JPH04182087A - Condensing device for laser beam machining - Google Patents

Condensing device for laser beam machining

Info

Publication number
JPH04182087A
JPH04182087A JP2312132A JP31213290A JPH04182087A JP H04182087 A JPH04182087 A JP H04182087A JP 2312132 A JP2312132 A JP 2312132A JP 31213290 A JP31213290 A JP 31213290A JP H04182087 A JPH04182087 A JP H04182087A
Authority
JP
Japan
Prior art keywords
mirror
laser
laser beam
condensing device
beams
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2312132A
Other languages
Japanese (ja)
Inventor
Hiroyuki Shimizu
弘之 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2312132A priority Critical patent/JPH04182087A/en
Publication of JPH04182087A publication Critical patent/JPH04182087A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • B23K26/0608Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams in the same heat affected zone [HAZ]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0643Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising mirrors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/067Dividing the beam into multiple beams, e.g. multifocusing
    • B23K26/0676Dividing the beam into multiple beams, e.g. multifocusing into dependently operating sub-beams, e.g. an array of spots with fixed spatial relationship or for performing simultaneously identical operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/1462Nozzles; Features related to nozzles

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

PURPOSE:To obtain an arbitrary beam intensity pattern by dividing a beam through a double focus mirror into two beams and then condensing them separately in a beam system wherein a total reflection mirror and a double focus mirror are assembled. CONSTITUTION:The laser beam from a laser oscillator is reflected, first, by the total reflection mirror 1, then, by double focus mirrors 2, 3 to be divided into two beams and condensed. Accordingly, two beams obtained by dividing one beam can be condensed at two points which are a fine distance apart from each other. Therefore, various beam intensity distributions different in beam intensity and interbeam distance are obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、レーザ加工用集光装置に係り、特にレーザ溶
接用に適するレーザ加工用集光装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a condensing device for laser processing, and particularly to a condensing device for laser processing suitable for laser welding.

(従来の技術及び解決しようとする課題)従来より、レ
ーザによる熱源は、溶接1表面改質等々の様々な加工用
途に利用されており、熱源としてもC○2レーザ、YA
Gレーザ等々の種々のものが利用されている。
(Prior art and problems to be solved) Conventionally, laser heat sources have been used for various processing applications such as welding and surface modification, and heat sources such as C○2 laser and YA
Various types such as G laser are used.

従来、C○2レーザ等の高出力レーザの集光系には、球
面又は放物面のミラーやZn5e等のレンズが用いられ
ており、これらによってレーザビームを絞って、パワー
密度を上げた状態で溶接等に利用されていた。
Conventionally, spherical or parabolic mirrors and lenses such as Zn5e have been used in the condensing systems of high-power lasers such as C○2 lasers, which narrow down the laser beam and increase the power density. It was used for welding, etc.

しかし、このようなビーム系では、表面処理鋼板等の溶
接の場合、溶接欠陥が発生し易いという問題があり、ま
た、AQ等の熱伝導率の良い金属の溶接の場合にはビー
トが乱れるという問題があった。更に、高張力鋼板等の
溶接の場合、溶接金属や熱影響部(HAZ)が硬化する
という問題があった・ その原因は、従来のレーザビーム集光装置では、一定の
強度パターンでしか集光できず、任意の強度パターンが
得られないので5種々の加工態様に適した対応が不可能
なためである。
However, with such a beam system, there is a problem that welding defects are likely to occur when welding surface-treated steel plates, etc., and the beat is disturbed when welding metals with good thermal conductivity such as AQ. There was a problem. Furthermore, when welding high-strength steel plates, etc., there was a problem of hardening of the weld metal and heat-affected zone (HAZ). This is because it is not possible to obtain a desired intensity pattern, and it is therefore impossible to respond appropriately to various processing modes.

そこで、従来は、複雑なスキャン機構を取付けてレーザ
ビームをスキャニング(振動)させて対応していた。し
かし、スキャン機構は高価であり、装置のコスト高をも
たらしていた。
Conventionally, this problem has been dealt with by installing a complicated scanning mechanism to scan (vibrate) the laser beam. However, the scanning mechanism is expensive, resulting in an increase in the cost of the device.

一方、他の問題として、溶接施工時に溶接スパッタがレ
ンズやミラーに付着して損傷するので、高価なレンズや
ミラーを頻繁に交換する必要があり、コスト高であった
On the other hand, another problem is that welding spatter adheres to lenses and mirrors during welding and damages them, making it necessary to frequently replace expensive lenses and mirrors, resulting in high costs.

本発明は、上記従来技術の問題点を解決して。The present invention solves the problems of the prior art described above.

任意のビーム強度パターンが容易に得られる安価なレー
ザ加工用集光装置を提供することを目的とするものであ
る。
The object of the present invention is to provide an inexpensive condensing device for laser processing that can easily obtain an arbitrary beam intensity pattern.

(課題を解決するための手段) 前記課題を解決するため、本発明者等は、レーザビーム
系について鋭意研究を重ねた結果、ここに本発明をなし
たものである。
(Means for Solving the Problems) In order to solve the above-mentioned problems, the present inventors have conducted extensive research on laser beam systems, and have hereby accomplished the present invention.

すなわち、本発明は、レーザ発振器からのレーザビーム
を全反射ミラーにて屈曲させ、これを更に他のミラーに
て反射させて加工部に集光させるレーザビーム系におい
て、後者の他のミラーとして、二重焦点ミラーを用いる
ことにより、2つのビームに分割して集光させる構成に
したことを特徴とするレーザ加工用集光装置を要旨とす
るものである。
That is, the present invention provides a laser beam system in which a laser beam from a laser oscillator is bent by a total reflection mirror, and further reflected by another mirror to be focused on a processing part. The gist of the present invention is a condensing device for laser processing, which is characterized by having a configuration in which the beam is divided into two beams and condensed by using a bifocal mirror.

また、レーザビーム方向と同軸方向又は交差する方向に
ガスを流すスパッタ付着防止装置を集光ビームの回りに
設けたことを特徴とするものである。
Further, the present invention is characterized in that a sputter adhesion prevention device is provided around the condensed beam to flow gas in a direction coaxial with or perpendicular to the direction of the laser beam.

以下に本発明を更に詳細に説明する。The present invention will be explained in more detail below.

(作用) 前述のように、従来のレーザビーム集光装置は。(effect) As mentioned above, the conventional laser beam focusing device.

レーザ発振器からのレーザビームを1枚のレンズ(球面
レンズ、放物面レンズ)又はミラー(球面ミラー、放物
面ミラー)を用いて集光するビーム系であるので、一定
のビーム強度分布のものしが得られない。
Since this is a beam system that focuses the laser beam from a laser oscillator using a single lens (spherical lens, parabolic lens) or mirror (spherical mirror, parabolic mirror), it has a constant beam intensity distribution. I can't get it.

一方、本発明は、1枚のレンズ又はミラーに代えて、全
反射ミラーと二重焦点ミラーとを組合せて用いるビーム
系とし、二重焦点ミラーによって2つのビームに分割し
てこれらを集光させるので。
On the other hand, the present invention uses a beam system that uses a combination of a total reflection mirror and a bifocal mirror instead of one lens or mirror, and the bifocal mirror splits the beam into two beams and focuses them. So.

各ビームのビーム強度パターンを任意に組合せて種々の
ビーム強度パターンを得ることが可能である。
It is possible to obtain various beam intensity patterns by arbitrarily combining the beam intensity patterns of each beam.

第1図は本発明のレーザビーム系の一例を示したもので
、レーザ発振器からのレーザビームを、まず全反射ミラ
ーlにて反射させ、次いで二重焦点ミラー2.3にて反
射させて2つのビームに分割し、これらを集光させるビ
ーム系である。したがって、1つのビームを分割した2
つのビームをそれぞれ微小距離(Q:1〜5III11
程度)離れた2つの点に集光させることができる。
FIG. 1 shows an example of a laser beam system according to the present invention, in which a laser beam from a laser oscillator is first reflected by a total reflection mirror 1, then reflected by a bifocal mirror 2.3. This is a beam system that splits into two beams and focuses them. Therefore, one beam is divided into two
two beams each at a very small distance (Q:1~5III11
It is possible to focus light on two distant points.

全反射ミラーとしては、ビームを屈曲させるミラーであ
れば如何なるものでもよい。
Any mirror that bends the beam may be used as the total reflection mirror.

二重焦点ミラーとしては、適当なミラーを2枚組み合わ
せて構成し、放物面ミラー、球面ミラー及びセミシリン
ドリカルミラーなどを2枚組合せて用いられる。表面に
Cuや、Auなどの貴金属を被覆したミラーでよいので
安価で耐久性もよい。
The bifocal mirror is constructed by combining two suitable mirrors, and is used by combining two parabolic mirrors, spherical mirrors, semi-cylindrical mirrors, etc. A mirror whose surface is coated with a noble metal such as Cu or Au may be used, so it is inexpensive and has good durability.

2枚のミラーは、同じ焦点距離のミラーが好ましく、例
えば、1枚のミラーを半分に分割し、第1図に示すよう
に両者が僅かに重なるように配列する。
The two mirrors preferably have the same focal length; for example, one mirror is divided into halves and arranged so that the two mirrors slightly overlap each other as shown in FIG.

ここで、セミシリンドリカルミラーとは、通常のシリン
ドリカルミラーが有する曲率方向と直交する方向にも曲
率を設けたミラーを云う。すなわち、全体が第2図に示
すような形状のミラーであり、そのA断面は第3図に示
すようにシリンドリカル面(円柱側面)が曲率fの局面
を有し、B断面は第4図に示すようにシリンドリカル面
がaXfの曲率(1<a)を有している。このaの値が
大きいほど、第5図に示すようにy軸方向(B断面方向
)のビーム幅を拡げることができる。
Here, the semi-cylindrical mirror refers to a mirror that also has curvature in a direction orthogonal to the curvature direction of a normal cylindrical mirror. In other words, the entire mirror is shaped as shown in Figure 2, and its cross-section A has a cylindrical surface (cylindrical side surface) with a curvature f as shown in Figure 3, and the cross-section B has a curve as shown in Figure 4. As shown, the cylindrical surface has a curvature of aXf (1<a). The larger the value of a, the wider the beam width in the y-axis direction (cross-sectional direction B), as shown in FIG.

また、2枚のミラーは、第1図に示すように、各々を回
転可能にしたり、或いは加工線方向(X軸方向)に移動
可能にすることができる。回転角度は僅かでよい。また
、回転軸の高さをそれぞれ変えたり1曲率を変えたりし
て、加工部上に焦点を作ることも可能である。
Furthermore, as shown in FIG. 1, the two mirrors can each be made rotatable or movable in the processing line direction (X-axis direction). The rotation angle may be small. It is also possible to create a focal point on the processing part by changing the height or curvature of the rotating shafts.

本発明のレーザビーム集光系は上述の構成であるので、
以下のような利用態様が可能である。
Since the laser beam focusing system of the present invention has the above-mentioned configuration,
The following usage modes are possible.

まず、二重焦点ミラーに入る前のビーム強度分布が第6
図に示すようなビーム強度パターンの場合、二重焦点ミ
ラーの2枚のミラーを回転することにより、例えば第7
図、第8図、第9図に示すように、1つのビームを2点
に集光でき、しかも、各ビームのビーム強度と距離を変
えた種々のビーム強度パターンを得ることができる。第
7図は2つのビームの距離を比較的大きくした場合、第
8図は近接した場合、第9図は重なるようにした場合で
ある。
First, the beam intensity distribution before entering the bifocal mirror is
For the beam intensity pattern shown in the figure, for example, by rotating two mirrors of the bifocal mirror,
As shown in FIGS. 8 and 9, one beam can be focused on two points, and various beam intensity patterns can be obtained by changing the beam intensity and distance of each beam. FIG. 7 shows a case where the distance between the two beams is relatively large, FIG. 8 shows a case where they are close to each other, and FIG. 9 shows a case where they overlap.

したがって、2つのビームのうち弱い強度パターンのビ
ームを予熱処理、後熱処理などに利用できる。また、表
面処理鋼板の溶接の場合は、弱い強度パターンで表面皮
膜を除去した後に強い強度パターンのビームで本溶接す
ることにより、皮膜に起因する溶接欠陥を防止できる。
Therefore, of the two beams, the beam with the weaker intensity pattern can be used for preheating treatment, post-heating treatment, etc. Furthermore, in the case of welding surface-treated steel sheets, welding defects caused by the coating can be prevented by removing the surface coating using a weak intensity pattern and then performing main welding using a beam with a strong intensity pattern.

更には、溶融池内対流の制御にも利用できる。Furthermore, it can also be used to control convection within the molten pool.

なお、第6図の場合のビーム強度分布はfIodV=f
工、dv工+f■2dV2で表わすことができ、第7図
〜第9図の場合、それぞれ図中左側のものはf11dv
工、右側のものはf I2d v2と表わすことができ
る。
Note that the beam intensity distribution in the case of Fig. 6 is fIodV=f
In the case of Figures 7 to 9, the left side in each figure is f11dv.
The one on the right can be expressed as f I2d v2.

また、二重焦点ミラーの2枚のミラーをX軸方向に平行
移動させることにより、第1ビームと第2ビームの強度
比を連続的に変えることができる。
Further, by moving the two mirrors of the bifocal mirror in parallel in the X-axis direction, the intensity ratio of the first beam and the second beam can be continuously changed.

更に、二重焦点ミラーとしてセミシリンドリカルミラー
を2枚組み合わせることにより、第5図に示すようにセ
ミシリンドリカルミラーが焦点におけるX軸方向の幅を
狭くし及びy軸方向の幅を広くできるので、母材にギャ
ップのある溶接や、フィラーワイヤを用いる溶接に応用
できる。
Furthermore, by combining two semi-cylindrical mirrors as a bifocal mirror, the semi-cylindrical mirror can narrow the width in the X-axis direction and widen the width in the y-axis direction at the focal point, as shown in FIG. It can be applied to welding with gaps in materials and welding using filler wire.

第10図は上述のビーム系に設けるスパッタ付着防止装
置を示している。この装置は、二重焦点ミラーで反射し
た集光ビームの回りにガス流通部材4を配置したもので
ある。レーザビーム方向と同軸方向に流す場合(a)に
は、環状部材4の流出口をビームと同軸方向に向けるよ
うにする。一方、レーザビーム方向と交差する方向に流
す場合(b)には、交差する方向に一対のガス流出口と
ガス吸引口をビーム周囲に対向させ、ガス流出口からガ
スを噴出させて、これをガス吸引口に吸引する構成にす
る。溶接スパッタは加工部からほぼ上方に飛散するので
、レーザビームと同軸方向にガスを流すのが好ましい。
FIG. 10 shows a sputter adhesion prevention device provided in the above-mentioned beam system. In this device, a gas flow member 4 is arranged around a condensed beam reflected by a bifocal mirror. When flowing in the direction coaxial with the laser beam direction (a), the outlet of the annular member 4 is directed in the coaxial direction with the beam. On the other hand, when flowing in a direction that intersects the laser beam direction (b), a pair of gas outlets and a gas suction port are placed opposite to each other around the beam in the intersecting direction, and the gas is ejected from the gas outlet. Configure the gas to be sucked into the gas suction port. Since welding spatter is scattered almost upward from the processed area, it is preferable to flow the gas in the same axis direction as the laser beam.

ガスとしてはN2、Ar−Heなどの不活性ガスが用い
られる。ガスを流す速度は適宜法められる。
As the gas, an inert gas such as N2 or Ar-He is used. The speed at which the gas flows is determined as appropriate.

(発明の効果) 以上詳述したように、本発明によれば、二重焦点ミラー
用いて1つのビームを2つのビームに分割して集光させ
るので、ビーム強度及び距離の異なる種々のビーム強度
分布が得られる。また、複雑で高価なスキャン機構を必
要とせず、全体の機構が簡易であり、スパッタ付着防止
も可能であるのでミラーの耐久性が向上でき、経済的で
ある6
(Effects of the Invention) As detailed above, according to the present invention, one beam is divided into two beams and focused using a bifocal mirror, so that various beam intensities with different beam intensities and distances can be generated. distribution is obtained. In addition, the overall mechanism is simple without requiring a complicated and expensive scanning mechanism, and it is possible to prevent spatter adhesion, improving the durability of the mirror and being economical6.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のレーザビーム系の構成例を示す説明図
、 第2図〜第4図はセミシリンドリカルミラーを説明する
図で、第2図は斜視図、第3図は第2図のA断面図、第
4図は第2図のB断面図であり。 第5図は二重焦点ミラーとしてセミシリンドリカルミラ
ーを用いた場合に集光されるビームの強度パターンを示
す図。 第6図は二重焦点ミラーに入る前のビーム強度分布を示
す図、 第7図〜第9図は二重焦点ミラーにより得られる異なる
ビーム強度分布の例を示す図、第10図(a)、(b)
はスパッタ付着防止装置を示す説明図である。 1・・・全反射ミラー、2.3・・・二重焦点ミラー、
4・・ガス流通部材。 第1図 第2図   第3図 ↓′ 第4図 第6図 第7図    第8図 第9図 第10図 (a)       (b)
FIG. 1 is an explanatory diagram showing a configuration example of a laser beam system of the present invention, FIGS. 2 to 4 are diagrams explaining a semi-cylindrical mirror, FIG. 2 is a perspective view, and FIG. 3 is a diagram similar to that of FIG. A sectional view, and FIG. 4 are B sectional views of FIG. 2. FIG. 5 is a diagram showing the intensity pattern of a beam focused when a semi-cylindrical mirror is used as a bifocal mirror. Figure 6 is a diagram showing the beam intensity distribution before entering the bifocal mirror, Figures 7 to 9 are diagrams showing examples of different beam intensity distributions obtained by the bifocal mirror, and Figure 10 (a). ,(b)
FIG. 2 is an explanatory diagram showing a sputter adhesion prevention device. 1... Total reflection mirror, 2.3... Bifocal mirror,
4. Gas distribution components. Figure 1 Figure 2 Figure 3 ↓' Figure 4 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 (a) (b)

Claims (4)

【特許請求の範囲】[Claims] (1)レーザ発振器からのレーザビームを全反射ミラー
にて屈曲させ、これを更に他のミラーにて反射させて加
工部に集光させるレーザビーム系において、後者の他の
ミラーとして、二重焦点ミラーを用いることにより、2
つのビームに分割して集光させる構成にしたことを特徴
とするレーザ加工用集光装置。
(1) In a laser beam system in which a laser beam from a laser oscillator is bent by a total reflection mirror, and further reflected by another mirror to focus it on the processing area, the other mirror of the latter is a double focal point. By using a mirror, 2
A condensing device for laser processing, characterized by having a configuration in which the light is divided into two beams and condensed.
(2)二重焦点ミラーが、放物面ミラー、球面ミラー及
びセミシリンドリカルミラーのうちのいずれかで、かつ
、2枚を組み合わせて用いる請求項1に記載のレーザ加
工用集光装置。
(2) The condensing device for laser processing according to claim 1, wherein the bifocal mirror is any one of a parabolic mirror, a spherical mirror, and a semi-cylindrical mirror, and two of them are used in combination.
(3)2枚のミラーをそれぞれ回転可能に又は加工方向
に移動可能に設けた請求項2に記載のレーザ加工用集光
装置。
(3) The condensing device for laser processing according to claim 2, wherein the two mirrors are provided rotatably or movably in the processing direction.
(4)レーザビーム方向と同軸方向又は交差する方向に
ガスを流すスパッタ付着防止装置を集光ビームの回りに
設けた請求項1に記載のレーザ加工用集光装置。
(4) The condensing device for laser processing according to claim 1, further comprising a sputter adhesion prevention device that causes gas to flow in a direction coaxial with or perpendicular to the direction of the laser beam, provided around the condensed beam.
JP2312132A 1990-11-17 1990-11-17 Condensing device for laser beam machining Pending JPH04182087A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2312132A JPH04182087A (en) 1990-11-17 1990-11-17 Condensing device for laser beam machining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2312132A JPH04182087A (en) 1990-11-17 1990-11-17 Condensing device for laser beam machining

Publications (1)

Publication Number Publication Date
JPH04182087A true JPH04182087A (en) 1992-06-29

Family

ID=18025639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2312132A Pending JPH04182087A (en) 1990-11-17 1990-11-17 Condensing device for laser beam machining

Country Status (1)

Country Link
JP (1) JPH04182087A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5378582A (en) * 1992-09-29 1995-01-03 Bausch & Lomb Incorporated Symmetric sweep scanning technique for laser ablation
US5498508A (en) * 1992-09-29 1996-03-12 Bausch & Lomb Incorporated Symmetric scanning technique for laser ablation
FR2746047A1 (en) * 1996-03-13 1997-09-19 Alphatech Ind Sa Bifocal optomechanical head for laser welding and cutting
EP0865863A1 (en) * 1997-03-19 1998-09-23 Alphatech-Industrie Bifocalisation-Optics-Head
US5841097A (en) * 1995-12-27 1998-11-24 Toyota Jidosha Kabushiki Kaisha Process and apparatus for welding workpieces with two or more laser beams whose spots are oscillated across welding direction
DE10261422A1 (en) * 2002-12-30 2004-07-08 Volkswagen Ag Laser welding and soldering method involves adjusting sub-beams in respect of their energy distribution, focal point rotation and/or working point separation by adjusting beam separating devices
EP2774712A1 (en) * 2013-03-07 2014-09-10 Siemens Aktiengesellschaft Laser method with different laser beam areas within a beam
EP2774713A1 (en) * 2013-03-07 2014-09-10 Siemens Aktiengesellschaft Laser method with different laser beam areas within a beam and devices

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5378582A (en) * 1992-09-29 1995-01-03 Bausch & Lomb Incorporated Symmetric sweep scanning technique for laser ablation
US5498508A (en) * 1992-09-29 1996-03-12 Bausch & Lomb Incorporated Symmetric scanning technique for laser ablation
US5841097A (en) * 1995-12-27 1998-11-24 Toyota Jidosha Kabushiki Kaisha Process and apparatus for welding workpieces with two or more laser beams whose spots are oscillated across welding direction
FR2746047A1 (en) * 1996-03-13 1997-09-19 Alphatech Ind Sa Bifocal optomechanical head for laser welding and cutting
EP0865863A1 (en) * 1997-03-19 1998-09-23 Alphatech-Industrie Bifocalisation-Optics-Head
DE10261422B4 (en) * 2002-12-30 2014-04-03 Volkswagen Ag Laser welding and soldering method and device
DE10261422A1 (en) * 2002-12-30 2004-07-08 Volkswagen Ag Laser welding and soldering method involves adjusting sub-beams in respect of their energy distribution, focal point rotation and/or working point separation by adjusting beam separating devices
EP2774712A1 (en) * 2013-03-07 2014-09-10 Siemens Aktiengesellschaft Laser method with different laser beam areas within a beam
EP2774713A1 (en) * 2013-03-07 2014-09-10 Siemens Aktiengesellschaft Laser method with different laser beam areas within a beam and devices
WO2014135358A1 (en) * 2013-03-07 2014-09-12 Siemens Aktiengesellschaft Laser method with different laser beam areas within a beam and devices
WO2014135362A1 (en) * 2013-03-07 2014-09-12 Siemens Aktiengesellschaft Laser method with different laser beam areas within a beam
US9884391B2 (en) 2013-03-07 2018-02-06 Siemens Aktiengesellschaft Laser method with different laser beam areas within a beam and devices
US10144092B2 (en) 2013-03-07 2018-12-04 Siemens Aktiengesellschaft Laser method with different laser beam areas within a beam

Similar Documents

Publication Publication Date Title
US8198565B2 (en) Laser-welding apparatus and method
US20210121981A1 (en) Wide path welding, cladding, additive manufacturing
EP2205393B1 (en) Device and method for laser processing
DE102007038502B4 (en) Method for joining at least two workpieces by means of a laser beam
US20180071848A1 (en) Laser Beam Joining Method and Laser Machining Optics
RU2758425C2 (en) Method and system for welding using energy beam
US4636611A (en) Quiescent circle and arc generator
JP2003200286A (en) Laser microspot welding equipment
CN102015189A (en) Method for laser treating work pieces by way of a laser beam and a dynamic beam control of the laser beam
JPH04182087A (en) Condensing device for laser beam machining
JP2000042779A (en) Laser beam machining device
JPS6293095A (en) Laser beam machine
CN114523207B (en) Laser welding method
JP4797659B2 (en) Laser welding method
KR20060126789A (en) Method for modifying the topography of coated sheet metal using a laser beam and coated sheet metal with a topographical modification of this type
JP2008544859A (en) Laser welding system and method
JPH0436794B2 (en)
JPH04138889A (en) Head device for laser beam machining
JPH01186293A (en) Laser welding method
JPH04182088A (en) Condensing device for laser beam machining
JPH01113192A (en) Converging device for laser beam machine
JPH07185856A (en) Method and device for laser beam machining
JPH04138888A (en) Laser beam machining head
JPH04200988A (en) Condensing device for laser beam machining
JPH04167989A (en) Two beam laser welding method