JPH0418259B2 - - Google Patents

Info

Publication number
JPH0418259B2
JPH0418259B2 JP59271999A JP27199984A JPH0418259B2 JP H0418259 B2 JPH0418259 B2 JP H0418259B2 JP 59271999 A JP59271999 A JP 59271999A JP 27199984 A JP27199984 A JP 27199984A JP H0418259 B2 JPH0418259 B2 JP H0418259B2
Authority
JP
Japan
Prior art keywords
alumina
gas
oxide
sintered layer
oxide semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59271999A
Other languages
Japanese (ja)
Other versions
JPS61149856A (en
Inventor
Nobuhiro Komori
Koji Komatsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Cosmos Electric Co Ltd
Original Assignee
New Cosmos Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Cosmos Electric Co Ltd filed Critical New Cosmos Electric Co Ltd
Priority to JP27199984A priority Critical patent/JPS61149856A/en
Publication of JPS61149856A publication Critical patent/JPS61149856A/en
Publication of JPH0418259B2 publication Critical patent/JPH0418259B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 この発明は、燃焼排気ガスやガスもれ等を検知
するためのガス検知素子に関するものである。 〔従来の技術〕 従来から種々のガス検知素子が提案されている
が、一般にアルコールなどの雑ガスに対する選択
性がないため酒かん等による雑ガスをガスもれと
判断してしまう。しかも、経時的に高感度化の傾
向にあり、特に雑ガスに対する経時高感度化率が
大きいため家庭用ガスもれ警報器の誤報の原因と
なつている。 〔発明が解決しようとする問題点〕 このような雑ガスの対策として、Mn2O3とア
ルミナの混合物、あるいはCo3O4−α−Al2O3
フイルタとしてガス検知素子の表面に塗布したも
のが提案されているが、これらは高温高湿中通
電、あるいは長期通電においてアルコールに対し
て経時高感度化の傾向がみられる。これはMn2
O3やCo3O4粉末がシンタし易いことなどのため酸
化触媒としての活性が徐々に低下して、アルコー
ルを酸化除去するフイルタ効果が低下していく結
果と考えられる。 この発明は、上述したアルコールなどの雑ガス
に対する感度を抑え、かつ、その特性を高湿中・
還元性雰囲気、被毒性雰囲気などの苛酷条件下に
おいても長期間安定に維持するようにすることを
目的とする。 〔問題点を解決するための手段〕 この発明のガス検知素子は、雑ガスを除去する
ため、銅アルミネート、ニツケルアルミネートな
ど、アルミナと他の金属とのスピネル型複合酸化
物(以下、単に複合酸化物という)の微粒を金属
酸化物半導体の焼結層内に分散させたものであ
る。 この発明の複合酸化物は、活性アルミナにCu,
Co,Mn,Ni,Feなどの塩の希薄水溶液を含浸
して焼成したとき、アルミナとこれらの金属イオ
ンとが結合して、CuAl2O4などの耐熱性、耐久性
のある複合酸化物が形成され易く、α−Al2O3
ではこのような結合は起らないことを見出したこ
とに基づくものである。例えばCuO,Co3O4
NiOは黒色の酸化物であるが、活性アルミナと結
合して形成された複合酸化物、例えばCuAl2O4
CoAl2O4,NiAl2O4はスピネル型結晶構造をと
り、淡青色を呈する。 従来から、Mn2O3とアルミナと混合して素子
に被覆する試みがある。また、α−Al2O3に硝酸
コバルトの水溶液を含浸して焼成しCo3O4−α−
Al2O3を得てこれを用いることも提案されている
が、この場合、α−Al2O3はアルミナの中でも最
も化学的に安定な構造でありCoと反応すること
はなく、コバルトとアルミニウムはそれぞれの単
独の酸化物として混合状態にあるにすぎない。こ
の場合は黒色のCo3O4としての色を呈する。 また、Cu,Coなどの含有量は、従来例ではア
ルミナに対してこれら金属の酸化物として5〜
50wt.%の高濃度であるが、この発明では活性ア
ルミナの表面に吸着した金属イオンのみを用いる
もので、従来例に換算すればその濃度は5%以下
でも有効であり、従来の常識をはずれた領域に注
目したものである。 〔作用〕 アルミナとの複合酸化物であるアルミネート
は、熱的に非常に安定で、ガス検知素子の動作温
度の範囲(150〜500℃)では、銅やコバルトの単
独の酸化物のようなシンタなどによる活性低下を
起すことはない。また、還元性雰囲気におかれて
も、単独酸化物に比べ桁違いに還元されにくく安
定である。しかも、適度の酸化活性を有すること
が見出された。すなわち、 () アルコールなどの雑ガスに対する燃焼活
性は非常に大きく、メタンやブタンに対するそ
れは小さい。 金属酸化物半導体の焼結層内にこれら複合酸
化物を分散させることによつて、雑ガスを燃焼
除去し、素子の雑ガス感度を抑制することがで
きる。 () アルミネートは熱的にも化学的にも非常
に安定であり、単独酸化物では得られない耐久
性が得られた。すなわち、単独酸化物では、高
温高湿雰囲気では水蒸気の介在によつて酸化物
粒子の活性低下が起り易く、また、水素などの
還元性雰囲気では酸化物が還元されることによ
つて特性も変りシンタなども起き易いが、これ
らの点に関しこの複合酸化物は単独酸化物に比
べて桁違いに安定である。 () 活性アルミナの細孔内面に複合酸化物が
形成され酸化触媒としての活性を呈するため、
有機シリコーンやSO2などの被毒性物質はこの
細孔内にまでは浸入できず、細孔内の触媒活性
は劣化することがない。したがつて、この発明
のガス検知素子は被毒性ガスの共存する雰囲気
においても耐久性にすぐれている。 〔実施例〕 活性なガンマアルミナ(比表面積100m2/g)
を濃度0.1モル/の硝酸銅水溶液中に投入し、
一昼夜放置して含浸吸着させたのち、余剰液をろ
過し、乾燥後900℃で2時間焼成する。この場合
の銅の含有率はガンマアルミナの吸着能力にもよ
るが、酸化銅換算でガンマアルミナに対して5%
以下であつた。他の金属塩の場合も同様にして作
成される。 これら複合酸化物の微粒を金属酸化物半導体粉
末に分散した後、成形し700℃で1時間焼結して
製造されたガス検知素子を第1図に示す。 第1図で、1はアルミナ基板(3×1.5×0.4
mm)であり、下面に白金膜ヒータ2を備え、その
上をヒータ保護膜3で覆つている。アルミナ基板
1の上面には白金膜電極4が設けられ、その上を
SnO2焼結層5でおおつたもので、SnO2焼結層5
は金属酸化物半導体粉末に上述した手順によつて
形成した複合酸化物である銅アルミネートの微粒
6を分散し、ペースト化して成形、焼結しこの発
明の厚膜タイプの金属酸化物半導体ガス検知素子
が構成される。 第2図は熱線型半導体素子に適用した場合の実
施例で、7はコイル状の白金電極兼ヒータ、5は
SnO2焼結層で白金電極兼ヒータ7のコイル部を
おおうように形成されている。このSnO2焼結層
5に上述の手順によつて銅アルミネートのような
複合酸化物の微粒6を分散し焼結し成形、焼結し
たものである。 なお、Cu,Co,Mn,Ni,Feとアルミナとの
複合酸化物をつくる方法としては、共沈法、競争
吸着法など通常の触媒製造手段が適用できること
はいうまでもない。 第3図は厚膜タイプのガス検知素子にこの発明
による銅アルミネートのような複合酸化物の微粒
6をSnO2焼結層5内に分散した場合のガス検知
素子のガス感度の濃度依存特性である。第4図の
従来の素子における場合と比較するとエタノール
感度が顕著に抑制されていることがわかる。な
お、この図の縦軸表示はガス検知素子のガス感度
を示すコンダクタンス変化率で、Goは大気中で
の素子のコンダクタンス、Ggはガス中でのコン
ダクタンスである。 第1表は高温高湿雰囲気におかれたときの素子
の耐久性を示すもので、H20.1%共存、50℃、95
%の高湿中に30日間通電状態で封入したのち通常
湿度にもどして警報器としての警報濃度を測定し
たものである。初期値と比較すると、Mn2O3
CuO,Co3O4の単独酸化物とアルミナの混合物を
被覆した例では、エタノール、水素に対して著し
く鋭敏化しており誤報につながることが示唆され
る。この発明の各種アルミネートでは耐久性良好
である。第2表はSO20.5ppmの被毒性雰囲気中
10日間封入テストの結果である。同様にして各種
アルミネートにおいては初期値と比較してあまり
変化しておらず、耐毒性良好である。 〔発明の効果〕 この発明は以上説明したように、金属酸化物半
導体ガス検知素子において、Cu,Co,Mn,Ni,
Feとアルミナとの複合酸化物の微粒のうちの少
なくとも一種を金属酸化物半導体の焼結層内に分
散させたので、アルコールなどの雑ガスに対する
[Industrial Application Field] The present invention relates to a gas detection element for detecting combustion exhaust gas, gas leakage, etc. [Prior Art] Various gas detection elements have been proposed in the past, but they generally do not have selectivity for miscellaneous gases such as alcohol, so miscellaneous gases from alcohol cans and the like are judged as gas leaks. Furthermore, there is a tendency for the sensitivity to increase over time, and the rate of increase in sensitivity over time is particularly large for miscellaneous gases, which causes false alarms from household gas leak alarms. [Problems to be solved by the invention] As a countermeasure against such miscellaneous gases, a mixture of Mn 2 O 3 and alumina or Co 3 O 4 −α-Al 2 O 3 is applied as a filter to the surface of the gas detection element. However, these tend to become more sensitive to alcohol over time when energized in high temperature, high humidity, or long-term energization. This is Mn2
This is thought to be due to the fact that O 3 and Co 3 O 4 powders are easily sintered, so their activity as an oxidation catalyst gradually decreases, and the filter effect for oxidizing and removing alcohol decreases. This invention suppresses the sensitivity to miscellaneous gases such as alcohol mentioned above, and improves its characteristics even in high humidity.
The purpose is to maintain stability for a long period of time even under severe conditions such as reducing atmospheres and toxic atmospheres. [Means for Solving the Problems] The gas detection element of the present invention uses spinel-type composite oxides (hereinafter simply referred to as "spinel-type composite oxides") of alumina and other metals, such as copper aluminate and nickel aluminate, to remove miscellaneous gases. This is made by dispersing fine particles of a composite oxide in a sintered layer of a metal oxide semiconductor. The composite oxide of this invention includes activated alumina, Cu,
When impregnated with a dilute aqueous solution of salts such as Co, Mn, Ni, and Fe and fired, alumina and these metal ions combine to form heat-resistant and durable composite oxides such as CuAl 2 O 4 . This is based on the discovery that such a bond does not occur with α-Al 2 O 3 . For example, CuO, Co 3 O 4 ,
NiO is a black oxide, but composite oxides formed by combining with activated alumina, such as CuAl 2 O 4 ,
CoAl 2 O 4 and NiAl 2 O 4 have a spinel crystal structure and exhibit a pale blue color. Conventionally, there have been attempts to coat devices with a mixture of Mn 2 O 3 and alumina. In addition, by impregnating α-Al 2 O 3 with an aqueous solution of cobalt nitrate and firing it, Co 3 O 4 −α−
It has also been proposed to obtain and use Al 2 O 3 , but in this case, α-Al 2 O 3 has the most chemically stable structure among aluminas and does not react with Co. Aluminum is only in a mixture as each individual oxide. In this case, it exhibits a black color as Co 3 O 4 . In addition, in the conventional example, the content of Cu, Co, etc. is 5 to 5% as oxides of these metals relative to alumina.
Although the concentration is as high as 50wt.%, this invention uses only metal ions adsorbed on the surface of activated alumina, and if compared to conventional methods, it is effective even if the concentration is 5% or less, which goes beyond conventional wisdom. This study focused on areas that [Function] Aluminate, which is a composite oxide with alumina, is extremely stable thermally, and in the operating temperature range of gas sensing elements (150 to 500°C), it is not as strong as single oxides of copper or cobalt. There is no reduction in activity due to syntax. Furthermore, even when placed in a reducing atmosphere, it is much more stable and less likely to be reduced than a single oxide. Moreover, it was found to have moderate oxidation activity. In other words, () The combustion activity for miscellaneous gases such as alcohol is extremely large, but it is small for methane and butane. By dispersing these composite oxides in the sintered layer of metal oxide semiconductor, it is possible to burn off miscellaneous gases and suppress the sensitivity of the device to miscellaneous gases. () Aluminate is extremely stable both thermally and chemically, providing durability that cannot be obtained with single oxides. In other words, in a single oxide, the activity of the oxide particles tends to decrease due to the presence of water vapor in a high-temperature, high-humidity atmosphere, and in a reducing atmosphere such as hydrogen, the properties change due to the reduction of the oxide. Although sintering is likely to occur, this composite oxide is far more stable in these respects than a single oxide. () Complex oxide is formed on the inner surface of the pores of activated alumina and exhibits activity as an oxidation catalyst.
Toxic substances such as organic silicones and SO 2 cannot penetrate into these pores, and the catalytic activity within the pores does not deteriorate. Therefore, the gas detection element of the present invention has excellent durability even in an atmosphere where toxic gases coexist. [Example] Active gamma alumina (specific surface area 100m 2 /g)
into a copper nitrate aqueous solution with a concentration of 0.1 mol/
After leaving it for a day and night for impregnation and adsorption, the excess liquid is filtered, dried, and then baked at 900°C for 2 hours. The copper content in this case depends on the adsorption capacity of gamma alumina, but it is 5% of gamma alumina in terms of copper oxide.
It was below. Other metal salts are prepared in the same manner. FIG. 1 shows a gas sensing element manufactured by dispersing fine particles of these composite oxides into metal oxide semiconductor powder, molding it, and sintering it at 700° C. for 1 hour. In Figure 1, 1 is an alumina substrate (3 x 1.5 x 0.4
mm), and is equipped with a platinum film heater 2 on the lower surface, which is covered with a heater protection film 3. A platinum film electrode 4 is provided on the upper surface of the alumina substrate 1.
Covered with SnO 2 sintered layer 5, SnO 2 sintered layer 5
The thick film type metal oxide semiconductor gas of the present invention is obtained by dispersing fine particles 6 of copper aluminate, which is a composite oxide, formed by the above-mentioned procedure in the metal oxide semiconductor powder, making it into a paste, molding it, and sintering it. A sensing element is configured. Figure 2 shows an example of application to a hot wire type semiconductor device, where 7 is a coiled platinum electrode/heater, and 5 is a coiled platinum electrode/heater.
A SnO 2 sintered layer is formed to cover the coil portion of the platinum electrode/heater 7. Fine particles 6 of a composite oxide such as copper aluminate are dispersed in this SnO 2 sintered layer 5 according to the above-described procedure, and then sintered, shaped, and sintered. It goes without saying that normal catalyst manufacturing methods such as coprecipitation and competitive adsorption can be used to create a composite oxide of Cu, Co, Mn, Ni, Fe and alumina. Figure 3 shows the concentration-dependent characteristics of gas sensitivity of a thick-film type gas sensing element in which fine particles 6 of a composite oxide such as copper aluminate according to the present invention are dispersed in the SnO 2 sintered layer 5. It is. It can be seen that the ethanol sensitivity is significantly suppressed when compared with the conventional element shown in FIG. The vertical axis in this figure is the conductance change rate indicating the gas sensitivity of the gas detection element, where Go is the conductance of the element in the atmosphere and Gg is the conductance in the gas. Table 1 shows the durability of the element when placed in a high temperature and high humidity atmosphere, with 0.1% H2 , 50℃, 95℃.
% of humidity for 30 days, and then returned to normal humidity and measured the alarm concentration as an alarm. Compared to the initial value, Mn 2 O 3 ,
In the case of coating with a mixture of single oxides of CuO and Co 3 O 4 and alumina, it is suggested that the coating becomes extremely sensitive to ethanol and hydrogen, leading to false alarms. The various aluminates of this invention have good durability. Table 2 shows the toxic atmosphere with SO 2 0.5ppm.
These are the results of a 10-day encapsulation test. Similarly, various aluminates do not change much compared to their initial values, and have good toxicity resistance. [Effects of the Invention] As explained above, the present invention provides a metal oxide semiconductor gas sensing element using Cu, Co, Mn, Ni,
At least one type of fine particles of composite oxide of Fe and alumina is dispersed in the sintered layer of metal oxide semiconductor, so it is resistant to miscellaneous gases such as alcohol.

【表】【table】

【表】【table】

【表】 感度を抑えることができ、しかも、その特性を
高温高湿の還元性雰囲気中、被毒性雰囲気などの
苛酷条件下においても、長期間安定に維持するこ
とができる効果がある。
[Table] Sensitivity can be suppressed, and its properties can be maintained stably for a long period of time even under harsh conditions such as high temperature, high humidity reducing atmospheres and toxic atmospheres.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示す厚膜型のガ
ス検知素子の断面図、第2図はこの発明の他の実
施例を示す熱線型のガス検知素子の断面図、第3
図はこの発明によるガス検知素子のガス濃度依存
特性図、第4図は従来のガス検知素子のガス濃度
依存特性図である。 図中、1はアルミナ基板、2は白金膜ヒータ、
3はヒータ保護膜、4は白金膜電極、5はSnO2
焼結層、6は複合酸化物の微粒、7はコイル状の
白金電極兼ヒータである。
FIG. 1 is a sectional view of a thick film type gas sensing element showing one embodiment of the present invention, FIG. 2 is a sectional view of a hot wire type gas sensing element showing another embodiment of the invention, and FIG.
The figure is a gas concentration dependence characteristic diagram of the gas detection element according to the present invention, and FIG. 4 is the gas concentration dependence characteristic diagram of a conventional gas detection element. In the figure, 1 is an alumina substrate, 2 is a platinum film heater,
3 is a heater protective film, 4 is a platinum film electrode, and 5 is SnO 2
A sintered layer, 6 is a composite oxide fine particle, and 7 is a coiled platinum electrode/heater.

Claims (1)

【特許請求の範囲】[Claims] 1 金属酸化物半導体ガス検知素子において、
Cu,Co,Mn,Ni,Feとアルミナとのスピネル
型複合酸化物の微粒のうちの少なくとも一種を金
属酸化物半導体の焼結層内に分散させたことを特
徴とするガス検知素子。
1 In a metal oxide semiconductor gas sensing element,
1. A gas sensing element characterized in that at least one type of fine particles of a spinel-type composite oxide of Cu, Co, Mn, Ni, Fe and alumina is dispersed in a sintered layer of a metal oxide semiconductor.
JP27199984A 1984-12-25 1984-12-25 Gas detecting element Granted JPS61149856A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27199984A JPS61149856A (en) 1984-12-25 1984-12-25 Gas detecting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27199984A JPS61149856A (en) 1984-12-25 1984-12-25 Gas detecting element

Publications (2)

Publication Number Publication Date
JPS61149856A JPS61149856A (en) 1986-07-08
JPH0418259B2 true JPH0418259B2 (en) 1992-03-27

Family

ID=17507735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27199984A Granted JPS61149856A (en) 1984-12-25 1984-12-25 Gas detecting element

Country Status (1)

Country Link
JP (1) JPS61149856A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2895512B1 (en) * 2005-12-22 2008-02-15 Renault Sas METHOD AND DEVICE FOR AUTOMATICALLY MEASURING THE OIL CONSUMPTION OF AN INTERNAL COMBUSTION ENGINE AND DRAINING SAID ENGINE
CN104655700B (en) * 2015-03-17 2017-09-22 信阳师范学院 Food preservative electrochemical sensor and preparation method and application

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5163693A (en) * 1974-11-29 1976-06-02 Kaoru Aotani GASUKENCHISOSHI
JPS5643548A (en) * 1979-09-18 1981-04-22 Toshiba Corp Gas detecting element
JPS57194346A (en) * 1981-05-13 1982-11-29 Draegerwerk Ag Measuring device for gassy or vapory medium
JPS58102142A (en) * 1981-12-15 1983-06-17 Toshiba Corp Detector for carbon monoxide

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5163693A (en) * 1974-11-29 1976-06-02 Kaoru Aotani GASUKENCHISOSHI
JPS5643548A (en) * 1979-09-18 1981-04-22 Toshiba Corp Gas detecting element
JPS57194346A (en) * 1981-05-13 1982-11-29 Draegerwerk Ag Measuring device for gassy or vapory medium
JPS58102142A (en) * 1981-12-15 1983-06-17 Toshiba Corp Detector for carbon monoxide

Also Published As

Publication number Publication date
JPS61149856A (en) 1986-07-08

Similar Documents

Publication Publication Date Title
US4535315A (en) Alkane gas sensor comprising tin oxide semiconductor with large surface area
US4199425A (en) Solid electrolyte exhaust gas sensor with increased NOx sensitivity
US4066413A (en) Gas component detection apparatus
JPH06510854A (en) Exhaust gas sensor and its manufacturing method
US5445796A (en) Oxygen concentration sensor with heat resistant coating
US4242302A (en) Method of making a catalytic combustion type gas detector
JPH0562697B2 (en)
JPS61241657A (en) Oxygen sensor element
US4294801A (en) Gas component detector
US5351029A (en) Sensor for determining carbon monoxide
JPH0418259B2 (en)
JPH053897B2 (en)
JPS62269747A (en) Catalyst for purifying exhaust gas
JPH08271465A (en) Ammonia gas sensor and its manufacture
JP2847979B2 (en) Oxide semiconductor gas sensor
JP2001050923A (en) Hydrogen-gas detecting element
JPH08226909A (en) Contact-combustion-type carbon monoxide gas sensor
JPH0540102A (en) Gas sensor
US8257576B2 (en) Ammonia gas sensors with lanthanide vanadate sensing electrode
JP3046387B2 (en) Gas sensor
JP2570440B2 (en) Gas sensor
JP3919306B2 (en) Hydrocarbon gas detector
JPS604849A (en) Nitrogen oxide detecting element
JPS58118953A (en) Preparation of gas sensitive element
JP2573323B2 (en) Gas sensor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term