JPH04182367A - Ceramic substrate joined to metallic plate - Google Patents
Ceramic substrate joined to metallic plateInfo
- Publication number
- JPH04182367A JPH04182367A JP30629690A JP30629690A JPH04182367A JP H04182367 A JPH04182367 A JP H04182367A JP 30629690 A JP30629690 A JP 30629690A JP 30629690 A JP30629690 A JP 30629690A JP H04182367 A JPH04182367 A JP H04182367A
- Authority
- JP
- Japan
- Prior art keywords
- ceramic substrate
- surface side
- peripheral edge
- metallic plate
- metallic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000919 ceramic Substances 0.000 title claims abstract description 38
- 239000000758 substrate Substances 0.000 title claims abstract description 36
- 230000002093 peripheral effect Effects 0.000 claims abstract description 9
- 239000002184 metal Substances 0.000 claims description 20
- 229910052751 metal Inorganic materials 0.000 claims description 20
- 230000017525 heat dissipation Effects 0.000 claims description 6
- 230000008646 thermal stress Effects 0.000 abstract description 10
- 230000005855 radiation Effects 0.000 abstract description 3
- 238000004806 packaging method and process Methods 0.000 abstract 3
- 230000035939 shock Effects 0.000 description 20
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 8
- 229910052802 copper Inorganic materials 0.000 description 8
- 239000010949 copper Substances 0.000 description 8
- 230000000694 effects Effects 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 229910017728 AgN Inorganic materials 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 238000005219 brazing Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/0201—Thermal arrangements, e.g. for cooling, heating or preventing overheating
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
- H05K1/0306—Inorganic insulating substrates, e.g. ceramic, glass
Landscapes
- Ceramic Products (AREA)
- Cooling Or The Like Of Electrical Apparatus (AREA)
- Structure Of Printed Boards (AREA)
- Manufacturing Of Printed Wiring (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、金属様接合セラミックス基板に関し、熱応力
を緩和した構造に係る。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a metal-like bonded ceramic substrate, and relates to a structure in which thermal stress is alleviated.
[従来の技術]
金属とセラミックス基板の熱膨張率、ヤング率の違いに
より耐熱衝撃試験(−65℃→+150℃の熱衝撃を繰
返してセラミックス基板に亀裂の入るまでの回数を測定
する試験)中に、セラミックス基板に熱応力が発生し、
亀裂が発生する。従来は、放熱側銅板を薄くしたり、胴
折の周縁部を厚さ方向に山裾状の凹形丸み加工を施した
り、ろう材のフィレットを形成することなどにより熱応
力を軽減していた。しかし、これらの対策ではまだ不十
分であり、要求の厳しい場合にはクラックの発生を防止
することができない。[Prior art] Due to the difference in thermal expansion coefficient and Young's modulus between metal and ceramic substrates, thermal shock resistance tests (tests that measure the number of times a ceramic substrate cracks by repeating thermal shock from -65°C to +150°C) , thermal stress occurs on the ceramic substrate,
Cracks occur. Conventionally, thermal stress has been reduced by making the copper plate on the heat dissipation side thinner, by rounding the peripheral edge of the body fold into a concave shape in the thickness direction, or by forming a fillet of brazing material. However, these measures are still insufficient and cannot prevent the occurrence of cracks in demanding cases.
〔発明が解決しようとする課題]
本発明は従来技術では解決できなかった金属板とセラミ
ックスの熱膨張率の差によって生ずる熱応力を緩和する
簡易で有効な構造を提供することを目的とする。[Problems to be Solved by the Invention] An object of the present invention is to provide a simple and effective structure for alleviating thermal stress caused by the difference in coefficient of thermal expansion between a metal plate and ceramics, which could not be solved by conventional techniques.
本発明は、金属とセラミックスとを接合して構成する基
板において、金属板は平面的に見た隅角部に曲率半径0
.5 m m以上の丸味を有すると共に、金属板の周縁
部とセラミックス板の周縁部との放熱面側のマージンの
幅が実装面側のマージンの幅の03〜10倍であり、か
つセラミックス基板の厚さが0.5 m m以上である
ことを特徴とする金属板接合セラミックス基板である。The present invention provides a substrate formed by bonding metal and ceramics, in which the metal plate has a radius of curvature of 0 at the corner portion when viewed in plan.
.. It has a roundness of 5 mm or more, and the width of the margin on the heat radiation surface side between the peripheral edge of the metal plate and the peripheral edge of the ceramic plate is 0.3 to 10 times the width of the margin on the mounting surface side, and This is a metal plate bonded ceramic substrate characterized by having a thickness of 0.5 mm or more.
本発明では銅板の平面図形の隅角部に曲率半径R−05
〜2.0 m mの丸みを有している。曲率半径Rが0
.5 m m未満では熱応力が軽減されず、2、0 m
mを越えるとパターン精度が悪くなる。In the present invention, the corner portion of the plane figure of the copper plate has a radius of curvature R-05.
It has a roundness of ~2.0 mm. Radius of curvature R is 0
.. Below 5 mm, the thermal stress is not reduced, and below 2.0 m
If it exceeds m, pattern accuracy will deteriorate.
第1図に金属板セラミックス接合板の模式断面を示す。FIG. 1 shows a schematic cross section of a metal plate ceramic bonded plate.
セラミックス基板1の片面に実装面側金属板2が装着さ
れ、他の面に放熱面側金属板3が貼着されている。A mounting side metal plate 2 is attached to one side of a ceramic substrate 1, and a heat dissipation side metal plate 3 is attached to the other side.
放熱面側の金属板3の周縁部とセラミックス基板の周縁
部との間のマージン幅yと実装面側の金属板2のマージ
ン幅Xの比率によってセラミックス基板に発生する熱応
力は第2図のようになる。Thermal stress generated in the ceramic substrate is determined by the ratio of the margin width y between the periphery of the metal plate 3 on the heat dissipation side and the periphery of the ceramic substrate and the margin width X of the metal plate 2 on the mounting side as shown in Fig. 2. It becomes like this.
yを大きくするにつれて、表、裏の金属板のバランスに
より熱応力は小さくなるがy/xのある値で極小値をと
りそれ以上にy/xを大きくすると、反対にセラミック
ス基板に発生ずる熱応力が大きくなる。第2図に一65
℃と+150″Cの間の繰返し耐熱衝撃数が100回を
超える熱応力値として11kg/mm’以下が示しであ
る。第2図より0.3 < y / x < 10の場
合可能であることがわかる。100回以下だと実際の使
用に耐えないのでy / xは100回を越える0、
3 < y / x <10に範囲を限定した。As y increases, the thermal stress decreases due to the balance between the front and back metal plates, but it reaches a minimum value at a certain value of y/x, and when y/x increases beyond that, the heat generated in the ceramic substrate increases. Stress increases. 165 in Figure 2
11kg/mm' or less is shown as the thermal stress value when the number of repeated thermal shocks between ℃ and +150''C exceeds 100 times.From Figure 2, it is possible when 0.3 < y / x < 10. If it is less than 100 times, it cannot withstand actual use, so y / x is 0, which exceeds 100 times.
The range was limited to 3<y/x<10.
次にセラミックス基板を厚(すると、セラミックス基板
に発生する曲げモーメントを小さくすることができ、耐
熱衝撃回数を増加することができる。厚さtが0.5
m m未満では耐熱衝撃回数は50〜100回であり、
安定して100回を超えないので実際には使用できない
。したがって、0、5 m m以上とした。Next, make the ceramic substrate thicker (thus, the bending moment generated in the ceramic substrate can be reduced, and the number of thermal shocks it can withstand can be increased. Thickness t is 0.5
If it is less than mm, the thermal shock resistance is 50 to 100 times,
It cannot be used in practice because it does not stably exceed 100 times. Therefore, it was set to 0.5 mm or more.
さらに、n=0.5〜2.0mm、0.3<y/x<1
0、Al2Nの厚さ≧0.5 m mはそれぞれ単独で
も効果はあるが、これらを組合わせると飛躍的に耐熱衝
撃性を向上させることができる。Furthermore, n=0.5~2.0mm, 0.3<y/x<1
0.0, Al2N thickness≧0.5 mm Although each of these alone has an effect, when they are combined, the thermal shock resistance can be dramatically improved.
[実施例]
縦横50mmX50mmのアルミナ、Al2Nと銅板の
接合体を作成、次の試験を行った。t−0,635mm
、y/x=2.0の銅板の平面の隅角部に丸みを付さな
い場合と丸みを付した場合の耐熱衝撃数の比較を第1表
に示した。[Example] A bonded body of alumina, Al2N and copper plates measuring 50 mm x 50 mm was prepared and the following tests were conducted. t-0,635mm
, y/x=2.0 Table 1 shows a comparison of the thermal shock resistance numbers when the corners of the plane of the copper plate with y/x=2.0 are not rounded and when they are rounded.
耐熱衝撃試験においては接合体に一65°Cと+150
℃間を繰返す熱衝撃を与えて、セラミックス基板に亀裂
が入るまでの回数を測定した。n=0,5以上で、あき
らかに耐熱衝撃数が100回を超えて実際の使用に耐え
る。In the thermal shock test, the bonded body was subjected to temperatures of -65°C and +150°C.
Thermal shock was repeatedly applied to the ceramic substrate at temperatures between 1 and 2°C, and the number of times it took for the ceramic substrate to crack was measured. When n=0.5 or more, the thermal shock resistance clearly exceeds 100 times and can withstand actual use.
上記アルミナ、AρNと銅板の接合体で、R−2,0,
t=0.635mmのものに、y / x =0.0,
0.1.0.2.0.3.0.5.1.0.50.10
.0.11.0115.Oとしたセラミックス基板を作
成し、その接合体の耐熱衝撃数を実測した結果を第2表
に示した。y/xが03以上で耐熱衝撃数は100回を
超え、使用可能である。y/xが10を超えると、逆に
耐熱衝撃数が減少して100回を下回り実際の使用には
耐えない。The above-mentioned alumina, AρN and copper plate bonded body, R-2,0,
For the one with t = 0.635 mm, y / x = 0.0,
0.1.0.2.0.3.0.5.1.0.50.10
.. 0.11.0115. Table 2 shows the results of actually measuring the thermal shock resistance of a bonded body of a ceramic substrate prepared with O. When y/x is 03 or more, the thermal shock resistance exceeds 100 times and it can be used. If y/x exceeds 10, the thermal shock resistance decreases to less than 100 times and cannot withstand actual use.
また、上記アルミナ、AgNと銅板の接合体で、セラミ
ックス基板の厚さtをそれぞれ0.25.0.45.0
,5.0635.1,0.1.5.2.0mとしてR=
1mm、y/x=2とした接合体の耐熱衝撃数を測定し
た。第3表に示すように、t=0.45mm以下では耐
熱衝撃数は50回以下であったが、0.5 m m以上
では100回を超える好成績を示している。In addition, the thickness t of the ceramic substrate in the above-mentioned bonded body of alumina, AgN, and copper plate is 0.25, 0.45.0, respectively.
, 5.0635.1, 0.1.5.2.0m and R=
Thermal shock resistance of the joined body with a thickness of 1 mm and y/x=2 was measured. As shown in Table 3, when t=0.45 mm or less, the thermal shock resistance was 50 times or less, but when t=0.5 mm or more, it showed good results exceeding 100 times.
第4表にA42N基板(50mmX50mm)と銅板の
接合体において銅板の角のRとy/xとAffN基板の
厚さtを組合わせた場合の耐熱衝撃数(n)に対する効
果を示す。R= 1.0 m mでy/x=2.0.t
=0.635mmの場合にはn=100〜130回であ
ったのが、R,tは同じでもy / x = 5.0に
するとn=130−150回に増加し、/IN基板厚さ
tを1.0 m mにするとn=150〜200回にな
る。また、y / x = 2.0、t=0.635m
mのまま、R= 1.0から2.0 m mにするとn
=150〜200回に増加する。さらに、n=2.0m
mでy / x = 5.0、t = 1.0 m m
にすると耐熱衝撃数は250回を越え、非常に耐熱衝撃
性に優れた接合体を作製することができる。このように
n=0.5−2.0.0.3 < y / x <10
、t = 0.5 m m以上の本発明の条件を組合わ
せることにより耐熱衝撃性を飛躍的に向上させることが
できる。Table 4 shows the effect on the thermal shock resistance number (n) when combining the R and y/x of the corners of the copper plate and the thickness t of the AffN substrate in a bonded body of an A42N substrate (50 mm x 50 mm) and a copper plate. R=1.0 mm and y/x=2.0. t
= 0.635 mm, n = 100-130 times, but when R and t are the same but y / x = 5.0, n = 130-150 times, /IN substrate thickness When t is 1.0 mm, n=150 to 200 times. Also, y/x = 2.0, t = 0.635m
If you leave m as is and change R from 1.0 to 2.0 m, then n
= increased to 150-200 times. Furthermore, n=2.0m
m in y/x = 5.0, t = 1.0 m m
In this case, the thermal shock resistance exceeds 250 times, making it possible to produce a bonded body with extremely excellent thermal shock resistance. Thus n=0.5-2.0.0.3 <y/x<10
, t = 0.5 mm or more, the thermal shock resistance can be dramatically improved by combining the conditions of the present invention.
第 1 表
第4表
[発明の効果1
本発明によれば、金属板接合セラミックス基板において
、簡易な構造改善によって、耐熱衝撃数の向上を図るこ
とができる。Table 1 Table 4 [Effect of the Invention 1 According to the present invention, in a metal plate bonded ceramic substrate, the thermal shock resistance can be improved by simple structural improvement.
第1図は金属板セラミックス接合板の模式断面図、第2
図は数値計算から求めたセラミックス基板に発生する熱
応力のy/x依存性を示すグラフである。
1・・セラミックス基板
2・・実装面側金属板
3 ・放熱面側金属板
X・・・実装面側マージン幅
y・放熱面側マージン幅Figure 1 is a schematic cross-sectional view of a metal plate ceramic bonded plate, Figure 2
The figure is a graph showing the y/x dependence of thermal stress generated in a ceramic substrate, which was determined from numerical calculations. 1...Ceramics board 2...Metal plate on the mounting surface side 3 -Metal plate on the heat dissipation surface side X...Margin width on the mounting surface side y/Margin width on the heat dissipation surface side
Claims (1)
、金属板は平面の隅角部に曲率半径0.5〜2.0mm
の丸味を有すると共に、金属板の周縁部とセラミックス
基板の周縁部との間の放熱面側のマージン幅が実装面側
のマージン幅の0.3〜10倍であり、かつセラミック
ス基板の厚さが0.5mm以上であることを特徴とする
金属板接合セラミックス基板。1. In a substrate made by joining metal and ceramics, the metal plate has a radius of curvature of 0.5 to 2.0 mm at the corner of the plane.
roundness, the margin width on the heat dissipation surface side between the peripheral edge of the metal plate and the peripheral edge of the ceramic substrate is 0.3 to 10 times the margin width on the mounting surface side, and the thickness of the ceramic substrate A metal plate bonded ceramic substrate characterized in that the diameter is 0.5 mm or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30629690A JPH04182367A (en) | 1990-11-14 | 1990-11-14 | Ceramic substrate joined to metallic plate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30629690A JPH04182367A (en) | 1990-11-14 | 1990-11-14 | Ceramic substrate joined to metallic plate |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04182367A true JPH04182367A (en) | 1992-06-29 |
Family
ID=17955394
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30629690A Pending JPH04182367A (en) | 1990-11-14 | 1990-11-14 | Ceramic substrate joined to metallic plate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04182367A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0758239A (en) * | 1993-06-30 | 1995-03-03 | Matsushita Electric Works Ltd | Chip carrier |
JP2003100965A (en) * | 2001-09-20 | 2003-04-04 | Denki Kagaku Kogyo Kk | Reliability evaluating method of circuit board and circuit board |
JP2016139722A (en) * | 2015-01-28 | 2016-08-04 | 日立金属株式会社 | Method for adjusting amount of curvature of insulated substrate |
-
1990
- 1990-11-14 JP JP30629690A patent/JPH04182367A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0758239A (en) * | 1993-06-30 | 1995-03-03 | Matsushita Electric Works Ltd | Chip carrier |
JP2003100965A (en) * | 2001-09-20 | 2003-04-04 | Denki Kagaku Kogyo Kk | Reliability evaluating method of circuit board and circuit board |
JP2016139722A (en) * | 2015-01-28 | 2016-08-04 | 日立金属株式会社 | Method for adjusting amount of curvature of insulated substrate |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1345480B1 (en) | Ceramic circuit board | |
JPH0777246B2 (en) | Ceramics circuit board | |
JPH04182367A (en) | Ceramic substrate joined to metallic plate | |
JPH0786703A (en) | Ceramic circuit board | |
JP3997293B2 (en) | Method for manufacturing metal-ceramic composite substrate having point bonding or line bonding | |
JP3863067B2 (en) | Method for producing metal-ceramic bonded body | |
JP4910113B2 (en) | Method for producing metal / ceramic bonding substrate | |
JPH04343287A (en) | Circuit board | |
JPH05166969A (en) | Semiconductor device | |
JPH10190176A (en) | Circuit board | |
US20020051353A1 (en) | High-frequency ceramic package | |
JPH0339991B2 (en) | ||
JPH0451583A (en) | Metal-sheet bonded ceramic board | |
JP2815504B2 (en) | Ceramic-metal bonded substrate with excellent thermal shock resistance | |
JP3953442B2 (en) | Semiconductor device | |
JPH0272655A (en) | Mounted part | |
EP3263540B1 (en) | Fireproof board | |
JP3281331B2 (en) | Ceramic-metal bonded substrate with excellent thermal shock resistance | |
JPH06334057A (en) | Bonding structure for ceramic and metal lead and formation thereof | |
JPH0418746A (en) | Substrate for ic mounting | |
JP4839461B2 (en) | Method for manufacturing aluminum oxide circuit board | |
JPH01205590A (en) | Circuit board | |
US5813884A (en) | Meniscus-shape terminations for leadless electronic components | |
JPH02348A (en) | Semiconductor device | |
JPS6151947A (en) | Semiconductor device |