during the low engine load operation and the medium engine load operation. This injected fuel collides with the groove bottom wall surface 15c and then proceeds toward the groove end 15a along the groove side wall surface 15b. Next, the behavior of the injected fuel at this time will be described with reference to FIG.

【0017】図9において鎖線Rは凹溝底壁面15c上
における噴射燃料の衝突領域を示しており、矢印F1
2 は噴射燃料の代表的な2つの流れを示している。図
9に示されるように噴射燃料F1 ,F2 は凹溝底壁面1
5c上に衝突後も慣性力によって噴射方向に進行し、次
いで凹溝側壁面15bまで進んだ後に凹溝側壁面15b
に沿いつつ凹溝端部15aに向けて進行する。ところで
各凹溝側壁面15bは凹溝端部15aから燃料噴射弁
4a,14b側に向けてまっすぐに延びているので凹溝
側壁面15bに対する各噴射燃料F1 ,F2 の入射角θ
1 ,θ2 は噴射中心に近い噴射燃料ほど小さくなり、従
って凹溝側壁面15bに沿って進行を開始しはじめたと
きの各噴射燃料F1 ,F2 の流動速度υ1 ,υ2 は噴射
中心に近い噴射燃料ほど速くなる。
In FIG. 9, the dashed line R indicates the collision area of the injected fuel on the groove bottom wall surface 15c, and the arrows F 1 ,
F 2 shows two typical flow of injected fuel. As shown in FIG. 9, the injected fuels F 1 and F 2 are supplied to the bottom wall 1 of the groove.
Even after the collision on the groove 5c, it proceeds in the injection direction by the inertial force, and then proceeds to the groove side wall surface 15b, and then proceeds to the groove side wall surface 15b.
Along the groove end 15a. By the way, each groove side wall surface 15b is connected to the fuel injection valve 1 from the groove end 15a.
4a, 14b , the incident angle θ of each of the injected fuels F 1 , F 2 with respect to the concave groove side wall surface 15b.
1 and θ 2 become smaller as the injected fuel is closer to the injection center. Therefore, the flow velocities υ 1 and υ 2 of the injected fuels F 1 and F 2 when the fuel starts to proceed along the groove side wall surface 15b are equal to the injection fuel. Injected fuel closer to the center is faster.

【0018】これに対して図10に示されるようにピス
トン2′の頂面上に形成された凹溝15′の輪郭形状を
円形とし、燃料噴射弁14′から凹溝15′の平坦な底
壁面15c′上に燃料を噴射すると凹溝側壁面15b′
に対する各噴射燃料F1 ′,F2 ′の入射角θ1 ′,θ
2 ′は噴射中心に近い噴射燃料ほど大きくなり、従って
凹溝側壁面15b′に沿って進行を開始しはじめたとき
の噴射燃料F1 ′,F 2 ′の流動速度υ1 ′,υ2 ′は
噴射中心に近い噴射燃料ほど遅くなる。ところがこのよ
うにυ1 ′>υ2 ′なる関係があると各凹溝側面15
b′に沿って流れる燃料又は混合気はほぼ同時期に凹溝
端部15a′に集まり、次いでほぼ同時期に凹溝端部1
5a′に沿って上昇して点火栓10の周りに混合気を形
成することになる。従ってこの場合には常にほぼ全噴射
燃料によって点火栓10の周りに混合気が形成されるこ
とになり、従ってこのとき点火栓10周りに形成される
混合気の濃度は燃料噴射量を制御する以外の方法によっ
ては制御することができないことになる。斯くして例え
ば燃料噴射量が少ないときに点火栓10の周りに最適な
混合気を形成しようとすると燃料噴射量が増大したとき
には点火栓10周りに形成される混合気は過濃となり、
斯くして点火栓10による良好な着火が得られないばか
りでなく、たとえ着火したとしても多量の未燃HC,C
Oが発生することになる。
On the other hand, as shown in FIG.
The contour of the groove 15 'formed on the top surface of the ton 2'
A flat bottom of the groove 15 'from the fuel injection valve 14'
When fuel is injected onto the wall surface 15c ', the groove side wall surface 15b'
Each injected fuel F1', FTwo'Incident angle θ1', Θ
Two′ Is larger for injected fuel closer to the injection center,
When it begins to proceed along the concave groove side wall surface 15b '
Injected fuel F1', F Two′ Flow velocity υ1´, υTwo
Injected fuel closer to the injection center is slower. But this is
Unya1'> ΥTwo′, Each groove side surface 15
The fuel or air-fuel mixture flowing along b '
Gather at the end 15a 'and then at about the same time the groove end 1
Ascend along 5a 'to form an air-fuel mixture around spark plug 10.
Will be achieved. Therefore, in this case, almost all injections
A mixture is formed around the spark plug 10 by the fuel.
And therefore formed around the spark plug 10 at this time.
The concentration of the air-fuel mixture is determined by other methods than controlling the fuel injection amount.
Cannot be controlled. Like this
When the fuel injection amount is small, it is optimal around the spark plug 10.
When the fuel injection amount increases when trying to form an air-fuel mixture
, The mixture formed around the spark plug 10 becomes rich,
Thus, it is not possible to obtain good ignition by the ignition plug 10.
Not a large amount of unburned HC and C even if ignited
O will occur.

【0019】これに対して図9に示されるようにυ1
υ2 なる関係があると噴射燃料F2 が凹溝端部15aに
到達しても噴射燃料F1 は依然として凹溝端部15aに
向けて進行中であり、従って各噴射燃料F1 ,F2 が凹
溝端部15aに到達するのに時間差を生ずることにな
る。このように各噴射燃料F1 ,F2 が凹溝端部15a
に到達するのに時間差を生ずると点火栓10周りに形成
される混合気は時間を経過するにつれて次第に濃くなる
ことになり、従ってこの場合には燃料噴射量が一定であ
っても燃料噴射から点火が行われるまでの時間を制御す
ることによって点火が行われるときに点火栓10周りに
形成される混合気の濃度を制御できることになる。云い
換えると点火が行われるときに点火栓10周りに最適な
濃度の混合気が形成されるように点火時期又は噴射時期
を制御することによって点火が行われるときに点火栓1
0周りに常に最適な混合気を形成できることになる。従
って図9に示すような形状の凹溝15を用いると燃料噴
射量によらずに点火栓10による良好な着火を確保でき
ることになる。
[0019] upsilon 1 as shown contrast in FIG. 9 <
υ injected fuel F 1 even 2 becomes associated with the injected fuel F 2 has reached the groove end portion 15a is still in progress toward the groove end 15a, so that each injection fuel F 1, F 2 is concave There will be a time lag to reach the groove end 15a. As described above, each of the injected fuels F 1 and F 2 is in the groove end 15a.
If a time difference occurs between the fuel injection and the fuel injection, the mixture formed around the ignition plug 10 gradually becomes richer as time elapses. By controlling the time until the ignition is performed, the concentration of the air-fuel mixture formed around the ignition plug 10 when the ignition is performed can be controlled. In other words, the ignition plug 1 is controlled when the ignition is performed by controlling the ignition timing or the injection timing so that the mixture having the optimum concentration is formed around the ignition plug 10 when the ignition is performed.
An optimum air-fuel mixture can always be formed around zero. Therefore, if the concave groove 15 having the shape as shown in FIG. 9 is used, it is possible to secure good ignition by the ignition plug 10 regardless of the fuel injection amount.

【0020】上述したように噴射燃料は慣性力によって
凹溝底壁面15c上を点火栓10の下方に向けて流れ
る。ところで図5に示されるように燃焼室4内に発生し
た旋回流Xはピストン2が上昇するにつれて減衰しつつ
旋回半径が次第に小さくなり、ピストン2が上死点に近
づくと図6に示されるように凹溝底壁面15cに沿う旋
回流Xとなる。従って、噴射燃料はこの旋回流Xによっ
ても点火栓10の下方に向かう力が与えられる。また、
ピストン2が更に上死点に近づくと図6において矢印S
で示すようにスキッシュエリア16からスキッシュ流が
噴出し、このスキッシュ流Sも凹溝底壁面15cに沿っ
て進む。従って噴射燃料はこのスキッシュ流Sによって
も点火栓10の下方に向かう力が与えられる。また、凹
溝底壁面15cに沿い点火栓10の下方に向かう燃料は
旋回流Xおよびスキッシュ流Sによって気化せしめら
れ、斯くして点火栓10の周りに集まる混合気は十分に
気化せしめられることになる。
As described above, the injected fuel flows toward the lower side of the spark plug 10 on the groove bottom wall surface 15c due to the inertial force. By the way, as shown in FIG. 5, the swirling flow X generated in the combustion chamber 4 is attenuated as the piston 2 rises and the swirling radius gradually decreases, and as shown in FIG. 6, when the piston 2 approaches the top dead center. A swirling flow X along the groove bottom wall surface 15c is formed. Therefore, the injected fuel is given a force directed downward of the ignition plug 10 also by the swirl flow X. Also,
When the piston 2 further approaches the top dead center, an arrow S in FIG.
As shown by, the squish flow is ejected from the squish area 16, and this squish flow S also advances along the groove bottom wall surface 15c. Accordingly, the squish flow S gives the injected fuel a downward force on the ignition plug 10. In addition, the fuel flowing down the spark plug 10 along the groove bottom wall surface 15c is vaporized by the swirl flow X and the squish flow S, and thus, the air-fuel mixture collected around the spark plug 10 is sufficiently vaporized. Become.

【0021】一方、機関中負荷運転時の第1回目の燃料
噴射時には図7に示されるようにピストン2が低い位置
にあるときに第2燃料噴射弁14bによる燃料噴射が開
始され、機関高負荷運転時には図7および図8に示され
るようにピストン2が低い位置にあるときに第2燃料噴
射弁14bおよび第1燃料噴射弁14aの双方による燃
料噴射が開始される。図11のRaおよびRbはこのと
きのピストン頂面2aに対する各燃料噴射弁14a,1
4bからの噴射燃料の衝突領域を示している。
On the other hand, at the time of the first fuel injection during the engine middle load operation, fuel injection by the second fuel injection valve 14b is started when the piston 2 is at the low position as shown in FIG. During operation, when the piston 2 is at the low position as shown in FIGS. 7 and 8, fuel injection by both the second fuel injection valve 14b and the first fuel injection valve 14a is started. Ra and Rb in FIG. 11 represent the fuel injection valves 14a, 14a with respect to the piston top surface 2a at this time.
4b shows the collision area of the injected fuel from 4b.

【0022】図11からわかるようにこのときには各燃
料噴射弁14a,14bから噴射された燃料は主に凹溝
15周りの平坦なピストン頂面2a上に衝突せしめら
れ、斯くして噴射燃料は燃焼室4内に分散されることに
なる。機関中負荷運転時には第1回目の燃料噴射Im1
よって燃焼室4内に稀薄な混合気が形成され、この稀薄
混合気は第2回目の燃料噴射Im2により点火栓10周り
に形成された混合気が着火源となって燃焼せしめられ
る。これに対して機関高負荷運転時には噴射燃料I h1
h2により燃焼室4内に形成された混合気が点火栓10
により着火せしめられる。
As can be seen from FIG.
The fuel injected from the fuel injection valves 14a and 14b mainly
15 hits on the flat top surface 2a of the piston
Thus, the injected fuel is dispersed in the combustion chamber 4.
Become. At the time of engine middle load operation, the first fuel injection Im1To
Therefore, a lean mixture is formed in the combustion chamber 4, and the lean mixture is formed.
The mixture is the second fuel injection Im2Around spark plug 10
The air-fuel mixture formed as the ignition source burns
You. On the other hand, during high engine load operation, the injected fuel I h1,
Ih2The air-fuel mixture formed in the combustion chamber 4 by the ignition plug 10
Is ignited.

【0023】ところで本発明による実施例では凹溝15
周りのピストン頂面2aは平坦面に形成されているので
図12においてθで示されるように平坦なピストン頂面
2aに対する噴射燃料Fの衝突角が大きくなる。衝突角
θが大きくなると衝突作用による燃料の微粒化が促進さ
れるために噴射燃料は燃焼室4内に良好に拡散されるこ
とになる。その結果、噴射燃料は空気と良好に混合せし
められ、斯くして良好な燃焼が得られることになる。
In the embodiment according to the present invention, the groove 15
Since the surrounding piston top surface 2a is formed as a flat surface, the collision angle of the injected fuel F with respect to the flat piston top surface 2a increases as indicated by θ in FIG. When the collision angle θ increases, the atomization of fuel due to the collision action is promoted, so that the injected fuel is favorably diffused into the combustion chamber 4. As a result, the injected fuel is mixed well with the air, and thus good combustion is obtained.

【0024】また、衝突角θが大きくなると衝突作用に
よって霧化せしめられる燃料量が増大するために衝突後
シリンダボア内壁面に向けて飛散する燃料量が減少す
る。更に衝突角θが大きくなると衝突後の噴射燃料Fの
水平方向の速度成分が小さくなり、しかも衝突後の噴射
燃料Fの進行方向が矢印で示すように上向きとなるので
衝突点から噴射燃料Fの進行方向に沿うシリンダボア内
壁面までの距離が長くなる。即ち、噴射燃料Fがピスト
ン頂面2aに衝突してから反射した噴射燃料Fがシリン
ダボア内壁面に達するまでの時間が長くなる。
When the collision angle θ increases, the amount of fuel atomized by the collision action increases, so that the amount of fuel scattered toward the inner wall surface of the cylinder bore after the collision decreases. When the collision angle θ further increases, the horizontal velocity component of the injected fuel F after the collision decreases, and the traveling direction of the injected fuel F after the collision becomes upward as indicated by the arrow. The distance to the inner wall surface of the cylinder bore along the traveling direction becomes longer. That is, the time from when the injected fuel F collides with the piston top surface 2a to when the reflected injected fuel F reaches the inner wall surface of the cylinder bore becomes longer.

【0025】このようにピストン頂面2aを平坦面から
形成すると衝突後反射する燃料量が少なくなり、しかも
衝突後シリンダボア内壁面に達するまでの時間が長くな
るので反射した燃料はシリンダボア内壁面に達するまで
にかなり気化せしめられる。その結果、シリンダボア内
壁面に付着する噴射燃料量が減少するので噴射燃料によ
って潤滑油が稀釈されるのを抑制することができること
になる。また、ピストン頂面2aを平坦面に形成すると
ピストン頂面2aの表面積が小さくなるために熱損失を
低減でき、斯くして熱効率を向上することができるとい
う利点もある。
When the piston top surface 2a is formed from a flat surface as described above, the amount of fuel reflected after the collision decreases, and the time required to reach the inner wall surface of the cylinder bore after the collision becomes longer, so that the reflected fuel reaches the inner wall surface of the cylinder bore. It is considerably vaporized by then. As a result, the amount of the injected fuel adhering to the inner wall surface of the cylinder bore is reduced, so that the dilution of the lubricating oil by the injected fuel can be suppressed. Further, when the piston top surface 2a is formed as a flat surface, the surface area of the piston top surface 2a is reduced, so that there is an advantage that heat loss can be reduced and thus thermal efficiency can be improved.

【0026】なお、これまで本発明を筒内噴射式2サイ
クル機関に適用した場合について説明してきたが本発明
を筒内噴射式4サイクル機関にも適用することができ
る。
Although the present invention has been described for the case where the present invention is applied to a direct injection two-cycle engine, the present invention can be applied to a direct injection four-cycle engine.

【0027】[0027]

【発明の効果】ピストン頂面を平坦面から形成すること
によってピストン頂面に衝突した燃料の微粒化を促進し
つつ噴射燃料によって潤滑油が稀釈されるのを抑制する
ことができる。
By forming the piston top surface from a flat surface, it is possible to suppress the dilution of the lubricating oil by the injected fuel while promoting the atomization of the fuel colliding with the piston top surface.

【図面の簡単な説明】[Brief description of the drawings]

【図1】2サイクル機関の側面断面図である。FIG. 1 is a side sectional view of a two-stroke engine.

【図2】シリンダヘッドの底面図である。FIG. 2 is a bottom view of the cylinder head.

【図3】ピストン頂面の平面図である。FIG. 3 is a plan view of a piston top surface.

【図4】給排気弁の開弁期間と燃料噴射時期を示す線図
である。
FIG. 4 is a diagram showing a valve open period of a supply / exhaust valve and a fuel injection timing.

【図5】掃気行程時を示す2サイクル機関の側面断面図
である。
FIG. 5 is a side sectional view of the two-stroke engine during a scavenging stroke.

【図6】低負荷運転時の燃料噴射および中負荷運転時の
第2回目の燃料噴射を示す2サイクル機関の側面断面図
である。
FIG. 6 is a side cross-sectional view of a two-cycle engine showing fuel injection during low-load operation and second fuel injection during medium-load operation.

【図7】中負荷運転時の第1回目の燃料噴射および高負
荷運転時の燃料噴射を示す2サイクル機関の側面断面図
である。
FIG. 7 is a side cross-sectional view of the two-stroke engine showing a first fuel injection during a medium load operation and a fuel injection during a high load operation.

【図8】高負荷運転時の燃料噴射を示す2サイクル機関
の側面断面図である。
FIG. 8 is a side sectional view of the two-stroke engine showing fuel injection during high-load operation.

【図9】図3と同様のピストン頂面の平面図である。FIG. 9 is a plan view of a piston top surface similar to FIG. 3;

【図10】好ましくない例を示すピストン頂面の平面図
である。
FIG. 10 is a plan view of a piston top surface showing an undesirable example.

【図11】噴射燃料の衝突領域を示すピストン頂面の平
面図である。
FIG. 11 is a plan view of a piston top surface showing a collision area of injected fuel.

【図12】噴射燃料の衝突角を説明するための2サイク
ル機関の側面断面図である。
FIG. 12 is a side sectional view of the two-stroke engine for explaining the collision angle of the injected fuel.

【符号の説明】[Explanation of symbols]

2a…ピストン頂面 10…点火栓 14a,14b…燃料噴射弁 15…凹溝 15a…凹溝端部 15b…凹溝側壁面 15c…凹溝底壁面 2a: piston top surface 10: spark plugs 14a, 14b: fuel injection valve 15: concave groove 15a: concave groove end 15b: concave groove side wall surface 15c: concave groove bottom wall surface

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中田 浩一 愛知県豊田市トヨタ町1番地 トヨタ自 動車株式会社内 (56)参考文献 特開 平1−203613(JP,A) 特開 平2−125911(JP,A) 実開 平1−124042(JP,U) (58)調査した分野(Int.Cl.6,DB名) F02B 1/00 - 23/10 ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Koichi Nakata 1 Toyota Town, Toyota City, Aichi Prefecture Inside Toyota Motor Corporation (56) References JP-A-1-203613 (JP, A) JP-A-2-125911 (JP, A) Japanese Utility Model 1-124042 (JP, U) (58) Field surveyed (Int. Cl. 6 , DB name) F02B 1/00-23/10

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 シリンダヘッド内壁面の中心部に点火栓
を配置し、シリンダヘッド内壁面の周縁部に燃料噴射弁
を配置し、点火栓の下方から燃料噴射弁側に向けて次第
に拡開しつつまっすぐに延びる一対の側壁面と平坦をな
す底壁面とにより画定される凹溝をピストン頂面上に形
成すると共に凹溝を除くピストン頂面をシリンダ軸線に
対してほぼ垂直をなす平坦面に形成し、燃料噴射時期が
早められたときには燃料噴射弁から主に凹溝周りの平坦
なピストン頂面に向けて斜めに燃料を噴射し、燃料噴射
時期が遅くされたときには燃料噴射弁から凹溝の底壁面
に向け斜めに燃料を噴射して凹溝底壁面に衝突した噴射
燃料を凹溝の側壁面に沿いつつ点火栓下方の凹溝端部に
向かわせるようにした筒内噴射式内燃機関。
An ignition plug is arranged at the center of an inner wall surface of a cylinder head, a fuel injection valve is arranged at a peripheral portion of an inner wall surface of the cylinder head, and is gradually expanded from below the ignition plug toward the fuel injection valve. A concave groove defined by a pair of side wall surfaces extending straight and a flat bottom wall surface is formed on the piston top surface, and the piston top surface excluding the concave groove is formed into a flat surface substantially perpendicular to the cylinder axis. When the fuel injection timing is advanced, the fuel is injected obliquely from the fuel injection valve mainly toward the flat piston top surface around the groove, and when the fuel injection timing is delayed, the fuel injection valve forms the groove. An in-cylinder injection internal combustion engine in which fuel is injected obliquely toward the bottom wall surface of the groove and the injected fuel colliding with the bottom wall surface of the groove is directed along the side wall surface of the groove toward the end of the groove below the spark plug.
JP3340921A 1991-12-24 1991-12-24 In-cylinder internal combustion engine Expired - Fee Related JP2867772B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3340921A JP2867772B2 (en) 1991-12-24 1991-12-24 In-cylinder internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3340921A JP2867772B2 (en) 1991-12-24 1991-12-24 In-cylinder internal combustion engine

Publications (2)

Publication Number Publication Date
JPH05171939A JPH05171939A (en) 1993-07-09
JP2867772B2 true JP2867772B2 (en) 1999-03-10

Family

ID=18341530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3340921A Expired - Fee Related JP2867772B2 (en) 1991-12-24 1991-12-24 In-cylinder internal combustion engine

Country Status (1)

Country Link
JP (1) JP2867772B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008057479A (en) * 2006-09-01 2008-03-13 Hitachi Ltd Direct injection engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008057479A (en) * 2006-09-01 2008-03-13 Hitachi Ltd Direct injection engine
JP4500790B2 (en) * 2006-09-01 2010-07-14 日立オートモティブシステムズ株式会社 Direct injection engine

Also Published As

Publication number Publication date
JPH05171939A (en) 1993-07-09

Similar Documents

Publication Publication Date Title
US5927244A (en) Combustion chamber structure having piston cavity
US5720253A (en) Direct-injection type spark-ignition internal combustion engine
JP3158443B2 (en) In-cylinder injection internal combustion engine
JPS5813737B2 (en) Combustion chamber structure of internal combustion engine
JPS6145044B2 (en)
JP2940232B2 (en) In-cylinder internal combustion engine
JPH04370319A (en) Cylinder fuel injection type internal combustion engine
JP2841748B2 (en) In-cylinder two-stroke internal combustion engine
JP2867772B2 (en) In-cylinder internal combustion engine
JP2841791B2 (en) Fuel injection type internal combustion engine
JP2936804B2 (en) In-cylinder internal combustion engine
JPH04166612A (en) Cylinder injection type internal combustion engine
JP2936798B2 (en) In-cylinder internal combustion engine
JP2936803B2 (en) In-cylinder internal combustion engine
JP2936806B2 (en) In-cylinder internal combustion engine
JPH05179961A (en) Intra-cylinder injection type internal combustion engine
JPS59231120A (en) Three-valve head type internal-combustion engine
JP2906665B2 (en) In-cylinder internal combustion engine
JP2936805B2 (en) In-cylinder internal combustion engine
JPH0518244A (en) Injection-in-cylinder type internal combustion engine
JPH0510137A (en) Cylinder injection type internal combustion engine
JPH05248244A (en) Cylinder injection type internal combustion engine
JPH082429Y2 (en) Cylinder injection internal combustion engine
JPH0526047A (en) Cylinder fuel injection type two-cycle internal combustion engine
JP2874689B2 (en) In-cylinder internal combustion engine

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081225

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081225

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091225

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees