JPH04182367A - Ceramic substrate joined to metallic plate - Google Patents

Ceramic substrate joined to metallic plate

Info

Publication number
JPH04182367A
JPH04182367A JP30629690A JP30629690A JPH04182367A JP H04182367 A JPH04182367 A JP H04182367A JP 30629690 A JP30629690 A JP 30629690A JP 30629690 A JP30629690 A JP 30629690A JP H04182367 A JPH04182367 A JP H04182367A
Authority
JP
Japan
Prior art keywords
ceramic substrate
surface side
peripheral edge
metallic plate
metallic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30629690A
Other languages
Japanese (ja)
Inventor
Kenji Fukuda
憲司 福田
Masato Kumagai
正人 熊谷
Toshihiko Funabashi
敏彦 船橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP30629690A priority Critical patent/JPH04182367A/en
Publication of JPH04182367A publication Critical patent/JPH04182367A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass

Landscapes

  • Ceramic Products (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Structure Of Printed Boards (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

PURPOSE:To improve the thermal impact resistance of the above ceramic substrate by specifying the shape of the corner angle parts of metallic plates, the ratio of the margin widths on a packaging surface side and a heat radiating surface side and the thickness of the ceramic substrate at the time of producing the ceramic substrate by joining the metallic plates and the ceramic substrate. CONSTITUTION:The corner angle parts, plan-viewed, of the metallic plates 2, 3 are previously rounded at a radius of curvature of 0.5 to 2mm at the time of joining the packaging surface side metallic plate 2 to one surface of the ceramic substrate 1 and joining the heat radiation surface side metallic plate 3 to the other surface. The margin width (y) on the heat radiation surface side between the peripheral edge of the metallic plate 3 and the peripheral edge of the ceramic substrate 1 is set 0.3 to 10 times the margin width (x) on the packaging surface side between the peripheral edge of the metallic plate 2 and the peripheral edge of the ceramic substrate 1. Further, the thickness of the ceramic substrate 1 is specified to >=0.5mm. The thermal stresses generated by the difference between the coeffts. of thermal expansion of the metallic plates 2, 3 and the ceramic substrate 1 are relieved in this way. The ceramic substrate joined to the metallic plates having the excellent thermal impact strength is thus produced.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、金属様接合セラミックス基板に関し、熱応力
を緩和した構造に係る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a metal-like bonded ceramic substrate, and relates to a structure in which thermal stress is alleviated.

[従来の技術] 金属とセラミックス基板の熱膨張率、ヤング率の違いに
より耐熱衝撃試験(−65℃→+150℃の熱衝撃を繰
返してセラミックス基板に亀裂の入るまでの回数を測定
する試験)中に、セラミックス基板に熱応力が発生し、
亀裂が発生する。従来は、放熱側銅板を薄くしたり、胴
折の周縁部を厚さ方向に山裾状の凹形丸み加工を施した
り、ろう材のフィレットを形成することなどにより熱応
力を軽減していた。しかし、これらの対策ではまだ不十
分であり、要求の厳しい場合にはクラックの発生を防止
することができない。
[Prior art] Due to the difference in thermal expansion coefficient and Young's modulus between metal and ceramic substrates, thermal shock resistance tests (tests that measure the number of times a ceramic substrate cracks by repeating thermal shock from -65°C to +150°C) , thermal stress occurs on the ceramic substrate,
Cracks occur. Conventionally, thermal stress has been reduced by making the copper plate on the heat dissipation side thinner, by rounding the peripheral edge of the body fold into a concave shape in the thickness direction, or by forming a fillet of brazing material. However, these measures are still insufficient and cannot prevent the occurrence of cracks in demanding cases.

〔発明が解決しようとする課題] 本発明は従来技術では解決できなかった金属板とセラミ
ックスの熱膨張率の差によって生ずる熱応力を緩和する
簡易で有効な構造を提供することを目的とする。
[Problems to be Solved by the Invention] An object of the present invention is to provide a simple and effective structure for alleviating thermal stress caused by the difference in coefficient of thermal expansion between a metal plate and ceramics, which could not be solved by conventional techniques.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、金属とセラミックスとを接合して構成する基
板において、金属板は平面的に見た隅角部に曲率半径0
.5 m m以上の丸味を有すると共に、金属板の周縁
部とセラミックス板の周縁部との放熱面側のマージンの
幅が実装面側のマージンの幅の03〜10倍であり、か
つセラミックス基板の厚さが0.5 m m以上である
ことを特徴とする金属板接合セラミックス基板である。
The present invention provides a substrate formed by bonding metal and ceramics, in which the metal plate has a radius of curvature of 0 at the corner portion when viewed in plan.
.. It has a roundness of 5 mm or more, and the width of the margin on the heat radiation surface side between the peripheral edge of the metal plate and the peripheral edge of the ceramic plate is 0.3 to 10 times the width of the margin on the mounting surface side, and This is a metal plate bonded ceramic substrate characterized by having a thickness of 0.5 mm or more.

〔作用〕[Effect]

本発明では銅板の平面図形の隅角部に曲率半径R−05
〜2.0 m mの丸みを有している。曲率半径Rが0
.5 m m未満では熱応力が軽減されず、2、0 m
 mを越えるとパターン精度が悪くなる。
In the present invention, the corner portion of the plane figure of the copper plate has a radius of curvature R-05.
It has a roundness of ~2.0 mm. Radius of curvature R is 0
.. Below 5 mm, the thermal stress is not reduced, and below 2.0 m
If it exceeds m, pattern accuracy will deteriorate.

第1図に金属板セラミックス接合板の模式断面を示す。FIG. 1 shows a schematic cross section of a metal plate ceramic bonded plate.

セラミックス基板1の片面に実装面側金属板2が装着さ
れ、他の面に放熱面側金属板3が貼着されている。
A mounting side metal plate 2 is attached to one side of a ceramic substrate 1, and a heat dissipation side metal plate 3 is attached to the other side.

放熱面側の金属板3の周縁部とセラミックス基板の周縁
部との間のマージン幅yと実装面側の金属板2のマージ
ン幅Xの比率によってセラミックス基板に発生する熱応
力は第2図のようになる。
Thermal stress generated in the ceramic substrate is determined by the ratio of the margin width y between the periphery of the metal plate 3 on the heat dissipation side and the periphery of the ceramic substrate and the margin width X of the metal plate 2 on the mounting side as shown in Fig. 2. It becomes like this.

yを大きくするにつれて、表、裏の金属板のバランスに
より熱応力は小さくなるがy/xのある値で極小値をと
りそれ以上にy/xを大きくすると、反対にセラミック
ス基板に発生ずる熱応力が大きくなる。第2図に一65
℃と+150″Cの間の繰返し耐熱衝撃数が100回を
超える熱応力値として11kg/mm’以下が示しであ
る。第2図より0.3 < y / x < 10の場
合可能であることがわかる。100回以下だと実際の使
用に耐えないのでy / xは100回を越える0、 
3 < y / x <10に範囲を限定した。
As y increases, the thermal stress decreases due to the balance between the front and back metal plates, but it reaches a minimum value at a certain value of y/x, and when y/x increases beyond that, the heat generated in the ceramic substrate increases. Stress increases. 165 in Figure 2
11kg/mm' or less is shown as the thermal stress value when the number of repeated thermal shocks between ℃ and +150''C exceeds 100 times.From Figure 2, it is possible when 0.3 < y / x < 10. If it is less than 100 times, it cannot withstand actual use, so y / x is 0, which exceeds 100 times.
The range was limited to 3<y/x<10.

次にセラミックス基板を厚(すると、セラミックス基板
に発生する曲げモーメントを小さくすることができ、耐
熱衝撃回数を増加することができる。厚さtが0.5 
m m未満では耐熱衝撃回数は50〜100回であり、
安定して100回を超えないので実際には使用できない
。したがって、0、5 m m以上とした。
Next, make the ceramic substrate thicker (thus, the bending moment generated in the ceramic substrate can be reduced, and the number of thermal shocks it can withstand can be increased. Thickness t is 0.5
If it is less than mm, the thermal shock resistance is 50 to 100 times,
It cannot be used in practice because it does not stably exceed 100 times. Therefore, it was set to 0.5 mm or more.

さらに、n=0.5〜2.0mm、0.3<y/x<1
0、Al2Nの厚さ≧0.5 m mはそれぞれ単独で
も効果はあるが、これらを組合わせると飛躍的に耐熱衝
撃性を向上させることができる。
Furthermore, n=0.5~2.0mm, 0.3<y/x<1
0.0, Al2N thickness≧0.5 mm Although each of these alone has an effect, when they are combined, the thermal shock resistance can be dramatically improved.

[実施例] 縦横50mmX50mmのアルミナ、Al2Nと銅板の
接合体を作成、次の試験を行った。t−0,635mm
、y/x=2.0の銅板の平面の隅角部に丸みを付さな
い場合と丸みを付した場合の耐熱衝撃数の比較を第1表
に示した。
[Example] A bonded body of alumina, Al2N and copper plates measuring 50 mm x 50 mm was prepared and the following tests were conducted. t-0,635mm
, y/x=2.0 Table 1 shows a comparison of the thermal shock resistance numbers when the corners of the plane of the copper plate with y/x=2.0 are not rounded and when they are rounded.

耐熱衝撃試験においては接合体に一65°Cと+150
℃間を繰返す熱衝撃を与えて、セラミックス基板に亀裂
が入るまでの回数を測定した。n=0,5以上で、あき
らかに耐熱衝撃数が100回を超えて実際の使用に耐え
る。
In the thermal shock test, the bonded body was subjected to temperatures of -65°C and +150°C.
Thermal shock was repeatedly applied to the ceramic substrate at temperatures between 1 and 2°C, and the number of times it took for the ceramic substrate to crack was measured. When n=0.5 or more, the thermal shock resistance clearly exceeds 100 times and can withstand actual use.

上記アルミナ、AρNと銅板の接合体で、R−2,0,
t=0.635mmのものに、y / x =0.0,
0.1.0.2.0.3.0.5.1.0.50.10
.0.11.0115.Oとしたセラミックス基板を作
成し、その接合体の耐熱衝撃数を実測した結果を第2表
に示した。y/xが03以上で耐熱衝撃数は100回を
超え、使用可能である。y/xが10を超えると、逆に
耐熱衝撃数が減少して100回を下回り実際の使用には
耐えない。
The above-mentioned alumina, AρN and copper plate bonded body, R-2,0,
For the one with t = 0.635 mm, y / x = 0.0,
0.1.0.2.0.3.0.5.1.0.50.10
.. 0.11.0115. Table 2 shows the results of actually measuring the thermal shock resistance of a bonded body of a ceramic substrate prepared with O. When y/x is 03 or more, the thermal shock resistance exceeds 100 times and it can be used. If y/x exceeds 10, the thermal shock resistance decreases to less than 100 times and cannot withstand actual use.

また、上記アルミナ、AgNと銅板の接合体で、セラミ
ックス基板の厚さtをそれぞれ0.25.0.45.0
,5.0635.1,0.1.5.2.0mとしてR=
1mm、y/x=2とした接合体の耐熱衝撃数を測定し
た。第3表に示すように、t=0.45mm以下では耐
熱衝撃数は50回以下であったが、0.5 m m以上
では100回を超える好成績を示している。
In addition, the thickness t of the ceramic substrate in the above-mentioned bonded body of alumina, AgN, and copper plate is 0.25, 0.45.0, respectively.
, 5.0635.1, 0.1.5.2.0m and R=
Thermal shock resistance of the joined body with a thickness of 1 mm and y/x=2 was measured. As shown in Table 3, when t=0.45 mm or less, the thermal shock resistance was 50 times or less, but when t=0.5 mm or more, it showed good results exceeding 100 times.

第4表にA42N基板(50mmX50mm)と銅板の
接合体において銅板の角のRとy/xとAffN基板の
厚さtを組合わせた場合の耐熱衝撃数(n)に対する効
果を示す。R= 1.0 m mでy/x=2.0.t
=0.635mmの場合にはn=100〜130回であ
ったのが、R,tは同じでもy / x = 5.0に
するとn=130−150回に増加し、/IN基板厚さ
tを1.0 m mにするとn=150〜200回にな
る。また、y / x = 2.0、t=0.635m
mのまま、R= 1.0から2.0 m mにするとn
=150〜200回に増加する。さらに、n=2.0m
mでy / x = 5.0、t = 1.0 m m
にすると耐熱衝撃数は250回を越え、非常に耐熱衝撃
性に優れた接合体を作製することができる。このように
n=0.5−2.0.0.3 < y / x <10
、t = 0.5 m m以上の本発明の条件を組合わ
せることにより耐熱衝撃性を飛躍的に向上させることが
できる。
Table 4 shows the effect on the thermal shock resistance number (n) when combining the R and y/x of the corners of the copper plate and the thickness t of the AffN substrate in a bonded body of an A42N substrate (50 mm x 50 mm) and a copper plate. R=1.0 mm and y/x=2.0. t
= 0.635 mm, n = 100-130 times, but when R and t are the same but y / x = 5.0, n = 130-150 times, /IN substrate thickness When t is 1.0 mm, n=150 to 200 times. Also, y/x = 2.0, t = 0.635m
If you leave m as is and change R from 1.0 to 2.0 m, then n
= increased to 150-200 times. Furthermore, n=2.0m
m in y/x = 5.0, t = 1.0 m m
In this case, the thermal shock resistance exceeds 250 times, making it possible to produce a bonded body with extremely excellent thermal shock resistance. Thus n=0.5-2.0.0.3 <y/x<10
, t = 0.5 mm or more, the thermal shock resistance can be dramatically improved by combining the conditions of the present invention.

第  1  表 第4表 [発明の効果1 本発明によれば、金属板接合セラミックス基板において
、簡易な構造改善によって、耐熱衝撃数の向上を図るこ
とができる。
Table 1 Table 4 [Effect of the Invention 1 According to the present invention, in a metal plate bonded ceramic substrate, the thermal shock resistance can be improved by simple structural improvement.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は金属板セラミックス接合板の模式断面図、第2
図は数値計算から求めたセラミックス基板に発生する熱
応力のy/x依存性を示すグラフである。 1・・セラミックス基板 2・・実装面側金属板 3 ・放熱面側金属板 X・・・実装面側マージン幅 y・放熱面側マージン幅
Figure 1 is a schematic cross-sectional view of a metal plate ceramic bonded plate, Figure 2
The figure is a graph showing the y/x dependence of thermal stress generated in a ceramic substrate, which was determined from numerical calculations. 1...Ceramics board 2...Metal plate on the mounting surface side 3 -Metal plate on the heat dissipation surface side X...Margin width on the mounting surface side y/Margin width on the heat dissipation surface side

Claims (1)

【特許請求の範囲】[Claims] 1 金属とセラミックスとを接合してなる基板において
、金属板は平面の隅角部に曲率半径0.5〜2.0mm
の丸味を有すると共に、金属板の周縁部とセラミックス
基板の周縁部との間の放熱面側のマージン幅が実装面側
のマージン幅の0.3〜10倍であり、かつセラミック
ス基板の厚さが0.5mm以上であることを特徴とする
金属板接合セラミックス基板。
1. In a substrate made by joining metal and ceramics, the metal plate has a radius of curvature of 0.5 to 2.0 mm at the corner of the plane.
roundness, the margin width on the heat dissipation surface side between the peripheral edge of the metal plate and the peripheral edge of the ceramic substrate is 0.3 to 10 times the margin width on the mounting surface side, and the thickness of the ceramic substrate A metal plate bonded ceramic substrate characterized in that the diameter is 0.5 mm or more.
JP30629690A 1990-11-14 1990-11-14 Ceramic substrate joined to metallic plate Pending JPH04182367A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30629690A JPH04182367A (en) 1990-11-14 1990-11-14 Ceramic substrate joined to metallic plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30629690A JPH04182367A (en) 1990-11-14 1990-11-14 Ceramic substrate joined to metallic plate

Publications (1)

Publication Number Publication Date
JPH04182367A true JPH04182367A (en) 1992-06-29

Family

ID=17955394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30629690A Pending JPH04182367A (en) 1990-11-14 1990-11-14 Ceramic substrate joined to metallic plate

Country Status (1)

Country Link
JP (1) JPH04182367A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0758239A (en) * 1993-06-30 1995-03-03 Matsushita Electric Works Ltd Chip carrier
JP2003100965A (en) * 2001-09-20 2003-04-04 Denki Kagaku Kogyo Kk Reliability evaluating method of circuit board and circuit board
JP2016139722A (en) * 2015-01-28 2016-08-04 日立金属株式会社 Method for adjusting amount of curvature of insulated substrate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0758239A (en) * 1993-06-30 1995-03-03 Matsushita Electric Works Ltd Chip carrier
JP2003100965A (en) * 2001-09-20 2003-04-04 Denki Kagaku Kogyo Kk Reliability evaluating method of circuit board and circuit board
JP2016139722A (en) * 2015-01-28 2016-08-04 日立金属株式会社 Method for adjusting amount of curvature of insulated substrate

Similar Documents

Publication Publication Date Title
EP1345480B1 (en) Ceramic circuit board
JPH0777246B2 (en) Ceramics circuit board
JPH04182367A (en) Ceramic substrate joined to metallic plate
JPH0786703A (en) Ceramic circuit board
JP3997293B2 (en) Method for manufacturing metal-ceramic composite substrate having point bonding or line bonding
JP3863067B2 (en) Method for producing metal-ceramic bonded body
JP4910113B2 (en) Method for producing metal / ceramic bonding substrate
JPH04343287A (en) Circuit board
JPH05166969A (en) Semiconductor device
JPH10190176A (en) Circuit board
US20020051353A1 (en) High-frequency ceramic package
JPH0339991B2 (en)
JPH0451583A (en) Metal-sheet bonded ceramic board
JP2815504B2 (en) Ceramic-metal bonded substrate with excellent thermal shock resistance
JP3953442B2 (en) Semiconductor device
JPH0272655A (en) Mounted part
EP3263540B1 (en) Fireproof board
JP3281331B2 (en) Ceramic-metal bonded substrate with excellent thermal shock resistance
JPH06334057A (en) Bonding structure for ceramic and metal lead and formation thereof
JPH0418746A (en) Substrate for ic mounting
JP4839461B2 (en) Method for manufacturing aluminum oxide circuit board
JPH01205590A (en) Circuit board
US5813884A (en) Meniscus-shape terminations for leadless electronic components
JPH02348A (en) Semiconductor device
JPS6151947A (en) Semiconductor device