JPH0418191B2 - - Google Patents

Info

Publication number
JPH0418191B2
JPH0418191B2 JP19602885A JP19602885A JPH0418191B2 JP H0418191 B2 JPH0418191 B2 JP H0418191B2 JP 19602885 A JP19602885 A JP 19602885A JP 19602885 A JP19602885 A JP 19602885A JP H0418191 B2 JPH0418191 B2 JP H0418191B2
Authority
JP
Japan
Prior art keywords
control valve
load
flow control
flow rate
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19602885A
Other languages
Japanese (ja)
Other versions
JPS6262094A (en
Inventor
Minoru Takakura
Shinsuke Mitsumichi
Juji Kawashima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHODA KAKO KENSETSU KK
Original Assignee
CHODA KAKO KENSETSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHODA KAKO KENSETSU KK filed Critical CHODA KAKO KENSETSU KK
Priority to JP60196028A priority Critical patent/JPS6262094A/en
Publication of JPS6262094A publication Critical patent/JPS6262094A/en
Publication of JPH0418191B2 publication Critical patent/JPH0418191B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • F17C9/02Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0323Valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0367Localisation of heat exchange
    • F17C2227/0388Localisation of heat exchange separate
    • F17C2227/0393Localisation of heat exchange separate using a vaporiser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/06Controlling or regulating of parameters as output values
    • F17C2250/0605Parameters
    • F17C2250/0636Flow or movement of content

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は発電所あるいは都市ガス用に使用され
るベーパーライザーの低負荷に対応できる運転方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of operating a vaporizer used in a power plant or for city gas, which can handle low loads.

〔従来の技術〕[Conventional technology]

ベーパーライザーたとえばオープンラツク式ベ
ーパーライザー(以下ORVという)の蒸発装置
は第3図に示すように、蒸発ブロツク10は縦方
向に配置された多数の蒸発管10aが複数列設け
られ、蒸発管10aに連通するヘツダー11より
矢印LGで示すように液化ガスが蒸発管10aに
供給される。一方蒸発ブロツク10の上方より矢
印Wで示すように、一般に常温の海水が送られ、
熱交換により液化ガスはガス化し供給先に送達さ
れる。
A vaporizer, for example, an open rack vaporizer (hereinafter referred to as ORV) evaporator, as shown in FIG. Liquefied gas is supplied from the communicating header 11 to the evaporation tube 10a as indicated by the arrow LG. On the other hand, seawater at room temperature is generally sent from above the evaporation block 10 as shown by arrow W.
The liquefied gas is gasified by heat exchange and delivered to the destination.

従来のORVの全体的な構成は第4図に示すよ
うに、並置された複数の蒸発ブロツク10−1,
10−2,…,10−6には供給管12が各蒸発
ブロツク10−1,…10−6に対応する分岐管
12aを通りヘツダー11を介して連通され、液
化ガスが矢印LGに示すように供給される。供給
管12には一個の流量調節弁13が装着される。
蒸発ブロツク10−1,…10−6の上部にはガ
ス送出管14が連通され矢印Gで示すようにガス
は使用先に送達される。矢印LGで示す液化ガス
の流量は一個の流量調節弁13により調節され
る。
As shown in FIG. 4, the overall configuration of a conventional ORV includes a plurality of evaporation blocks 10-1, 10-1,
A supply pipe 12 is connected to the evaporation blocks 10-2, . . . , 10-6 via a header 11 through a branch pipe 12a corresponding to each evaporation block 10-1, . is supplied to One flow control valve 13 is attached to the supply pipe 12 .
A gas delivery pipe 14 is connected to the upper part of the evaporation blocks 10-1, . The flow rate of the liquefied gas indicated by the arrow LG is regulated by one flow rate control valve 13.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の発電所においては、例えば、出力60万
kw/ユニツト、LNG消費量約110t/h/ユニツ
ト、最低負荷約30t/h/(LNG)/ユニツト
(25%強)の運転範囲であれば、1台のORVで1
個の流量調節弁13(第4図)で充分制御可能で
あつたが、近時設置される100万kw以上の発電ユ
ニツトの場合はLNG消費量は約170t/h/ユニ
ツト程度となり、発電所がコンバインサイクルの
ような場合には、1ユニツトが7軸の発電機で構
成されるので、この場合の最低負荷はLNG消費
量で上記の3〜5%と極めて低い負荷となる。こ
の様な低負荷運転(3〜5%)の場合上記のよう
な1個の調節弁では正確な制御が極めて困難とな
る。そこで極めて精度の高い流量調節弁を使用す
るとしても、これは極めて高価でありしかも極低
負荷における流量の調節は充分にできない。
In a conventional power plant, for example, the output is 600,000 yen.
kW/unit, LNG consumption approximately 110t/h/unit, minimum load approximately 30t/h/(LNG)/unit (over 25%), one ORV can
However, in the case of power generation units of 1,000,000 kw or more, which are being installed recently, the LNG consumption will be approximately 170 t/h/unit, and the power plant In the case of a combine cycle, one unit consists of a seven-shaft generator, so the minimum load in this case is an extremely low load of 3 to 5% of the LNG consumption above. In such a low load operation (3 to 5%), accurate control is extremely difficult with a single control valve as described above. Therefore, even if a highly accurate flow control valve is used, it is extremely expensive and cannot adequately control the flow rate at extremely low loads.

本発明は、例えば100万kw以上の発電ユニツト
において、設計流量の3〜5%のような低負荷運
転における液化ガスの小流量の正確な調節が可能
であると共に高負煮運転における液化ガスの大流
量の正確な調節もできかつ急激な負荷変動に対し
充分な追従性を有するオープンラツク式ベーパー
ライザーの、特に低負荷の、運転方法を提供する
ことを目的とするものである。
The present invention makes it possible to accurately adjust the small flow rate of liquefied gas during low load operation, such as 3 to 5% of the design flow rate, in a power generation unit of 1 million kw or more, as well as to adjust the flow rate of liquefied gas during high negative boiling operation. The object of the present invention is to provide a method of operating an open rack vaporizer, particularly at low load, which allows accurate adjustment of a large flow rate and has sufficient followability to sudden load changes.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点を解決する本発明の手段は、1つの
ガス送出管に接続された複数の蒸発ブロツクをも
つ1台のベーパーライザーの液化ガス供給管を複
数の枝管に分岐し、各枝管にそれぞれ流量調節弁
を装着し、低負荷時には各流量調節弁を低開度に
した状態でその操作台数を変化させることによ
り、高負荷時には前記各流量調節弁を均等負荷制
御することにより、極めて低い負荷から100%負
荷までの広範囲で運転できることを特徴とするベ
ーパーライザーの運転方法、である。
The means of the present invention for solving the above problems is to branch the liquefied gas supply pipe of one vaporizer having a plurality of evaporation blocks connected to one gas delivery pipe into a plurality of branch pipes, and to connect each branch pipe to a plurality of branch pipes. Each is equipped with a flow control valve, and when the load is low, each flow control valve is kept at a low opening and the number of operating units is changed, and during high load, each flow control valve is controlled with equal load, thereby achieving extremely low This is a vapor riser operating method that is characterized by being able to operate over a wide range from load to 100% load.

〔作用〕[Effect]

ORVは多数の蒸発ブロツクからなつており、
本発明ではこの多数の蒸発ブロツクを数組に分割
し各組毎に流量調節弁を設け、低負荷において
は、まず1個の流量調節弁を開き他は閉じてお
く、負荷が大きくなるに従つて他の弁を順次開い
てゆき、すなわち各流量調節弁を低開度にした状
態でその操作台数を変化させ、高負荷運転時には
全流量調節弁を均等に開いて運転する。この事に
より極低負荷運転に対応した正確な液化ガスの流
量制御が可能になると共に高負荷においても良好
な追従性が得られる。ここで低開度とは、流量調
節弁の開度が低いこと、例えばおよそ30%の開度
にあることである。
The ORV consists of a number of evaporation blocks.
In the present invention, this large number of evaporation blocks is divided into several sets, and each set is provided with a flow control valve. At low loads, one flow control valve is first opened and the others are closed. As the load increases, the flow control valves are closed. Then, the other valves are opened one after another, that is, the number of operating valves is changed while each flow rate control valve is kept at a low opening degree, and during high load operation, all flow rate control valves are opened evenly. This makes it possible to accurately control the flow rate of liquefied gas corresponding to extremely low load operation, and also provides good followability even under high load. Here, the low opening degree means that the opening degree of the flow rate control valve is low, for example, approximately 30%.

〔実施例〕〔Example〕

つぎに本発明を実施例により図面を参照して説
明する。第1図は本発明の一実施例の構成を示す
図であつて、複数の蒸発ブロツク0−1,0−
2,…0−6が並置され、各ブロツク0−1,…
0−6はヘツダー1,…,1を有する。各ブロツ
ク0−1,…0−6およびヘツダー1,…,1の
構成は第3図で説明したものと同様である。各ブ
ロツクは2ケ宛、すなわちブロツク0−1,0−
2は分岐管2aによりヘツダー1において連通さ
れ、分岐管2aは第1枝管2bに連通する。ブロ
ツク0−3,0−4およびブロツク0−5,0−
6も同様に分岐管2a′,2a″を介して枝管2b′,
2b″にそれぞれ連通する。各枝管2b,2b′,2
b″には第1、第2、第3の流量調節弁3,3′,
3″がそれぞれ装着され、各枝管2b,2b′,2
b″は各弁3,3′,3″の上流側で供給管2より分
岐している。各ブロツク0−1,…0−6の上部
にはガス送出管4が連通され矢印Gで示すように
各ブロツク内で蒸発したガスは使用先に送達され
る。
Next, the present invention will be described by way of examples with reference to the drawings. FIG. 1 is a diagram showing the configuration of an embodiment of the present invention, in which a plurality of evaporation blocks 0-1, 0-
2,...0-6 are juxtaposed, each block 0-1,...
0-6 have headers 1,...,1. The structure of each block 0-1, . . . 0-6 and header 1, . . . , 1 is similar to that explained in FIG. Each block has two addresses, i.e. blocks 0-1, 0-
2 are communicated in the header 1 by a branch pipe 2a, and the branch pipe 2a communicates with a first branch pipe 2b. Block 0-3, 0-4 and block 0-5, 0-
Similarly, 6 also connects branch pipes 2b' and 2b' through branch pipes 2a' and 2a''.
2b'', respectively. Each branch pipe 2b, 2b', 2
b'' have first, second and third flow control valves 3, 3',
3'' is installed, and each branch pipe 2b, 2b', 2
b'' branches from the supply pipe 2 on the upstream side of each valve 3, 3', 3''. A gas delivery pipe 4 is connected to the upper part of each block 0-1, .

本発明においては、第2図に示すように極めて
低い負荷の際は第1流量調節弁3のみを開いて液
化ガスを調節し、負荷が上昇して第1流量調節弁
3の弁開度が30%に達すると、この開度に保持し
たまま第2流量調節弁3′も開き、これが30%に
達すると、第1、第2流量調節弁3,3′の開度
を30%に保持した状態で第3流量調節弁3″を開
く。このようにすると、液化ガス最大負荷流量の
約30%迄の低負荷において正確な流量制御ができ
る。各流量調節弁3,3′,3″の弁開度が30%を
越えるような負荷の場合は全調節弁3,3′,
3″を所要の均等開度に開く。
In the present invention, as shown in FIG. 2, when the load is extremely low, only the first flow rate control valve 3 is opened to adjust the liquefied gas, and as the load increases, the opening degree of the first flow rate control valve 3 is increased. When it reaches 30%, the second flow control valve 3' also opens while maintaining this opening, and when it reaches 30%, the opening of the first and second flow control valves 3, 3' is maintained at 30%. In this state, open the third flow control valve 3''. In this way, accurate flow control can be performed at low loads up to about 30% of the maximum load flow rate of liquefied gas. Each flow control valve 3, 3', 3'' If the load causes the valve opening degree to exceed 30%, all control valves 3, 3',
3" to the required even opening.

高負荷より低負荷に変動する場合は、上記と逆
の操作により負荷変動に対応する。 これらの操
作は一般にコンピユータによる自動制御により実
施される。
If the load changes from high to low, respond to the load change by performing the opposite operation to the above. These operations are generally performed under automatic control by a computer.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明はORVの上流側
に複数個の流量調節弁を設け、すなわちORVの
複数の蒸発ブロツクを分割した組毎に流量調節弁
を設け、ORVの低負荷運転時に各流量調節弁を
低開度にした状態でその操作台数を変化させるこ
とにより、極低負荷時の流量制御が正確にできる
とともに、高負荷運転における良好な追従性も発
揮できる。
As explained above, the present invention provides a plurality of flow rate control valves on the upstream side of an ORV, that is, a flow rate control valve is provided for each group into which a plurality of ORV evaporation blocks are divided, and each By changing the number of control valves that are operated while keeping the control valves at a low opening degree, it is possible to accurately control the flow rate at extremely low loads, and also to exhibit good followability during high load operation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の全体構成図、第2
図は本発明の一実施例の弁開度と液化ガス流量と
の関係を示すグラフ、第3図はORV蒸発ブロツ
クの一例の斜視図、第4図は従来のORVの全体
構成図である。 0−1,0−2,0−3,0−4,0−5,0
−6……蒸発ブロツク、2……供給管、2a,2
a′,2a″……分岐管、2b,2b′,2b″……枝
管、3,3′,3″……流量調節弁。
Fig. 1 is an overall configuration diagram of an embodiment of the present invention, Fig. 2
The figure is a graph showing the relationship between the valve opening degree and the liquefied gas flow rate in one embodiment of the present invention, FIG. 3 is a perspective view of an example of an ORV evaporation block, and FIG. 4 is an overall configuration diagram of a conventional ORV. 0-1,0-2,0-3,0-4,0-5,0
-6... Evaporation block, 2... Supply pipe, 2a, 2
a', 2a''...branch pipe, 2b, 2b', 2b''...branch pipe, 3, 3', 3''...flow control valve.

Claims (1)

【特許請求の範囲】[Claims] 1 1つのガス送出管に接続された複数の蒸発ブ
ロツクをもつ1台のベーパーライザーの液化ガス
供給管を複数の枝管に分岐し、各枝管にそれぞれ
流量調節弁を装着し、低負荷時には各流量調節弁
を低開度にした状態でその操作台数を変化させる
ことにより、高負荷時には前記各流量調節弁を均
等負荷制御することにより、極めて低い負荷から
100%負荷までの広範囲で運転できることを特徴
とするベーパーライザーの運転方法。
1. The liquefied gas supply pipe of one vaporizer, which has multiple evaporation blocks connected to one gas delivery pipe, is branched into multiple branch pipes, and each branch pipe is equipped with a flow rate control valve. By changing the number of operating flow control valves with each flow control valve at a low opening, and by controlling the flow control valves with equal load during high loads, even from extremely low loads.
A vapor riser operating method that is characterized by its ability to operate over a wide range up to 100% load.
JP60196028A 1985-09-06 1985-09-06 Method of operating vaporizer Granted JPS6262094A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60196028A JPS6262094A (en) 1985-09-06 1985-09-06 Method of operating vaporizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60196028A JPS6262094A (en) 1985-09-06 1985-09-06 Method of operating vaporizer

Publications (2)

Publication Number Publication Date
JPS6262094A JPS6262094A (en) 1987-03-18
JPH0418191B2 true JPH0418191B2 (en) 1992-03-27

Family

ID=16351012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60196028A Granted JPS6262094A (en) 1985-09-06 1985-09-06 Method of operating vaporizer

Country Status (1)

Country Link
JP (1) JPS6262094A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5156929B2 (en) * 2007-08-29 2013-03-06 住友精密工業株式会社 Cryogenic fluid heating / vaporizing device and operation method thereof
JP5363427B2 (en) * 2010-06-18 2013-12-11 株式会社神戸製鋼所 Low temperature liquefied gas vaporizer
JP5918178B2 (en) * 2013-08-02 2016-05-18 株式会社神戸製鋼所 Low temperature liquefied gas vaporizer
JP5841979B2 (en) * 2013-08-02 2016-01-13 株式会社神戸製鋼所 Low temperature liquefied gas vaporizer
JP6074073B2 (en) * 2016-01-22 2017-02-01 株式会社神戸製鋼所 Low temperature liquefied gas vaporizer
DE202016105234U1 (en) * 2016-09-20 2017-12-21 Saeta Gmbh & Co. Kg Device for determining the volume flow of liquid gas discharged via a liquid gas line

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5737198A (en) * 1980-08-15 1982-03-01 Hitachi Ltd Carburettor output pressure controller

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5737198A (en) * 1980-08-15 1982-03-01 Hitachi Ltd Carburettor output pressure controller

Also Published As

Publication number Publication date
JPS6262094A (en) 1987-03-18

Similar Documents

Publication Publication Date Title
US5573058A (en) Air-conditioning installation for room spaces
JPH0418191B2 (en)
JP2747543B2 (en) Method of operating a steam turbine device at low load level
KR101876973B1 (en) Fuel Gas Supply System and Method for Vessel
BR9912031A (en) Plant for regulating the operation of a facility for the storage and distribution of carbon dioxide
Elaahi et al. Alternative distillation configurations for energy conservation in four-component separations
JPS58164998A (en) Sprinkling method of cooling water in cooling tower
JP2960125B2 (en) How to replace gas cylinders
WO2022180812A1 (en) Fuel vaporization equipment
JP2001140711A (en) Main engine fuel heating device for ship
JPS5918212A (en) Cooling device for power generation plant
JPH1038199A (en) Low-temperature liquefied gas storing facility and operating method for it
JPS638391B2 (en)
JPH01131859A (en) Cold and hot water controller
Schweigler et al. Operation and performance of a 350 kW (100 RT) single-effect/double lift absorption chiller
JPH01163406A (en) Method for operating combined plant and its equipment
JP3216075B2 (en) Cooling system
US20090000772A1 (en) Control scheme for an evaporator operating at conditions approaching thermodynamic limits
JPS62255718A (en) Control of steam type air preheater
JPS6273092A (en) Heat accumulating device
JPS5850212Y2 (en) Multi-room cooling system
JPH0633916B2 (en) Heat distribution control device for hot water supply system
WO2020193569A1 (en) Method for harvesting waste heat
JPS5510137A (en) Hydraulic circuit
Liu A practical approach to the multiobjective synthesis and optimizing control of resilient heat exchanger networks