JPH04182045A - Method for continuously casting cast slab without any flaw below surface - Google Patents

Method for continuously casting cast slab without any flaw below surface

Info

Publication number
JPH04182045A
JPH04182045A JP31192590A JP31192590A JPH04182045A JP H04182045 A JPH04182045 A JP H04182045A JP 31192590 A JP31192590 A JP 31192590A JP 31192590 A JP31192590 A JP 31192590A JP H04182045 A JPH04182045 A JP H04182045A
Authority
JP
Japan
Prior art keywords
mold
molten steel
meniscus
heat insulating
insulating plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31192590A
Other languages
Japanese (ja)
Inventor
Hirofumi Sugawara
宏文 菅原
Matsuhide Aoki
青木 松秀
Shozo Watanabe
省三 渡辺
Takahiko Sato
孝彦 佐藤
Takeshi Hanazono
花園 猛
Sakuo Sasaki
佐々木 策男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP31192590A priority Critical patent/JPH04182045A/en
Publication of JPH04182045A publication Critical patent/JPH04182045A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To prevent a crack just below surface and to improve the product yield by covering the meniscus of a molten steel in a mold with non-melting heat insulating plate and also executing a casting while pouring a lubricating oil from between the non-melting heat insulating plate and the mold wall. CONSTITUTION:The molten steel 2 received into a tundish 1 from a ladle is poured into the mold 4 through an immersion nozzle 3 provided in the mold 4 together with the non-melting heat insulating plate 6 while penetrating through the plate 6, and the meniscus 5 of molten steel in the mold 4 is covered with the plate 6. Simultaneously, a continuous casting is executed while pouring the lubricating oil 7 from a gap (t) between the mold 4 and the plate 6. By this method, the crack just below the surface is prevented and the product yield is improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、皮下欠陥の無い鋳片を得るための連続鋳造方
法に関し、詳細には、低炭素鋼(C・0.18冒t%以
下)の連続鋳造方法に関するものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a continuous casting method for obtaining slabs free of subcutaneous defects, and in particular, low carbon steel (C, 0.18% or less ) Continuous casting method.

〔従来の技術と発明か解決しようとする課題〕従来、溶
鋼の連続鋳造方法としては、例えば、第3図に示すよう
に、図外の取鍋からタンデイツシュlに注湯した溶鋼2
を、注湯ノズル8を介して鋳型4内の溶鋼メニスカス5
上に注湯する一方、鋳型4内の溶鋼メニスカス5上に潤
滑油7を注入し、この潤滑油7によって鋳型内壁面と凝
固殻との間の潤滑を行いなから連続鋳造する方法や、あ
るいは第4図に示すように、図外の取鍋からタンデイツ
シュlに注湯した溶鋼2を、浸漬ノズル3を介して鋳型
4内の溶鋼内に注湯する一方、鋳型4内の溶鋼メニスカ
ス5をパウダ9により被覆し、このパウダスラグによっ
て鋳型内壁面と凝固殻との間の潤滑を行いながら連続鋳
造する方法等か行われている。
[Prior art and problems to be solved by the invention] Conventionally, as a continuous casting method for molten steel, for example, as shown in FIG.
The molten steel meniscus 5 in the mold 4 is poured through the pouring nozzle 8.
At the same time, a lubricating oil 7 is injected onto the molten steel meniscus 5 in the mold 4, and the lubricating oil 7 lubricates between the inner wall surface of the mold and the solidified shell, and then continuous casting is performed. As shown in FIG. 4, the molten steel 2 poured from a ladle (not shown) into the tundish plate L is poured into the molten steel in the mold 4 through the immersion nozzle 3, while the molten steel meniscus 5 in the mold 4 is poured into the molten steel in the mold 4. A method is used in which continuous casting is performed by coating with powder 9 and using this powder slug to lubricate the space between the inner wall surface of the mold and the solidified shell.

ところて、前者の連続鋳造方法では、溶鋼2か注湯ノズ
ル8から鋳型内の溶鋼メニスカス5上に吐出されている
ため、吐出された溶鋼2か酸化する問題、および鋳型内
の溶鋼メニスカス5が大気にさらされているため、溶鋼
メニスカス5が酸化する問題や、大気への放熱による溶
鋼メニスカス5の温度低下、延いては溶鋼メニスカス5
か凝固する問題もあり、溶鋼メニスカス5が少ない小断
面鋳片に適用が限られる。またこの連続鋳造方法におい
て、注湯ノズル8に替え浸漬ノズル3を使用することも
考えられるか、浸漬ノズル3を使用した場合、浸漬ノズ
ル3により注湯溶鋼2の酸化は防止されるか、溶鋼メニ
スカス5からの大気への放熱かより激しくなり、溶鋼メ
ニスカス5の温度が大きく低下し、浸漬ノズル3周辺で
の凝固やスカムか発生し、これにより鋳造不能あるいは
鋳造かできても鋳片に重大な品質欠陥か生じることにな
り、実用性に欠ける。
However, in the former continuous casting method, since the molten steel 2 is discharged from the pouring nozzle 8 onto the molten steel meniscus 5 in the mold, there is a problem that the discharged molten steel 2 is oxidized and the molten steel meniscus 5 in the mold is Since it is exposed to the atmosphere, there is a problem that the molten steel meniscus 5 oxidizes, the temperature of the molten steel meniscus 5 decreases due to heat radiation to the atmosphere, and the molten steel meniscus 5
There is also the problem of solidification, and its application is limited to small-section slabs with a small molten steel meniscus 5. In addition, in this continuous casting method, is it possible to use the immersion nozzle 3 instead of the pouring nozzle 8?If the immersion nozzle 3 is used, will the oxidation of the molten steel 2 poured by the immersion nozzle 3 be prevented? The heat dissipation from the meniscus 5 to the atmosphere becomes more intense, the temperature of the molten steel meniscus 5 drops significantly, and solidification and scum occur around the immersion nozzle 3, resulting in the inability to cast, or even if casting is possible, serious damage to the slab. This may result in serious quality defects, making it impractical.

一方、後者の連続鋳造方法では、タンデイツシュlから
鋳型4への溶鋼2の注湯には浸漬ノズル3を使用し、し
かも鋳型4内の溶鋼メニスカス5はパウダ9て被覆され
ているので、上記前者の連続鋳造方法のような溶鋼メニ
スカス5の大気酸化や凝固の問題は解消されるか、溶鋼
2か凝固しなから鋳型内を引き抜かれて行く過程の凝固
途中で、特に低炭素鋼(C:0.18wt%以下)の場
合には、次の如きメカニズムにより鋳片に皮下欠陥か発
生する。
On the other hand, in the latter continuous casting method, the immersion nozzle 3 is used to pour the molten steel 2 from the tandem tube 1 into the mold 4, and the molten steel meniscus 5 in the mold 4 is covered with powder 9. The problem of atmospheric oxidation and solidification of the molten steel meniscus 5, as in the continuous casting method of (0.18 wt% or less), subcutaneous defects occur in the slab due to the following mechanism.

先ず、凝固初期に、鋳片表面に包晶反応か関与する凝固
収縮による筋状の凹みか発生する。次いてこの凹みへパ
ウダスラグか流れ込み、これにより凹みか冷却加速され
る。この冷却加速により包晶反応の時間当たりの量か増
加し、この増加に伴い包晶反応量の増加による凝固収縮
量の増加か起こり、凹みの増大とこの増大された凹みへ
のさらなるパウダスラグの流れ込みとかおこり、これら
の繰り返しにより凹みの深さかある程度増大(例えば0
.25闘以上)すると、その凹みの皮下直下に凝固中の
割れが発生する。この割れは、当然濃化溶鋼で充填され
ているか、凝固殻の強度か弱い場合には鋳片表面まて及
びパウダを吸い込む等で製品での大きな欠陥となる。ま
た表面に出ない場合ても、皮下直下のため圧延時にスケ
ールオフされた時に製品欠陥となって現れる。
First, in the early stage of solidification, streak-like depressions occur on the surface of the slab due to solidification contraction related to peritectic reaction. Powder slag then flows into this depression, thereby accelerating the cooling of the depression. This cooling acceleration increases the amount of peritectic reaction per hour, and with this increase, the amount of solidification shrinkage increases due to the increase in the amount of peritectic reaction, resulting in an increase in the depression and further powder slag flowing into this increased depression. By repeating these steps, the depth of the dent increases to some extent (for example, 0
.. 25 fights or more), a crack during solidification occurs just under the skin of the dent. Naturally, if the crack is filled with concentrated molten steel or if the solidified shell is weak, the surface of the slab and powder will be sucked in, resulting in a major defect in the product. Even if it does not appear on the surface, it appears as a product defect when it is scaled off during rolling because it is just under the skin.

そこで、本発明は、上記の問題点に鑑み、皮下欠陥の原
因となる包晶反応が関与する凝固収縮による筋状の凹み
を増大するようなパウダを使用せずに溶鋼を連続鋳造す
る方法を提供することを目的とするものである。
Therefore, in view of the above-mentioned problems, the present invention provides a method for continuously casting molten steel without using powder that increases streak-like depressions due to solidification contraction associated with peritectic reactions that cause subcutaneous defects. The purpose is to provide

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するため、本発明に係わる皮下欠陥の無
い鋳片の連続鋳造方法は、溶鋼を浸漬ノズルを介して鋳
型内に連続して注湯する一方、凝固した鋳片を鋳型の下
部より連続して引き出す、鋳片の連続鋳造方法において
、鋳型内の溶鋼メニスカスを非溶融保温板で覆うととも
に、非溶融保温板と鋳型壁の間から潤滑油を注油しなが
ら鋳造するものである。
In order to achieve the above object, the method of continuous casting of slabs without subcutaneous defects according to the present invention is such that molten steel is continuously poured into a mold through a submerged nozzle, while solidified slabs are poured from the bottom of the mold. In a continuous casting method for continuously drawing slabs, the molten steel meniscus in the mold is covered with a non-melting heat insulating plate, and lubricating oil is poured between the non-melting heat insulating plate and the mold wall during casting.

〔作  用〕[For production]

本発明では、浸漬ノズルを使用してタンデイツシュから
鋳型へ注湯するので、浸漬ノズルから吐き出される溶鋼
の酸化が防止される。また鋳型内溶鯛メニスカス上には
非溶融保温板が設けられているので、浸漬ノズルから吐
出された溶鋼のメニスカス下の溶鋼流と相まって溶鋼メ
ニスカスか確実に保温され溶鋼メニスカスの凝固が防止
されるとともに、溶鋼メニスカス表面の酸化が防止され
る。またこの保温板は、溶鋼によって溶融燃焼すること
のない材料、例えばカーボンファイバや難燃性りん片状
黒鉛粉等の如き材料で造られ、溶鋼メニスカス上で溶融
スラグ化し鋳型と凝固殻との間に流入することがないの
で、包晶反応か関与する凝固収縮による筋状の凹みか発
生しても、これを増大するような作用を及ぼすことがな
い。また鋳型と凝固殻との間の潤滑として潤滑油を使用
するのて、潤滑油か鋳型自溶鋼メニスカスまたはその直
下で炭化し、液体のままで鋳型と凝固殻との間に流入す
ることが殆どないので、上記保温板同様に、包晶反応か
関与する凝固収縮による筋状の凹みか発生しても、これ
を増大するような作用を及ぼすことかない。
In the present invention, since the immersion nozzle is used to pour the metal from the tundish into the mold, oxidation of the molten steel discharged from the immersion nozzle is prevented. In addition, since a non-melting heat insulating plate is provided above the molten sea bream meniscus in the mold, the molten steel meniscus is reliably kept warm together with the molten steel flow below the meniscus of the molten steel discharged from the immersion nozzle, and solidification of the molten steel meniscus is prevented. At the same time, oxidation of the molten steel meniscus surface is prevented. In addition, this heat insulating plate is made of a material that does not melt and burn with molten steel, such as carbon fiber or flame-retardant flaky graphite powder, and is made of a material that is not melted and burned by molten steel. Therefore, even if streak-like depressions occur due to coagulation contraction related to peritectic reaction, there is no effect that would increase them. Furthermore, since lubricating oil is used as lubrication between the mold and the solidified shell, it is almost always the case that the lubricating oil carbonizes at or just below the self-melting steel meniscus of the mold and flows between the mold and the solidified shell as a liquid. Therefore, like the above-mentioned heat-retaining plate, even if streak-like depressions occur due to solidification contraction related to peritectic reaction, there will be no effect to increase this.

以上のような作用を得るのに、非溶融保温板の大きさと
しては、鋳型との間か1〜5mmの隙間が開く程度が好
ましい。その理由は、隙間が1mm未満ては潤滑油の流
入か不充分となり鋳型との焼付き等か起こり、鋳片のブ
レークアウト等のトラブルか発生し、鋳造か不可能にな
る。また隙間か5闘を超えると潤滑油の流入が多くなる
とともに溶鋼メニスカスの保温効果か低下するためであ
る。
In order to obtain the above effect, the size of the non-melting heat insulating plate is preferably such that there is a gap of 1 to 5 mm between it and the mold. The reason for this is that if the gap is less than 1 mm, the inflow of lubricating oil will be insufficient, and problems such as seizure with the mold will occur, and problems such as breakout of the slab will occur, making casting impossible. Moreover, if the gap exceeds 5 degrees, the lubricating oil will flow in more and the heat retention effect of the molten steel meniscus will decrease.

〔実 施 例〕〔Example〕

第1図は、本発明に係わる皮下欠陥の無い鋳片の連続鋳
造方法を適用した場合のタンデイツシュから鋳型に到る
間の注湯概念図である。尚、図において従来と同一構成
部分は同し符号をもって示す。
FIG. 1 is a conceptual diagram of pouring metal from the tundish to the mold when the continuous casting method for slabs without subcutaneous defects according to the present invention is applied. In the drawings, components that are the same as those of the prior art are designated by the same reference numerals.

図において、 1はタンデイツシュ、2は溶鋼、3は浸
漬ノズル、4は鋳型、5は溶鋼メニスカス、6は非溶融
保温板、7は潤滑油を示す。
In the figure, 1 is a tandem shell, 2 is a molten steel, 3 is an immersion nozzle, 4 is a mold, 5 is a molten steel meniscus, 6 is a non-melting heat insulating plate, and 7 is a lubricating oil.

この注湯構成により、取鍋(図示せず)よりタンデイツ
シュlに受湯した溶鋼2は、非溶融保温板6を貫通して
非溶融保温板6とともに鋳型4内に設けられた浸漬ノズ
ル3を介して鋳型4内に注湯され、鋳型4内の溶鋼メニ
スカス5を非溶融保温板6て覆うとともに、鋳型4と非
溶融保温板6との隙間tから潤滑油7を流入させながら
連続鋳造される。
With this pouring configuration, the molten steel 2 received from the ladle (not shown) into the tundish plate 1 passes through the non-melting heat insulating plate 6 and passes through the immersion nozzle 3 provided in the mold 4 together with the non-melting heat insulating plate 6. The molten steel meniscus 5 in the mold 4 is covered with a non-melting heat insulating plate 6, and continuous casting is carried out while lubricating oil 7 is allowed to flow in from the gap t between the mold 4 and the non-melting heat insulating plate 6. Ru.

上記の要領で、第2図に示す炭素含有量の溶鋼を、カー
ボンファイバを難燃性りん片状黒鉛粉で厚さ50mm、
隙間t=3mmになるように固めた非溶融保温板を使用
して、−辺か155mmの断面正方形の鋳片に連続鋳造
し、得られた鋳片表面に発生する、深さか0.25mm
以上の包晶反応が関与する凝固収縮による筋状の凹みの
発生率を調査した。調査結果を併せて第2図に示す。
In the above manner, molten steel with the carbon content shown in Fig. 2 was prepared by arranging carbon fibers with flame-retardant flaky graphite powder to a thickness of 50 mm.
Using a non-melting heat insulating plate solidified so that the gap t = 3 mm, continuous casting was performed into a slab with a square cross section of 155 mm on the - side, and a depth of about 0.25 mm was generated on the surface of the resulting slab.
The incidence of streak-like depressions due to coagulation contraction associated with the above peritectic reaction was investigated. The survey results are also shown in Figure 2.

第2図より明らかなように、炭素含有量か0.05〜0
.15wt%の範囲において、凹み不良発生率か、本発
明法では、パウダを用いた従来法に比較して全体的に低
下することか分かる。また従来特に凹み不良発生率か高
かった炭素含有量か0,07〜0.12wt%の範囲に
おいて、その低下か際立っている。
As is clear from Figure 2, the carbon content is 0.05 to 0.
.. It can be seen that in the range of 15 wt%, the incidence of dent defects is generally lower in the method of the present invention than in the conventional method using powder. Furthermore, the decrease in the occurrence rate of dent defects, which was previously particularly high, is noticeable in the range of 0.07 to 0.12 wt%.

〔発明の効果〕〔Effect of the invention〕

上述したように、本発明に係わる皮下欠陥の無い鋳片の
連続鋳造方法によれば、皮下欠陥の原因となる包晶反応
が関与する凝固収縮による筋状の凹みを増大することな
く連続鋳造か行え、この凹みの増大に起因して発生する
皮下直下の割れか防止てき、製品歩留りを向上させるこ
とかできる。
As described above, according to the method for continuous casting of slabs without subcutaneous defects according to the present invention, continuous casting can be performed without increasing streak-like depressions due to solidification contraction associated with the peritectic reaction that causes subcutaneous defects. By doing so, it is possible to prevent cracks directly under the skin that occur due to the increase in dents, and improve product yield.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明法を適用した場合のタンデイツシュか
ら鋳型に到る間の注lII概念図、第2図は、溶鋼の炭
素含有量と鋳片表面に発生する凹み不良の発生率との関
係を示す図、第3図乃至第4図は、従来技術の説明図で
ある。 l タンデイツシュ  2 溶鋼 3 浸漬ノズル    4 鋳型 5 溶鋼メニスカス  6 非溶融保温板7 潤滑油 特許出願人 株式会社神戸製鋼所 代理人 弁理士 金 丸 章 − 第1図 第2図 第3図 第4図
Figure 1 is a conceptual diagram of the process from the tundish to the mold when the method of the present invention is applied, and Figure 2 shows the relationship between the carbon content of molten steel and the incidence of dent defects on the slab surface. The diagrams illustrating the relationship, FIGS. 3 and 4, are explanatory diagrams of the prior art. l Tandate 2 Molten steel 3 Immersion nozzle 4 Mold 5 Molten steel meniscus 6 Non-melting heat insulating plate 7 Lubricating oil patent applicant Kobe Steel Co., Ltd. agent Patent attorney Akira Kanemaru - Figure 1 Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 溶鋼を浸漬ノズルを介して鋳型内に連続して注湯する一
方、凝固した鋳片を鋳型の下部より連続して引き出す、
鋳片の連続鋳造方法において、鋳型内の溶鋼メニスカス
を非溶融保温板で覆うとともに、非溶融保温板と鋳型壁
の間から潤滑油を注油しながら鋳造することを特徴とす
る皮下欠陥の無い鋳片の連続鋳造方法。
Molten steel is continuously poured into the mold through an immersion nozzle, while solidified slabs are continuously drawn out from the bottom of the mold.
In a continuous casting method for slabs, the molten steel meniscus in the mold is covered with a non-melting heat insulating plate, and casting is performed while lubricating oil is applied from between the non-melting heat insulating plate and the mold wall. Continuous casting method for pieces.
JP31192590A 1990-11-16 1990-11-16 Method for continuously casting cast slab without any flaw below surface Pending JPH04182045A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31192590A JPH04182045A (en) 1990-11-16 1990-11-16 Method for continuously casting cast slab without any flaw below surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31192590A JPH04182045A (en) 1990-11-16 1990-11-16 Method for continuously casting cast slab without any flaw below surface

Publications (1)

Publication Number Publication Date
JPH04182045A true JPH04182045A (en) 1992-06-29

Family

ID=18023083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31192590A Pending JPH04182045A (en) 1990-11-16 1990-11-16 Method for continuously casting cast slab without any flaw below surface

Country Status (1)

Country Link
JP (1) JPH04182045A (en)

Similar Documents

Publication Publication Date Title
EP0800881A3 (en) Casting steel strip
Mills et al. Causes of sticker breakout during continuous casting
CA1220606A (en) Refractory coating of edge-dam blocks for the purpose of preventing longitudinal bands of sinkage in the product of a continuous casting machine
CA1235563A (en) Casting apparatus
JPH04182045A (en) Method for continuously casting cast slab without any flaw below surface
US3718173A (en) Method of removing alumina scum from a continuous-casting mold
JPH0263647A (en) Method for continuously casting metal
US4566524A (en) Method of and apparatus for casting a compound metal bar
JPS63137544A (en) Horizontal continuous casting method
JP3082834B2 (en) Continuous casting method for round slabs
JPH0661596B2 (en) Metal continuous casting equipment
JP3099158B2 (en) Continuous casting method of defect-free slab
US4744406A (en) Horizontal continuous casting apparatus with break ring formed integral with mold
US4679613A (en) Method of and apparatus for casting a compound metal bar
JPH01299744A (en) Method for preventing longitudinal crack on surface of continuous cast slab
JPS57124558A (en) Continuous casting method
JPH06154977A (en) Method for continuously casting extremly low carbon steel
JPS566761A (en) Pouring method of molten metal in continuous casting
JP3546137B2 (en) Steel continuous casting method
US3780788A (en) Method for continuously casting steel using a partially coated refactory nozzle
JP2750929B2 (en) Continuous casting method with spray deposit method
SU426746A1 (en) METHOD FOR PROTECTING OXIDATION INGITS
JPH0191947A (en) Method for casting hollow billet
JPS61115653A (en) Continuous casting method of medium-carbon steel
SU1632618A1 (en) Method of semicontinuous casting of nickel