WO2022180812A1 - Fuel vaporization equipment - Google Patents

Fuel vaporization equipment Download PDF

Info

Publication number
WO2022180812A1
WO2022180812A1 PCT/JP2021/007464 JP2021007464W WO2022180812A1 WO 2022180812 A1 WO2022180812 A1 WO 2022180812A1 JP 2021007464 W JP2021007464 W JP 2021007464W WO 2022180812 A1 WO2022180812 A1 WO 2022180812A1
Authority
WO
WIPO (PCT)
Prior art keywords
seawater
cold
pit
temperature
open rack
Prior art date
Application number
PCT/JP2021/007464
Other languages
French (fr)
Japanese (ja)
Inventor
知之 五十嵐
弘行 臼井
篤志 神谷
Original Assignee
日揮株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日揮株式会社 filed Critical 日揮株式会社
Priority to PCT/JP2021/007464 priority Critical patent/WO2022180812A1/en
Priority to JP2023501973A priority patent/JPWO2022180812A1/ja
Priority to TW111106243A priority patent/TW202235767A/en
Publication of WO2022180812A1 publication Critical patent/WO2022180812A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • F17C9/02Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D3/00Devices using other cold materials; Devices using cold-storage bodies
    • F25D3/10Devices using other cold materials; Devices using cold-storage bodies using liquefied gases, e.g. liquid air

Definitions

  • the present invention relates to technology that utilizes cold energy obtained when liquefied fuel is vaporized.
  • liquefied natural gas LNG
  • liquefied hydrogen or other liquefied fuel
  • open rack vaporization vaporizes the liquefied fuel supplied inside the heat transfer tubes by flowing sea water as a heating medium along the outer surface of a panel composed of many heat transfer tubes.
  • a device ORV: Open Rack Vaporizer
  • the present invention uses a liquefied fuel vaporization facility to provide a technology for supplying cold seawater adjusted to a desired temperature to cold heat utilization facilities.
  • the present invention is a fuel vaporization facility for vaporizing liquefied fuel, an open rack vaporizer that vaporizes the liquefied fuel by flowing seawater along the outer surfaces of the plurality of heat transfer tubes to which the liquefied fuel is supplied; a seawater supply line for supplying seawater toward the open rack vaporizer; A cold seawater supply line that supplies cold seawater, which is used for vaporizing the liquefied fuel in the open rack vaporizer and whose temperature has been lowered by heat exchange with the liquefied fuel, to cold heat utilization equipment that uses the cold heat of the cold seawater.
  • the fuel vaporization facility may have the following features.
  • the cold energy utilization equipment is a culture tank that uses the cold heat of the cold sea water to adjust the temperature of the water for cultivating fish and shellfish, or the cold heat is used to create a plant growing atmosphere, growing soil, or culture water. It shall be a plant factory that performs at least one temperature control of (b) the liquefied fuel is liquefied natural gas or liquefied hydrogen; (c) a cold seawater pit for receiving cold seawater discharged from the open rack vaporizer, the cold seawater supply line supplying the cold seawater in the cold seawater pit to the cold heat utilization equipment, and the circulation line and resupplying the cold seawater in the cold seawater pit to the open rack vaporizer.
  • (d) is interposed in the seawater supply line, into which seawater flowing through the seawater supply line flows, is provided adjacent to the cold seawater pit via a partition wall, and overflows from the upper end of the partition wall;
  • a seawater supply pit configured to receive the cold seawater is provided, and an upper end surface of the partition wall, which is a region where cold seawater flows from the cold seawater pit to the seawater supply pit, constitutes the circulation line. and increasing or decreasing the flow rate of the seawater flowing into the seawater supply pit to increase or decrease the flow rate of the cold seawater resupplied from the cold seawater pit to the open rack vaporizer via the seawater supply pit, To regulate the temperature of cold sea water.
  • the open rack vaporizer includes a receiving tank portion that receives seawater after flowing along the outer surface of the heat transfer tube, and the cold seawater supply line supplies the cold seawater in the receiving tank portion to the cold heat utilization equipment. and the circulation line re-supplies the cold seawater in the receiving tank portion to the open rack vaporizer.
  • An uncooled pre-cooled seawater supply line is provided to supply seawater that has not been cooled by the open rack vaporizer toward the cold heat utilization equipment.
  • a circulation line is provided for resupplying part of the cold seawater whose temperature has been lowered by heat exchange for vaporizing liquefied fuel in the open rack vaporizer to the open rack vaporizer, cold heat utilization
  • the temperature of the cold seawater supplied to the facility can be adjusted to the desired temperature.
  • FIG. 1 is a configuration diagram of an LNG vaporization facility according to an embodiment;
  • FIG. It is a block diagram of the LNG vaporization equipment which concerns on 2nd Embodiment.
  • It is a block diagram of the LNG vaporization equipment which concerns on 3rd Embodiment.
  • It is a block diagram of the LNG vaporization equipment which concerns on 4th Embodiment.
  • LNG vaporization equipment for vaporizing liquefied natural gas LNG
  • LNG liquefied natural gas
  • the LNG vaporization equipment vaporizes LNG stored in an LNG tank 2 with an open rack vaporizer (ORV) 1 and supplies the fuel gas after vaporization to a consumer through a fuel gas supply line 101 .
  • the ORV 1 causes seawater to flow down along the outer surface of a panel 11 composed of a large number of heat transfer tubes to which LNG from the LNG tank 2 is supplied, and vaporizes the LNG through heat exchange with the seawater to obtain fuel gas. with configuration.
  • the ORV 1 shown in FIG. 1 uses seawater (for example, 20° C.) taken in by the water intake pump 31 as seawater for vaporizing LNG.
  • seawater taken by the water intake pump 31 is supplied toward the ORV seawater supply line 301 connected to the ORV1.
  • the seawater supply flow rate is adjusted using a flow rate detector 322 and a flow rate control valve 321 provided in the ORV seawater supply line 301 .
  • the seawater used to vaporize the LNG is discharged through the ORV drain line 302 towards the water outlet.
  • seawater with a lowered temperature is obtained by heat exchange with LNG in the ORV 1, and the cold energy of this seawater can be utilized in various cold energy utilization equipment.
  • Cold energy is used in equipment that uses cold energy to control the temperature of aquaculture water in fish and shellfish culture tanks, and to control the temperature of at least one of the atmosphere for growing plants, the soil for growing plants, or the temperature of culture water in a plant factory. A case can be exemplified.
  • the water for cultivating salmon is preferably less than 20°C
  • the water for cultivating abalone is preferably less than 25°C.
  • the strawberry-growing soil and the supply water supplied to the soil have a temperature of less than 15°C.
  • the temperature of sea water may change depending on the weather and season.
  • the highest priority is given to the operation of vaporizing LNG at a flow rate that meets the demand from the consumer side. Therefore, when the temperature of the supplied seawater changes, it may be difficult to keep the temperature of the seawater discharged from the ORV 1 at the temperature required by the cold heat utilization equipment.
  • the LNG vaporization equipment according to the present embodiment has a configuration that can stably supply cold seawater at a temperature required by cold heat utilization equipment while suppressing the impact on the environment in response to the above problems. I have.
  • the LNG vaporization equipment shown in FIG. 2 has a configuration capable of supplying part of the cold seawater discharged from the ORV 1 toward the cold heat utilization equipment 5 consisting of a culture tank and a plant factory. 2 to 5 described below, the same reference numerals as those shown in FIG. 1 are attached to the same components as those described using FIG.
  • the passage through which the seawater discharged from the ORV 1 flows is the ORV drainage line 302a for discharging cold seawater toward the water outlet and the cold seawater supplied to the cold heat utilization equipment 5. It branches to the flowing cold seawater pit line 302b.
  • the ORV drain line 302a discharges cold sea water towards the water outlet.
  • a cold seawater pit 41 is provided on the downstream side of the cold seawater pit line 302b, and the cold seawater supplied to the cold heat utilization equipment 5 is received in this cold seawater pit 41.
  • a cold seawater supply line 402 is provided between the cold seawater pit 41 and the cold heat utilization equipment 5 to supply cold seawater to the cold heat utilization equipment 5 .
  • the cold seawater that has flowed into the cold seawater pit 41 is supplied to the cold heat utilization equipment 5 via the cold seawater supply line 402 by the liquid feed pump 44 provided on the upstream side of the cold seawater supply line 402 .
  • the flow rate of cold seawater supplied to the cold-heat utilization equipment 5 is adjusted using a flow rate detector 432 and a flow rate control valve 431 provided in the cold seawater supply line 402 .
  • the cold seawater supply line 402 is provided with an on-off valve 433 , which can supply and stop the cold seawater to the cold heat utilization equipment 5 .
  • a circulation line 401 for resupplying cold seawater in the cold seawater pit 41, that is, part of the cold seawater discharged from the ORV1 to the ORV1 is branched.
  • the circulation line 401 branches off from the cold seawater supply line 402 at a position on the upstream side of the on-off valve 433 , and its downstream end joins the ORV seawater supply line 301 .
  • the ORV seawater supply line 301 corresponds to the seawater supply line of this embodiment.
  • the resupply flow rate (circulation flow rate) of cold seawater to the ORV 1 is set in advance by using the temperature detection unit 422 and the flow control valve 421 provided in the cold seawater pit 41.
  • the target temperature (for example, 15° C.) is adjusted.
  • the target temperature of cold seawater is set to the temperature of cold seawater required by the cold heat utilization equipment 5 .
  • the circulation line 401 is provided with an on-off valve 423, which can execute and stop the resupply of cold seawater to the ORV1.
  • the temperature of seawater supplied to ORV1 is decreases (eg 18°C).
  • the seawater supply flow rate to the ORV 1 that is, The total flow rate of the seawater supply flow rate supplied through the circulation line 401 and the circulation flow rate of the cold seawater supplied via the circulation line 401 may be ensured.
  • seawater supplied via the ORV seawater supply line 301 is caused to flow down along the outer surface of the panel 11 to vaporize the LNG to obtain fuel gas.
  • a part of the cold seawater whose temperature has been lowered by heat exchange with LNG is received in the cold seawater pit 41 via the cold seawater pit line 302b.
  • the remaining cold seawater is discharged through the ORV drain line 302a toward the outlet.
  • the portion to be supplied to the cold heat utilization equipment 5 is supplied to the cold heat utilization equipment 5 via the cold seawater supply line 402 while adjusting the flow rate according to the consumption amount.
  • the circulation flow rate of the cold seawater resupplied to the ORV 1 via the circulation line 401 is adjusted according to the temperature of the cold seawater in the cold seawater pit 41 . That is, an operation control range centering on the target temperature of the cold seawater is set, and when the temperature of the cold seawater in the cold seawater pit 41 exceeds the upper limit of the operation control range, the circulation flow rate is increased, Decrease the temperature of the seawater supplied to ORV1.
  • the flow rate of cold sea water flowing into the cold sea water pit 41 via the cold sea water pit line 302b is adjusted to balance the total flow rate of the supply flow rate to the cold heat utilization equipment 5 and the circulation flow rate to the ORV1.
  • the on-off valves 433 and 423 are closed to stop the discharge and circulation of the cold seawater, and the ORV 1 is discharged via the ORV drainage line 302a. The entire amount of seawater is discharged to the outside.
  • the temperature of the cold seawater discharged to the outside via the ORV drainage line 302a also decreases in accordance with the temperature of the cold seawater supplied to the cold heat utilization equipment 5.
  • part of the cold seawater is resupplied to the inlet side of ORV1. Therefore, the flow rate of cold seawater discharged outside the cold seawater circulation system including the ORV 1 and the cold seawater pit 41 (that is, the flow rate of seawater newly supplied from the upstream side of the ORV seawater supply line 301) is 1 is significantly less than the conventional LNG vaporization facility described with .
  • the inventors have found that, in comparison with the flow rate of seawater discharged from the ORV drainage line 302 in the conventional LNG vaporization facility shown in FIG. It is understood that the flow rate can be reduced to about 20 to 50%. Furthermore, since part of the cold seawater discharged out of the circulation system is supplied toward the cold heat utilization equipment 5, the flow rate of the cold seawater discharged via the ORV drainage line 302a is even smaller. Therefore, even if the temperature of the cold seawater discharged through the ORV drainage line 302a drops to 15° C., the total amount of cold seawater discharged is small, and the environment can be maintained in a small state.
  • the LNG vaporization equipment has the following effects.
  • a circulation line is provided for resupplying part of the cold seawater whose temperature has been lowered by heat exchange for vaporizing the liquefied fuel in the ORV1 to the ORV1. temperature can be adjusted. Further, by resupplying cold seawater to the ORV 1, the flow rate of the cold seawater discharged to the outside can be reduced, and the influence of the cold seawater on the environment can be reduced.
  • FIG. FIG. 3 shows an example in which a cold seawater supply line pump 44b for the cold seawater supply line 402 and a circulation line pump 44a for the circulation line 401 are provided independently for the cold seawater pit 41.
  • FIG. With this configuration it is possible to increase the degree of freedom in adjusting the supply flow rate of cold seawater to the cold heat utilization equipment 5 and the circulation flow rate of cold seawater to the ORV 1 .
  • FIG. 3 shows an example in which an uncooled seawater supply line 403 is provided for supplying part of the uncooled seawater discharged from the flow control valve 431 toward the cold heat utilization equipment 5 .
  • the uncooled seawater supply line 403 branches off from the ORV seawater supply line 301 and is connected to the cold heat utilization facility 5 to supply relatively warm seawater compared to cold seawater.
  • the seawater supply flow rate is adjusted using a flow rate detector 452 and a flow rate control valve 451 provided in the uncooled seawater supply line 403 .
  • cold seawater is supplied to the cold heat utilization equipment 5 via the cold seawater supply line 402 during periods when the temperature of the seawater taken in by the water intake pump 31 is high (for example, in summer). Then, during a period when the temperature of the seawater to be taken in is low (for example, in winter), instead of supplying cold seawater from the cold seawater supply line 402, or in parallel, the flow rate control valve 431 is supplied via the uncooled seawater supply line 403 It can also supply relatively warm sea water discharged from the
  • FIG. 4 shows a configuration example in which cold seawater is circulated using pits 51a and 52b instead of the circulation line 401 composed of the pipes shown in FIGS.
  • an ORV seawater supply pit 41b into which seawater flowing through the upstream ORV seawater supply line 301a flows is interposed between the ORV seawater supply lines 301a and 301b.
  • the ORV seawater supply pit 41b is provided adjacently via a partition wall 411 to the cold seawater pit 41a into which all the cold seawater discharged from the ORV 1 flows via the cold seawater pit line 302b.
  • the cold seawater pit 41a is connected to a pit drain line 302c through which cold seawater is discharged toward the outlet.
  • the partition wall 411 is configured to have a height that allows the cold seawater that cannot be accommodated in the cold seawater pit 41a to overflow toward the ORV seawater supply pit 41b through the upper end of the partition wall 411. That is, the upper end surface of the partition wall 411, which is the area where the cold seawater flows from the cold seawater pit 41a to the ORV seawater supply pit 41b, constitutes a circulation line through which the cold seawater to be resupplied to the ORV1 flows.
  • An ORV supply pump 33 is provided in the ORV seawater supply pit 41b, and seawater is supplied to the ORV 1 via the ORV seawater supply line 301.
  • a flow control valve 321a is provided in the ORV seawater supply line 301a that supplies seawater from the ORV seawater supply line 301a to the ORV seawater supply pit 41b.
  • the flow control valve 321a controls the cold seawater pit so that the temperature of the seawater in the ORV seawater supply pit 41b approaches the target temperature based on the temperature detection result of the temperature detection unit 323 that detects the seawater temperature in the ORV seawater supply pit 41b. Increase or decrease the flow rate of seawater flowing into 41a.
  • the ORV supply pump 33 is used to increase the flow rate of seawater supplied to the ORV 1 .
  • This operation increases the flow rate of cold seawater discharged from the ORV 1, and increases the circulation amount of cold seawater flowing from the cold seawater pit 41a to the ORV seawater supply pit 41b.
  • the temperature of the cold seawater flowing into the cold seawater pit 41a decreases, and the temperature of the seawater in the ORV seawater supply pit 41b also approaches the target temperature.
  • the amount of cold seawater in the ORV seawater supply pit 41b and the cold seawater pit 41a is kept constant, for example, by adjusting the amount of cold seawater discharged through the pit drain line 302c.
  • the flow rate is adjusted.
  • the degree of opening of the valve 321a is reduced to reduce the flow rate of seawater received.
  • the ORV supply pump 33 is also used to reduce the flow rate of seawater supplied to the ORV 1 .
  • This operation reduces the flow rate of cold seawater discharged from the ORV 1, and reduces the circulation amount of cold seawater flowing from the cold seawater pit 41a to the ORV seawater supply pit 41b.
  • the temperature of the cold seawater flowing into the cold seawater pit 41a decreases, and the temperature of the seawater in the ORV seawater supply pit 41b approaches the target temperature.
  • the amount of cold seawater in the ORV seawater supply pit 41b and the cold seawater pit 41a is kept constant by adjusting the amount of cold seawater discharged through the pit drain line 302c.
  • FIG. 5 shows a pump for sending cold seawater to the cold seawater supply line 402 and the circulation line 401 for the ORV pit 12 provided in the ORV 1 instead of the cold seawater pit 41 shown in FIGS.
  • An example in which 44a and 44b are provided is shown.
  • the ORV pit 12 serves to receive seawater after flowing along the outer surface of the panel 11 that exchanges heat between LNG and seawater, and is provided in the ORV1.
  • the LNG vaporization equipment according to each embodiment described above with reference to FIGS. 2 to 5 may be used as a hydrogen vaporization equipment for vaporizing liquefied hydrogen, which is a liquid fuel.
  • cold heat utilization equipment to which cold seawater is supplied from the fuel vaporization equipment of this example is not limited to the aquaculture layer or plant factory described above.
  • cold seawater may be supplied to coolers such as chemical plants and petroleum refining plants.

Abstract

[Problem] To provide a technique whereby equipment for vaporizing liquid fuel is used and cold seawater adjusted to the desired temperature is supplied to cold/heat-using equipment. [Solution] Fuel vaporization equipment that vaporizes liquid fuel, wherein an open rack vaporizer (1) vaporizes the liquid fuel using seawater, and a seawater supply line (301) supplies seawater to the open rack vaporizer (1). A cold seawater supply line (402) supplies cold/heat-using equipment (5) with cold seawater that has decreased in temperature due to heat exchange with liquid fuel in the open rack vaporizer (1), and a circulation line (401) adjusts the temperature of the cold seawater by resupplying some of the cold seawater to the open rack vaporizer (1). [Selected drawing] Figure 2

Description

燃料気化設備Fuel vaporizer
 本発明は、液化燃料を気化させる際に得られた冷熱を利用する技術に関する。 The present invention relates to technology that utilizes cold energy obtained when liquefied fuel is vaporized.
 液化天然ガス(LNG:Liquefied Natural Gas)や液化水素などの液化燃料を利用するにあたっては、液化燃料を気化させ、ガスの状態で燃料の消費設備へと供給する必要がある。 
 液化燃料を気化させる設備の一種として、多数の伝熱管から構成されるパネルの外面に沿って加熱媒体である海水を流すことにより、伝熱管の内部に供給された液化燃料を気化させるオープンラック気化器(ORV:Open Rack Vaporizer)が知られている。
In using liquefied natural gas (LNG), liquefied hydrogen, or other liquefied fuel, it is necessary to vaporize the liquefied fuel and supply it in the form of gas to the fuel consuming equipment.
As a type of equipment for vaporizing liquefied fuel, open rack vaporization vaporizes the liquefied fuel supplied inside the heat transfer tubes by flowing sea water as a heating medium along the outer surface of a panel composed of many heat transfer tubes. A device (ORV: Open Rack Vaporizer) is known.
 一方、液化燃料の気化設備においては、液化燃料との熱交換によって加熱媒体の温度が低下することから、加熱媒体に蓄積された冷熱を植物工場の温度調節などに利用する技術が提案されている(例えば特許文献1、2)。 On the other hand, in a liquefied fuel vaporization facility, the temperature of the heating medium decreases due to heat exchange with the liquefied fuel, so a technology has been proposed that utilizes the cold energy accumulated in the heating medium for temperature control in plant factories. (For example, Patent Documents 1 and 2).
 しかしながら、環境への影響を抑える目的で、液体燃料が貯蔵されている貯蔵基地から外部へ排出される海水の下限温度には制約がある。また、海水は天候や季節に応じ温度が変化する場合がある一方で、気化設備においては必要流量の液化燃料を気化させる運転を行うことが最も優先される。このため、これらの条件に応じてORVから流出する海水の温度も変化してしまう場合がある。 
 これらのことから、ORVから排出された低温の海水(冷海水)の温度が、植物工場などの冷熱利用設備にて必要とされる温度と合致しない場合がある。
However, in order to reduce environmental impact, there are restrictions on the minimum temperature of seawater that is discharged outside from the storage terminal where the liquid fuel is stored. In addition, while the temperature of sea water may change depending on the weather and season, the vaporization equipment should be operated to vaporize the liquefied fuel at the required flow rate. Therefore, the temperature of the seawater flowing out from the ORV may change depending on these conditions.
For these reasons, the temperature of low-temperature seawater (cold seawater) discharged from the ORV may not match the temperature required by cold heat utilization equipment such as plant factories.
特開2014-31964号公報JP 2014-31964 A 登録実用新案第3209642号公報Registered Utility Model No. 3209642
 本発明は、液化燃料の気化設備を利用し、冷熱利用設備に向けて所望の温度に調節された冷海水を供給する技術を提供する。 The present invention uses a liquefied fuel vaporization facility to provide a technology for supplying cold seawater adjusted to a desired temperature to cold heat utilization facilities.
 本発明は、液化燃料を気化させる燃料気化設備であって、
 前記液化燃料が供給される複数の伝熱管の外面に沿って海水を流すことにより、前記液化燃料を気化させるオープンラック気化器と、
 前記オープンラック気化器に向けて海水を供給するための海水供給ラインと、
 前記オープンラック気化器にて前記液化燃料の気化に用いられ、前記液化燃料との熱交換により温度が低下した冷海水を、当該冷海水の冷熱を利用する冷熱利用設備へ供給する冷海水供給ラインと、
 前記冷海水の温度を予め設定された温度まで低下させるため、前記オープンラック気化器から排出された冷海水の一部を、前記オープンラック気化器に再供給するための循環ラインと、を備えたことを特徴とする。
The present invention is a fuel vaporization facility for vaporizing liquefied fuel,
an open rack vaporizer that vaporizes the liquefied fuel by flowing seawater along the outer surfaces of the plurality of heat transfer tubes to which the liquefied fuel is supplied;
a seawater supply line for supplying seawater toward the open rack vaporizer;
A cold seawater supply line that supplies cold seawater, which is used for vaporizing the liquefied fuel in the open rack vaporizer and whose temperature has been lowered by heat exchange with the liquefied fuel, to cold heat utilization equipment that uses the cold heat of the cold seawater. When,
a circulation line for resupplying a portion of the cold sea water discharged from the open rack vaporizer to the open rack vaporizer to reduce the temperature of the cold sea water to a preset temperature. It is characterized by
 前記燃料気化設備は、以下の特徴を備えてもよい。 
(a)前記冷熱利用設備は、前記冷海水の冷熱を利用して魚介類の養殖用水の温度調節を行う養殖槽、または、前記冷熱を利用して植物の育成雰囲気、育成土壌、若しくは培養水の少なくとも一つの温度調節を行う植物工場であること。 
(b)前記液化燃料は、液化天然ガスまたは液化水素であること。 
(c)前記オープンラック気化器から排出される冷海水を受け入れる冷海水ピットを備え、前記冷海水供給ラインは、前記冷海水ピット内の冷海水を前記冷熱利用設備へ供給し、前記循環ラインは、前記冷海水ピット内の冷海水を前記オープンラック気化器に再供給すること。 
(d)前記海水供給ラインに介設され、当該海水供給ラインを流れる海水が流れ込むと共に、前記冷海水ピットに対して仕切り壁を介して隣接して設けられ、前記仕切り壁の上端から溢れ出た前記冷海水を受け入れるように構成された海水供給ピットを備え、前記冷海水ピットから前記海水供給ピットに冷海水が流れ込む領域である前記仕切り壁の上端面が、前記循環ラインを構成していることと、前記海水供給ピットに前記海水が流れ込む流量を増減することにより、前記前記冷海水ピットから前記海水供給ピットを介して前記オープンラック気化器に再供給される冷海水の流量を増減し、前記冷海水の温度を調節すること。
(e)前記オープンラック気化器は、前記伝熱管の外面に沿って流れた後の海水を受ける受槽部を備え、前記冷海水供給ラインは、前記受槽部内の冷海水を前記冷熱利用設備へ供給し、前記循環ラインは、前記受槽部内の冷海水を前記オープンラック気化器に再供給すること。
(f)前記オープンラック気化器で冷却されていない海水を前記冷熱利用設備へ向けて供給する未冷却前海水供給ラインを備えたこと。
The fuel vaporization facility may have the following features.
(a) The cold energy utilization equipment is a culture tank that uses the cold heat of the cold sea water to adjust the temperature of the water for cultivating fish and shellfish, or the cold heat is used to create a plant growing atmosphere, growing soil, or culture water. It shall be a plant factory that performs at least one temperature control of
(b) the liquefied fuel is liquefied natural gas or liquefied hydrogen;
(c) a cold seawater pit for receiving cold seawater discharged from the open rack vaporizer, the cold seawater supply line supplying the cold seawater in the cold seawater pit to the cold heat utilization equipment, and the circulation line and resupplying the cold seawater in the cold seawater pit to the open rack vaporizer.
(d) is interposed in the seawater supply line, into which seawater flowing through the seawater supply line flows, is provided adjacent to the cold seawater pit via a partition wall, and overflows from the upper end of the partition wall; A seawater supply pit configured to receive the cold seawater is provided, and an upper end surface of the partition wall, which is a region where cold seawater flows from the cold seawater pit to the seawater supply pit, constitutes the circulation line. and increasing or decreasing the flow rate of the seawater flowing into the seawater supply pit to increase or decrease the flow rate of the cold seawater resupplied from the cold seawater pit to the open rack vaporizer via the seawater supply pit, To regulate the temperature of cold sea water.
(e) The open rack vaporizer includes a receiving tank portion that receives seawater after flowing along the outer surface of the heat transfer tube, and the cold seawater supply line supplies the cold seawater in the receiving tank portion to the cold heat utilization equipment. and the circulation line re-supplies the cold seawater in the receiving tank portion to the open rack vaporizer.
(f) An uncooled pre-cooled seawater supply line is provided to supply seawater that has not been cooled by the open rack vaporizer toward the cold heat utilization equipment.
 本発明によれば、オープンラック気化器にて液化燃料を気化させるための熱交換により温度が低下した冷海水の一部をオープンラック気化器に再供給するための循環ラインを備えるので、冷熱利用設備に供給される冷海水の温度を所望の温度に調節することができる。 According to the present invention, since a circulation line is provided for resupplying part of the cold seawater whose temperature has been lowered by heat exchange for vaporizing liquefied fuel in the open rack vaporizer to the open rack vaporizer, cold heat utilization The temperature of the cold seawater supplied to the facility can be adjusted to the desired temperature.
従来のLNG気化設備の構成図である。It is a block diagram of the conventional LNG vaporization equipment. 実施の形態に係るLNG気化設備の構成図である。1 is a configuration diagram of an LNG vaporization facility according to an embodiment; FIG. 第2の実施の形態に係るLNG気化設備の構成図である。It is a block diagram of the LNG vaporization equipment which concerns on 2nd Embodiment. 第3の実施の形態に係るLNG気化設備の構成図である。It is a block diagram of the LNG vaporization equipment which concerns on 3rd Embodiment. 第4の実施の形態に係るLNG気化設備の構成図である。It is a block diagram of the LNG vaporization equipment which concerns on 4th Embodiment.
 実施の形態に係る燃料気化設備の構成を示す前に、図1を参照しながら従来構成に係る燃料気化設備の構成例を説明する。以下に示す各図では、液化燃料の一例として、液化天然ガス(LNG)の気化を行うLNG気化設備を例に挙げて説明を行う。 Before showing the configuration of the fuel vaporization equipment according to the embodiment, a configuration example of the conventional fuel vaporization equipment will be described with reference to FIG. In each figure shown below, LNG vaporization equipment for vaporizing liquefied natural gas (LNG) will be described as an example of liquefied fuel.
 LNG気化設備は、LNGタンク2に貯蔵されたLNGをオープンラック気化器(ORV)1にて気化させ、気化後の燃料ガスを、燃料ガス供給ライン101を介して需要家へ供給する。 
 ORV1は、LNGタンク2からのLNGが供給される多数の伝熱管から構成されたパネル11の外面に沿って海水を流下させ、海水との熱交換によりLNGを気化させて燃料ガスを得る公知の構成を備える。
The LNG vaporization equipment vaporizes LNG stored in an LNG tank 2 with an open rack vaporizer (ORV) 1 and supplies the fuel gas after vaporization to a consumer through a fuel gas supply line 101 .
The ORV 1 causes seawater to flow down along the outer surface of a panel 11 composed of a large number of heat transfer tubes to which LNG from the LNG tank 2 is supplied, and vaporizes the LNG through heat exchange with the seawater to obtain fuel gas. with configuration.
 図1に示すORV1は、LNGを気化させるための海水として、取水ポンプ31によって取水された海水(例えば20℃)を利用する。 
 具体的な構成例としては、取水ポンプ31によって取水された海水が、ORV1に接続されたORV海水供給ライン301に向けて供給される。海水の供給流量は、ORV海水供給ライン301に設けられた流量検出部322及び流量調節弁321を用いて調節される。LNGの気化に用いられた海水は、ORV排水ライン302を介して放水口へ向けて排出される。
The ORV 1 shown in FIG. 1 uses seawater (for example, 20° C.) taken in by the water intake pump 31 as seawater for vaporizing LNG.
As a specific configuration example, seawater taken by the water intake pump 31 is supplied toward the ORV seawater supply line 301 connected to the ORV1. The seawater supply flow rate is adjusted using a flow rate detector 322 and a flow rate control valve 321 provided in the ORV seawater supply line 301 . The seawater used to vaporize the LNG is discharged through the ORV drain line 302 towards the water outlet.
 上述の構成を備えたLNG気化設備において、ORV1においてはLNGとの熱交換により温度が低下した海水が得られ、この海水の冷熱は種々の冷熱利用設備にて活用することが可能である。 
 冷熱利用設備における冷熱の利用先としては、魚介類の養殖槽にて養殖用水の温度調節を行う場合や、植物工場において植物の育成雰囲気、育成土壌、または培養水の少なくとも一つの温度調節を行う場合を例示できる。
In the LNG vaporization equipment having the above-described configuration, seawater with a lowered temperature is obtained by heat exchange with LNG in the ORV 1, and the cold energy of this seawater can be utilized in various cold energy utilization equipment.
Cold energy is used in equipment that uses cold energy to control the temperature of aquaculture water in fish and shellfish culture tanks, and to control the temperature of at least one of the atmosphere for growing plants, the soil for growing plants, or the temperature of culture water in a plant factory. A case can be exemplified.
 例えばサケの養殖用水は20℃未満であることが好ましく、アワビの養殖は25℃未満であることが好ましい。また、イチゴの育成土壌や当該土壌に供給される供給水は、15℃未満であることが好ましい。このように冷熱利用設備においては、それぞれの冷熱の利用目的に応じた好適な温度がある。 For example, the water for cultivating salmon is preferably less than 20°C, and the water for cultivating abalone is preferably less than 25°C. In addition, it is preferable that the strawberry-growing soil and the supply water supplied to the soil have a temperature of less than 15°C. As described above, in cold energy utilization equipment, there is a suitable temperature according to the purpose of use of each cold energy.
 しかしながら、環境への影響を抑える目的で、外部へ排出される海水の下限温度には制約があり、例えば放水口から排出される海水の温度を20℃程度に維持する必要がある。一方で、ORV1は大量の海水を利用するところ、当該ORV1から排出される海水の全量を冷熱利用設備にて利用することは困難な場合もある。 However, in order to reduce the impact on the environment, there are restrictions on the lower limit temperature of the seawater discharged to the outside. On the other hand, since the ORV 1 uses a large amount of seawater, it may be difficult to use the entire amount of seawater discharged from the ORV 1 in cold heat utilization equipment.
 従って、ORV1から排出された海水の一部を冷熱利用設備に供給する場合であっても、残りの大部分の海水はそのまま外部へ放出せざるを得ない。温度が低い多量の海水を排出すると、放水口へ放出される海水の温度が許容される温度を下回ってしまうおそれがある。このため、図1に示す従来のLNG気化設備においては、例えばORV1の出口の海水温度は17℃程度までにしか低下させることができないのが実情であった。 Therefore, even if part of the seawater discharged from ORV1 is supplied to cold heat utilization equipment, most of the remaining seawater must be discharged to the outside as it is. If a large amount of low-temperature seawater is discharged, there is a risk that the temperature of the seawater discharged to the water discharge port will fall below the permissible temperature. Therefore, in the conventional LNG vaporization facility shown in FIG. 1, the actual situation was that the seawater temperature at the outlet of the ORV 1 could only be lowered to about 17° C., for example.
 また、海水は天候や季節に応じ温度が変化する場合がある。一方で、LNG気化設備においては需要家側からの要求に見合った流量のLNGを気化させる運転を行うことが最も優先される。このため、供給される海水の温度が変化したとき、ORV1から排出される海水の温度を冷熱利用設備側の要求温度に保つことが困難となる場合もある。 In addition, the temperature of sea water may change depending on the weather and season. On the other hand, in the LNG vaporization equipment, the highest priority is given to the operation of vaporizing LNG at a flow rate that meets the demand from the consumer side. Therefore, when the temperature of the supplied seawater changes, it may be difficult to keep the temperature of the seawater discharged from the ORV 1 at the temperature required by the cold heat utilization equipment.
 このように、従来構成のLNG気化設備では、冷熱利用設備に必要とされる温度の冷海水を通年で安定供給することが困難な場合があった。 
 本実施の形態に係るLNG気化設備は、上述の問題に対応し、環境への影響を抑えつつ、冷熱利用設備にて要求される温度の冷海水を安定して供給することが可能な構成を備えている。
As described above, in the conventionally configured LNG vaporization equipment, it was sometimes difficult to stably supply cold seawater at a temperature required for cold heat utilization equipment throughout the year.
The LNG vaporization equipment according to the present embodiment has a configuration that can stably supply cold seawater at a temperature required by cold heat utilization equipment while suppressing the impact on the environment in response to the above problems. I have.
 以下、図2を参照しながら、実施の形態に係るLNG気化設備の全体構成例を説明する。図2に示すLNG気化設備はORV1から排出された冷海水の一部を養殖槽や植物工場からなる冷熱利用設備5へ向けて供給することが可能な構成となっている。 
 なお、以下に説明する図2~5においては、図1を用いて説明したものと共通の構成要素に対しては、図1に示したものと共通の符号を付してある。
Hereinafter, an example of the overall configuration of the LNG vaporization equipment according to the embodiment will be described with reference to FIG. The LNG vaporization equipment shown in FIG. 2 has a configuration capable of supplying part of the cold seawater discharged from the ORV 1 toward the cold heat utilization equipment 5 consisting of a culture tank and a plant factory.
2 to 5 described below, the same reference numerals as those shown in FIG. 1 are attached to the same components as those described using FIG.
 図2に示すLNG液化設備は、ORV1から排出される海水の流れる流路が、放水口へ向けて冷海水を排出するためのORV排水ライン302aと、冷熱利用設備5へ供給される冷海水が流れる冷海水ピットライン302bとに分岐している。 
 ORV排水ライン302aは、放水口へ向けて冷海水を排出する。一方、冷海水ピットライン302bの下流側には冷海水ピット41が設けられ、冷熱利用設備5に供給される冷海水はこの冷海水ピット41に受け入れられる。
In the LNG liquefaction facility shown in FIG. 2, the passage through which the seawater discharged from the ORV 1 flows is the ORV drainage line 302a for discharging cold seawater toward the water outlet and the cold seawater supplied to the cold heat utilization equipment 5. It branches to the flowing cold seawater pit line 302b.
The ORV drain line 302a discharges cold sea water towards the water outlet. On the other hand, a cold seawater pit 41 is provided on the downstream side of the cold seawater pit line 302b, and the cold seawater supplied to the cold heat utilization equipment 5 is received in this cold seawater pit 41.
 冷海水ピット41と冷熱利用設備5との間には、冷熱利用設備5へ向けて冷海水を供給するための冷海水供給ライン402が設けられている。冷海水ピット41に流れ込んだ冷海水は、冷海水供給ライン402の上流側に設けられた送液ポンプ44により、冷海水供給ライン402を介して冷熱利用設備5に供給される。冷熱利用設備5に対する冷海水の供給流量は、冷海水供給ライン402に設けられた流量検出部432及び流量調節弁431を用いて調節される。また冷海水供給ライン402には開閉弁433が設けられており、冷熱利用設備5に対する冷海水の供給、停止を実行することができる。 A cold seawater supply line 402 is provided between the cold seawater pit 41 and the cold heat utilization equipment 5 to supply cold seawater to the cold heat utilization equipment 5 . The cold seawater that has flowed into the cold seawater pit 41 is supplied to the cold heat utilization equipment 5 via the cold seawater supply line 402 by the liquid feed pump 44 provided on the upstream side of the cold seawater supply line 402 . The flow rate of cold seawater supplied to the cold-heat utilization equipment 5 is adjusted using a flow rate detector 432 and a flow rate control valve 431 provided in the cold seawater supply line 402 . In addition, the cold seawater supply line 402 is provided with an on-off valve 433 , which can supply and stop the cold seawater to the cold heat utilization equipment 5 .
 さらに上述の冷海水供給ライン402からは、冷海水ピット41内の冷海水、即ち、ORV1から排出された冷海水の一部をORV1に再供給するための循環ライン401が分岐している。循環ライン401は、既述の開閉弁433よりも上流側の位置にて冷海水供給ライン402から分岐し、その下流端は、ORV海水供給ライン301に合流している。ORV海水供給ライン301は、本実施の形態の海水供給ラインに相当する。 Further, from the above-described cold seawater supply line 402, a circulation line 401 for resupplying cold seawater in the cold seawater pit 41, that is, part of the cold seawater discharged from the ORV1 to the ORV1 is branched. The circulation line 401 branches off from the cold seawater supply line 402 at a position on the upstream side of the on-off valve 433 , and its downstream end joins the ORV seawater supply line 301 . The ORV seawater supply line 301 corresponds to the seawater supply line of this embodiment.
 ORV1に対する冷海水の再供給流量(循環流量)は、冷海水ピット41に設けられた温度検出部422及び流量調節弁421を用いて、冷海水ピット41内の冷海水の温度が予め設定された目標温度(例えば15℃)となるように調節される。冷海水の目標温度は、冷熱利用設備5にて要求される冷海水の温度に設定される。また循環ライン401には開閉弁423が設けられており、ORV1に対する冷海水の再供給の実行、停止を行うことができる。 The resupply flow rate (circulation flow rate) of cold seawater to the ORV 1 is set in advance by using the temperature detection unit 422 and the flow control valve 421 provided in the cold seawater pit 41. The target temperature (for example, 15° C.) is adjusted. The target temperature of cold seawater is set to the temperature of cold seawater required by the cold heat utilization equipment 5 . Further, the circulation line 401 is provided with an on-off valve 423, which can execute and stop the resupply of cold seawater to the ORV1.
 以上に説明した構成によれば、循環ライン401を介してORV1に冷海水を再供給することにより、図1を用いて説明した従来のLNG気化設備と比較してORV1に供給される海水の温度は低下する(例えば18℃)。 
 このとき、ORV1におけるLNGの気化の観点では、需要家に供給されるLNGを気化させるのに必要な熱量が確保されるように、ORV1に対する海水の供給流量、即ち、ORV海水供給ライン301を介して供給される海水の供給流量と、循環ライン401を介して供給される冷海水の循環流量との合計の流量が確保されていればよい。
According to the configuration described above, by resupplying cold seawater to ORV1 via circulation line 401, the temperature of seawater supplied to ORV1 is decreases (eg 18°C).
At this time, from the viewpoint of LNG vaporization in the ORV 1, the seawater supply flow rate to the ORV 1, that is, The total flow rate of the seawater supply flow rate supplied through the circulation line 401 and the circulation flow rate of the cold seawater supplied via the circulation line 401 may be ensured.
 以上に説明した構成を有するLNG液化設備の作用について説明する。従来のLNG液化設備と同様に、ORV1においてはORV海水供給ライン301を介して供給された海水をパネル11の外面に沿って流下させ、LNGを気化させて燃料ガスを得る処理が実施される。LNGとの熱交換により温度が低下した冷海水の一部は、冷海水ピットライン302bを介して冷海水ピット41に受け入れられる。また、残りの冷海水は、ORV排水ライン302aを介して放水口へ向けて排出される。 The operation of the LNG liquefaction facility having the configuration described above will be explained. As in the conventional LNG liquefaction facility, in the ORV 1, seawater supplied via the ORV seawater supply line 301 is caused to flow down along the outer surface of the panel 11 to vaporize the LNG to obtain fuel gas. A part of the cold seawater whose temperature has been lowered by heat exchange with LNG is received in the cold seawater pit 41 via the cold seawater pit line 302b. Also, the remaining cold seawater is discharged through the ORV drain line 302a toward the outlet.
 冷海水ピット41に流れ込んだ冷海水のうち、冷熱利用設備5への供給分については、消費量に応じた流量調節を行いつつ冷海水供給ライン402を介して冷熱利用設備5に供給される。 
 一方で、循環ライン401を介してORV1に再供給される冷海水の循環流量は、冷海水ピット41の冷海水の温度に応じて調節される。即ち、冷海水の目標温度を中心とした運転管理範囲を設定しておき、冷海水ピット41内の冷海水の温度が運転管理範囲の上限値を上回った場合には、循環流量を増加させ、ORV1に供給される海水の温度を低下させる。また、冷海水ピット41内の冷海水の温度が運転管理範囲の下限値を下回った場合には、循環流量を減少させ、ORV1に供給される海水の温度を上昇させる。この結果、運転管理範囲内で安定した温度の冷海水を冷熱利用設備5に対して供給することができる。
Of the cold seawater that has flowed into the cold seawater pit 41, the portion to be supplied to the cold heat utilization equipment 5 is supplied to the cold heat utilization equipment 5 via the cold seawater supply line 402 while adjusting the flow rate according to the consumption amount.
On the other hand, the circulation flow rate of the cold seawater resupplied to the ORV 1 via the circulation line 401 is adjusted according to the temperature of the cold seawater in the cold seawater pit 41 . That is, an operation control range centering on the target temperature of the cold seawater is set, and when the temperature of the cold seawater in the cold seawater pit 41 exceeds the upper limit of the operation control range, the circulation flow rate is increased, Decrease the temperature of the seawater supplied to ORV1. Moreover, when the temperature of the cold seawater in the cold seawater pit 41 falls below the lower limit value of the operation control range, the circulation flow rate is decreased to raise the temperature of the seawater supplied to the ORV1. As a result, it is possible to supply cold seawater with a stable temperature within the operation control range to the cold heat utilization equipment 5 .
 なお、冷海水ピットライン302bを介して冷海水ピット41に流れ込む冷海水の流量は、冷熱利用設備5への供給流量及びORV1への循環流量の合計流量とバランスするように調節される。 
 また、冷熱利用設備5への冷海水の供給を停止する場合は、開閉弁433、423を閉じて冷海水の払い出し及び循環を停止すると共に、ORV排水ライン302aを介して、ORV1から排出される海水の全量を外部へと排出する。
The flow rate of cold sea water flowing into the cold sea water pit 41 via the cold sea water pit line 302b is adjusted to balance the total flow rate of the supply flow rate to the cold heat utilization equipment 5 and the circulation flow rate to the ORV1.
In addition, when stopping the supply of cold seawater to the cold heat utilization equipment 5, the on-off valves 433 and 423 are closed to stop the discharge and circulation of the cold seawater, and the ORV 1 is discharged via the ORV drainage line 302a. The entire amount of seawater is discharged to the outside.
 図2に示すLNG気化設備においては、冷熱利用設備5に供給される冷海水の温度に対応して、ORV排水ライン302aを介して外部へ排出される冷海水の温度も低下することになる。しかしながら当該LNG気化設備においては、冷海水の一部をORV1の入口側に再供給している。このため、ORV1と冷海水ピット41とを含む冷海水の循環系外に排出される冷海水の流量(即ち、ORV海水供給ライン301の上流側から新たに供給さされる海水の流量)は、図1を用いて説明した従来のLNG気化設備よりも大幅に少ない。 In the LNG vaporization facility shown in FIG. 2, the temperature of the cold seawater discharged to the outside via the ORV drainage line 302a also decreases in accordance with the temperature of the cold seawater supplied to the cold heat utilization equipment 5. However, in the LNG vaporization facility, part of the cold seawater is resupplied to the inlet side of ORV1. Therefore, the flow rate of cold seawater discharged outside the cold seawater circulation system including the ORV 1 and the cold seawater pit 41 (that is, the flow rate of seawater newly supplied from the upstream side of the ORV seawater supply line 301) is 1 is significantly less than the conventional LNG vaporization facility described with .
 発明者らは、図1示す従来のLNG気化設備においてORV排水ライン302から排出される海水の流量と比較して、図2に示す実施の形態においては、循環系外に排出される冷海水の流量を2~5割程度に低減することができることを把握している。 
 さらに、循環系外に排出される冷海水の一部は冷熱利用設備5へ向けて供給されるので、ORV排水ライン302aを介して排出される冷海水の流量はさらに少ない。このため、ORV排水ライン302aを介して排出された冷海水の温度が15℃まで低下していたとしても、冷海水の総排出量が少なく環境に対する影響が小さい状態を維持することができる。
The inventors have found that, in comparison with the flow rate of seawater discharged from the ORV drainage line 302 in the conventional LNG vaporization facility shown in FIG. It is understood that the flow rate can be reduced to about 20 to 50%.
Furthermore, since part of the cold seawater discharged out of the circulation system is supplied toward the cold heat utilization equipment 5, the flow rate of the cold seawater discharged via the ORV drainage line 302a is even smaller. Therefore, even if the temperature of the cold seawater discharged through the ORV drainage line 302a drops to 15° C., the total amount of cold seawater discharged is small, and the environment can be maintained in a small state.
 本実施の形態に係るLNG気化設備によれば以下の効果がある。ORV1にて液化燃料を気化させるための熱交換により温度が低下した冷海水の一部をORV1に再供給するための循環ラインを備えるので、冷熱利用設備5に供給される冷海水の温度を所望の温度に調節することができる。 
 また、ORV1に対して冷海水の再供給を行うことにより、外部へ排出される冷海水の流量を低減し、環境に対する冷海水の影響を低減することができる。
The LNG vaporization equipment according to this embodiment has the following effects. A circulation line is provided for resupplying part of the cold seawater whose temperature has been lowered by heat exchange for vaporizing the liquefied fuel in the ORV1 to the ORV1. temperature can be adjusted.
Further, by resupplying cold seawater to the ORV 1, the flow rate of the cold seawater discharged to the outside can be reduced, and the influence of the cold seawater on the environment can be reduced.
 次いで、図3~5を参照しながら、実施の形態に係るLNG気化設備のバリエーションについて説明する。 
 図3は、冷海水ピット41に対して、冷海水供給ライン402用の冷海水供給ライン用ポンプ44bと、循環ライン401用の循環ライン用ポンプ44aとを独立して設けた例である。この構成により、冷熱利用設備5への冷海水の供給流量、及びORV1への冷海水の循環流量の調節の自由度を高めることができる。
Next, variations of the LNG vaporization equipment according to the embodiment will be described with reference to FIGS. 3 to 5. FIG.
FIG. 3 shows an example in which a cold seawater supply line pump 44b for the cold seawater supply line 402 and a circulation line pump 44a for the circulation line 401 are provided independently for the cold seawater pit 41. FIG. With this configuration, it is possible to increase the degree of freedom in adjusting the supply flow rate of cold seawater to the cold heat utilization equipment 5 and the circulation flow rate of cold seawater to the ORV 1 .
 また図3には、流量調節弁431から排出された冷却されていない海水の一部を冷熱利用設備5へ向けて供給するための未冷却海水供給ライン403を設けた例を示してある。未冷却海水供給ライン403はORV海水供給ライン301から分岐して冷熱利用設備5に接続され、冷海水と比較して相対的に温かい海水の供給が行われる。海水の供給流量は、未冷却海水供給ライン403に設けられた流量検出部452及び流量調節弁451を用いて調節される。 Also, FIG. 3 shows an example in which an uncooled seawater supply line 403 is provided for supplying part of the uncooled seawater discharged from the flow control valve 431 toward the cold heat utilization equipment 5 . The uncooled seawater supply line 403 branches off from the ORV seawater supply line 301 and is connected to the cold heat utilization facility 5 to supply relatively warm seawater compared to cold seawater. The seawater supply flow rate is adjusted using a flow rate detector 452 and a flow rate control valve 451 provided in the uncooled seawater supply line 403 .
 上述の構成により、取水ポンプ31側にて取水される海水の温度が高い期間(例えば夏季)は、冷海水供給ライン402を介して冷熱利用設備5へ向けて冷海水を供給する。そして、取水される海水の温度が低い期間(例えば冬季)は、冷海水供給ライン402からの冷海水の供給に替えて、または並行して、未冷却海水供給ライン403を介し、流量調節弁431から排出された比較的温かい海水を供給することもできる。 With the above configuration, cold seawater is supplied to the cold heat utilization equipment 5 via the cold seawater supply line 402 during periods when the temperature of the seawater taken in by the water intake pump 31 is high (for example, in summer). Then, during a period when the temperature of the seawater to be taken in is low (for example, in winter), instead of supplying cold seawater from the cold seawater supply line 402, or in parallel, the flow rate control valve 431 is supplied via the uncooled seawater supply line 403 It can also supply relatively warm sea water discharged from the
 次いで図4は、図2、3に示す配管からなる循環ライン401に替えて、ピット51a、52bを用いて冷海水の循環を行う構成例を示している。 
 図4に示すLNG気化設備においては、ORV海水供給ライン301a、301bに対して、上流側のORV海水供給ライン301aを流れる海水が流れ込むORV海水供給ピット41bが介設されている。当該ORV海水供給ピット41bは、冷海水ピットライン302bを介してORV1から排出された冷海水の全量が流れ込む冷海水ピット41aに対して仕切り壁411を介して隣接して設けられている。冷海水ピット41aには、放水口へ向けて冷海水が排出されるピット排水ライン302cが接続されている。
Next, FIG. 4 shows a configuration example in which cold seawater is circulated using pits 51a and 52b instead of the circulation line 401 composed of the pipes shown in FIGS.
In the LNG vaporization facility shown in FIG. 4, an ORV seawater supply pit 41b into which seawater flowing through the upstream ORV seawater supply line 301a flows is interposed between the ORV seawater supply lines 301a and 301b. The ORV seawater supply pit 41b is provided adjacently via a partition wall 411 to the cold seawater pit 41a into which all the cold seawater discharged from the ORV 1 flows via the cold seawater pit line 302b. The cold seawater pit 41a is connected to a pit drain line 302c through which cold seawater is discharged toward the outlet.
 仕切り壁411は、冷海水ピット41aに収容しきれない冷海水が当該仕切り壁411の上端を介してORV海水供給ピット41b側へ向けて溢れ出ることが可能な高さに構成されている。即ち、冷海水ピット41aからORV海水供給ピット41bに冷海水が流れ込む領域である仕切り壁411の上端面は、ORV1に再供給される冷海水が流れる循環ラインを構成していることになる。 The partition wall 411 is configured to have a height that allows the cold seawater that cannot be accommodated in the cold seawater pit 41a to overflow toward the ORV seawater supply pit 41b through the upper end of the partition wall 411. That is, the upper end surface of the partition wall 411, which is the area where the cold seawater flows from the cold seawater pit 41a to the ORV seawater supply pit 41b, constitutes a circulation line through which the cold seawater to be resupplied to the ORV1 flows.
 ORV海水供給ピット41bにはORV供給ポンプ33が設けられ、ORV海水供給ライン301を介してORV1への海水供給が行われる。ORV海水供給ライン301aからORV海水供給ピット41bへ向けて海水を供給するORV海水供給ライン301aには、流量調節弁321aが設けられている。流量調節弁321aは、ORV海水供給ピット41b内の海水温度を検出する温度検出部323の温度検出結果に基づき、当該ORV海水供給ピット41b内の海水の温度が目標温度に近づくように冷海水ピット41aに流れ込む海水の流量を増減する。 An ORV supply pump 33 is provided in the ORV seawater supply pit 41b, and seawater is supplied to the ORV 1 via the ORV seawater supply line 301. A flow control valve 321a is provided in the ORV seawater supply line 301a that supplies seawater from the ORV seawater supply line 301a to the ORV seawater supply pit 41b. The flow control valve 321a controls the cold seawater pit so that the temperature of the seawater in the ORV seawater supply pit 41b approaches the target temperature based on the temperature detection result of the temperature detection unit 323 that detects the seawater temperature in the ORV seawater supply pit 41b. Increase or decrease the flow rate of seawater flowing into 41a.
 即ち、冷海水ピット41aからORV海水供給ピット41bに流れ込む冷海水の温度が上昇することにより、ORV海水供給ピット41b内の海水の温度が目標温度を中心として設定された運転管理範囲の上限値を上回った場合には、流量調節弁321aの開度を大きくし、海水の受け入れ流量を増加させる。これに合わせてORV供給ポンプ33を用いてORV1に供給する海水の流量も増加させる。 That is, as the temperature of the cold seawater flowing from the cold seawater pit 41a into the ORV seawater supply pit 41b rises, the temperature of the seawater in the ORV seawater supply pit 41b rises above the upper limit of the operation control range set around the target temperature. If it exceeds, the degree of opening of the flow control valve 321a is increased to increase the flow rate of seawater. In accordance with this, the ORV supply pump 33 is used to increase the flow rate of seawater supplied to the ORV 1 .
 この動作により、ORV1から排出される冷海水の流量が増加し、冷海水ピット41aからORV海水供給ピット41bへ流れ込む冷海水の循環量が増加する。その結果、冷海水ピット41aに流れ込む冷海水の温度が低下し、ORV海水供給ピット41b内の海水の温度も目標温度に近づく。なお、例えばピット排水ライン302cを介した冷海水の排出量の調節により、ORV海水供給ピット41b、冷海水ピット41a内の海水量は一定に保たれる。 This operation increases the flow rate of cold seawater discharged from the ORV 1, and increases the circulation amount of cold seawater flowing from the cold seawater pit 41a to the ORV seawater supply pit 41b. As a result, the temperature of the cold seawater flowing into the cold seawater pit 41a decreases, and the temperature of the seawater in the ORV seawater supply pit 41b also approaches the target temperature. The amount of cold seawater in the ORV seawater supply pit 41b and the cold seawater pit 41a is kept constant, for example, by adjusting the amount of cold seawater discharged through the pit drain line 302c.
 一方、冷海水ピット41aからORV海水供給ピット41bに流れ込む冷海水の温度が低下することにより、ORV海水供給ピット41b内の海水の温度が運転管理範囲の下限値を下回った場合には、流量調節弁321aの開度を小さくし、海水の受け入れ流量を減少させる。これに合わせてORV供給ポンプ33を用いてORV1に供給する海水の流量も減少させる。 On the other hand, when the temperature of the cold seawater flowing from the cold seawater pit 41a to the ORV seawater supply pit 41b drops and the temperature of the seawater in the ORV seawater supply pit 41b falls below the lower limit value of the operation control range, the flow rate is adjusted. The degree of opening of the valve 321a is reduced to reduce the flow rate of seawater received. In accordance with this, the ORV supply pump 33 is also used to reduce the flow rate of seawater supplied to the ORV 1 .
 この動作により、ORV1から排出される冷海水の流量が減少し、冷海水ピット41aからORV海水供給ピット41bへ流れ込む冷海水の循環量が減少する。その結果、冷海水ピット41aに流れ込む冷海水の温度が低下し、ORV海水供給ピット41b内の海水の温度も目標温度に近づくことになる。この場合にも、例えばピット排水ライン302cを介した冷海水の排出量の調節により、ORV海水供給ピット41b、冷海水ピット41a内の海水量は一定に保たれる。 This operation reduces the flow rate of cold seawater discharged from the ORV 1, and reduces the circulation amount of cold seawater flowing from the cold seawater pit 41a to the ORV seawater supply pit 41b. As a result, the temperature of the cold seawater flowing into the cold seawater pit 41a decreases, and the temperature of the seawater in the ORV seawater supply pit 41b approaches the target temperature. Also in this case, for example, the amount of cold seawater in the ORV seawater supply pit 41b and the cold seawater pit 41a is kept constant by adjusting the amount of cold seawater discharged through the pit drain line 302c.
 次いで図5は、図2、3に示す冷海水ピット41に替えて、ORV1に設けられているORVピット12に対して冷海水供給ライン402や循環ライン401への冷海水の送液用のポンプ44a、44bを設けた例を示している。ORVピット12は、LNGと海水との熱交換を行うパネル11の外面に沿って流れた後の海水を受ける役割を果たし、ORV1に装備されている。 Next, FIG. 5 shows a pump for sending cold seawater to the cold seawater supply line 402 and the circulation line 401 for the ORV pit 12 provided in the ORV 1 instead of the cold seawater pit 41 shown in FIGS. An example in which 44a and 44b are provided is shown. The ORV pit 12 serves to receive seawater after flowing along the outer surface of the panel 11 that exchanges heat between LNG and seawater, and is provided in the ORV1.
 図5に示す例においては、循環ライン用ポンプ44aに対しては、ORVピット12内の冷海水をORV1に対して再供給するための循環ライン401と、放水口へ向けて冷海水を排出するためのピット排水ライン302cとが接続されている。一方、冷熱利用設備5に対しては、冷海水供給ライン用ポンプ44bを用い、冷海水供給ライン402を介して冷海水の供給が行われる点は、図3に示すLNG気化設備と同様である。 In the example shown in FIG. 5, for the circulation line pump 44a, a circulation line 401 for resupplying the cold seawater in the ORV pit 12 to the ORV 1 and discharging the cold seawater toward the water outlet. A pit drainage line 302c for On the other hand, cold seawater is supplied to the cold heat utilization equipment 5 through a cold seawater supply line 402 using a cold seawater supply line pump 44b, which is the same as the LNG vaporization equipment shown in FIG. .
 以上、図2~5を用いて説明した各実施の形態に係るLNG気化設備は、液体燃料である液化水素の気化を行う水素気化設備として利用してもよい。 
 また本例の燃料気化設備から冷海水が供給される冷熱利用設備は、既述の養殖層や植物工場に限定されるものではない。例えば化学プラントや石油精製プラントなどのクーラーに対して、冷海水の供給を行ってもよい。
The LNG vaporization equipment according to each embodiment described above with reference to FIGS. 2 to 5 may be used as a hydrogen vaporization equipment for vaporizing liquefied hydrogen, which is a liquid fuel.
Also, cold heat utilization equipment to which cold seawater is supplied from the fuel vaporization equipment of this example is not limited to the aquaculture layer or plant factory described above. For example, cold seawater may be supplied to coolers such as chemical plants and petroleum refining plants.
1     ORV
301、301a、301b
      海水供給ライン
401   循環ライン
402   冷海水供給ライン
5     冷熱利用設備
 

 
1 ORV
301, 301a, 301b
Seawater supply line 401 Circulation line 402 Cold seawater supply line 5 Cold heat utilization equipment

Claims (7)

  1.  液化燃料を気化させる燃料気化設備であって、
     前記液化燃料が供給される複数の伝熱管の外面に沿って海水を流すことにより、前記液化燃料を気化させるオープンラック気化器と、
     前記オープンラック気化器に向けて海水を供給するための海水供給ラインと、
     前記オープンラック気化器にて前記液化燃料の気化に用いられ、前記液化燃料との熱交換により温度が低下した冷海水を、当該冷海水の冷熱を利用する冷熱利用設備へ供給する冷海水供給ラインと、
     前記冷海水の温度を予め設定された温度まで低下させるため、前記オープンラック気化器から排出された冷海水の一部を、前記オープンラック気化器に再供給するための循環ラインと、を備えたことを特徴とする燃料気化設備。
    A fuel vaporization facility for vaporizing liquefied fuel,
    an open rack vaporizer that vaporizes the liquefied fuel by flowing seawater along the outer surfaces of the plurality of heat transfer tubes to which the liquefied fuel is supplied;
    a seawater supply line for supplying seawater toward the open rack vaporizer;
    A cold seawater supply line that supplies cold seawater, which is used for vaporizing the liquefied fuel in the open rack vaporizer and whose temperature has been lowered by heat exchange with the liquefied fuel, to cold heat utilization equipment that uses the cold heat of the cold seawater. When,
    a circulation line for resupplying a portion of the cold sea water discharged from the open rack vaporizer to the open rack vaporizer to reduce the temperature of the cold sea water to a preset temperature. A fuel vaporization facility characterized by:
  2.  前記冷熱利用設備は、前記冷海水の冷熱を利用して魚介類の養殖用水の温度調節を行う養殖槽、または、前記冷熱を利用して植物の育成雰囲気、育成土壌、若しくは培養水の少なくとも一つの温度調節を行う植物工場であることを特徴とする請求項1に記載の燃料気化設備。 The cold energy utilization equipment is a culture tank that uses the cold energy of the cold sea water to adjust the temperature of water for cultivating fish and shellfish, or at least one of a plant growing atmosphere, a growing soil, and a culture water that uses the cold energy. 2. The fuel vaporization facility according to claim 1, wherein the plant factory performs two temperature controls.
  3.  前記液化燃料は、液化天然ガスまたは液化水素であることを特徴とする請求項1に記載の燃料気化設備。 The fuel vaporization facility according to claim 1, wherein the liquefied fuel is liquefied natural gas or liquefied hydrogen.
  4.  前記オープンラック気化器から排出される冷海水を受け入れる冷海水ピットを備え、前記冷海水供給ラインは、前記冷海水ピット内の冷海水を前記冷熱利用設備へ供給し、前記循環ラインは、前記冷海水ピット内の冷海水を前記オープンラック気化器に再供給することを特徴とする請求項1に記載の燃料気化設備。 A cold seawater pit is provided to receive cold seawater discharged from the open rack vaporizer, the cold seawater supply line supplies the cold seawater in the cold seawater pit to the cold heat utilization equipment, and the circulation line is the cold water. 2. The fuel vaporization facility according to claim 1, wherein cold seawater in a seawater pit is resupplied to said open rack vaporizer.
  5.  前記海水供給ラインに介設され、当該海水供給ラインを流れる海水が流れ込むと共に、前記冷海水ピットに対して仕切り壁を介して隣接して設けられ、前記仕切り壁の上端から溢れ出た前記冷海水を受け入れるように構成された海水供給ピットを備え、前記冷海水ピットから前記海水供給ピットに冷海水が流れ込む領域である前記仕切り壁の上端面が、前記循環ラインを構成していることと、
     前記海水供給ピットに前記海水が流れ込む流量を増減することにより、前記前記冷海水ピットから前記海水供給ピットを介して前記オープンラック気化器に再供給される冷海水の流量を増減し、前記冷海水の温度を調節することと、を特徴とする請求項1に記載の燃料気化設備。
    The cold seawater is interposed in the seawater supply line, into which the seawater flowing through the seawater supply line flows, is provided adjacent to the cold seawater pit via a partition wall, and overflows from the upper end of the partition wall. a seawater supply pit configured to receive a seawater supply pit, and an upper end surface of the partition wall, which is a region where cold seawater flows from the cold seawater pit to the seawater supply pit, constitutes the circulation line;
    By increasing or decreasing the flow rate of the seawater flowing into the seawater supply pit, the flow rate of cold seawater resupplied from the cold seawater pit to the open rack vaporizer via the seawater supply pit is increased or decreased, 2. The fuel vaporization system according to claim 1, characterized by adjusting the temperature of the .
  6.  前記オープンラック気化器は、前記伝熱管の外面に沿って流れた後の海水を受ける受槽部を備え、前記冷海水供給ラインは、前記受槽部内の冷海水を前記冷熱利用設備へ供給し、前記循環ラインは、前記受槽部内の冷海水を前記オープンラック気化器に再供給することを特徴とする請求項1に記載の燃料気化設備。 The open rack vaporizer includes a receiving tank portion that receives seawater after flowing along the outer surface of the heat transfer tube, and the cold seawater supply line supplies cold seawater in the receiving tank portion to the cold heat utilization equipment, 2. The fuel vaporization equipment according to claim 1, wherein the circulation line re-supplies the cold seawater in the receiving tank to the open rack vaporizer.
  7.  前記オープンラック気化器で冷却されていない海水を前記冷熱利用設備へ向けて供給する未冷却前海水供給ラインを備えたことを特徴とする請求項1に記載の燃料気化設備。
     
    2. The fuel vaporization facility according to claim 1, further comprising an uncooled pre-seawater supply line for supplying seawater that has not been cooled by the open rack vaporizer toward the cold heat utilization facility.
PCT/JP2021/007464 2021-02-26 2021-02-26 Fuel vaporization equipment WO2022180812A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2021/007464 WO2022180812A1 (en) 2021-02-26 2021-02-26 Fuel vaporization equipment
JP2023501973A JPWO2022180812A1 (en) 2021-02-26 2021-02-26
TW111106243A TW202235767A (en) 2021-02-26 2022-02-21 Fuel vaporization equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/007464 WO2022180812A1 (en) 2021-02-26 2021-02-26 Fuel vaporization equipment

Publications (1)

Publication Number Publication Date
WO2022180812A1 true WO2022180812A1 (en) 2022-09-01

Family

ID=83048726

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/007464 WO2022180812A1 (en) 2021-02-26 2021-02-26 Fuel vaporization equipment

Country Status (3)

Country Link
JP (1) JPWO2022180812A1 (en)
TW (1) TW202235767A (en)
WO (1) WO2022180812A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50119344A (en) * 1974-03-05 1975-09-18
JPH0534399Y2 (en) * 1987-11-11 1993-08-31
JPH0633863B2 (en) * 1988-09-29 1994-05-02 東京瓦斯株式会社 Open rack type vaporizer with underwater burner
JP2018506684A (en) * 2014-12-16 2018-03-08 韓国ガス公社Korea Gas Corporation Seawater supply device for seawater vaporizer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50119344A (en) * 1974-03-05 1975-09-18
JPH0534399Y2 (en) * 1987-11-11 1993-08-31
JPH0633863B2 (en) * 1988-09-29 1994-05-02 東京瓦斯株式会社 Open rack type vaporizer with underwater burner
JP2018506684A (en) * 2014-12-16 2018-03-08 韓国ガス公社Korea Gas Corporation Seawater supply device for seawater vaporizer

Also Published As

Publication number Publication date
JPWO2022180812A1 (en) 2022-09-01
TW202235767A (en) 2022-09-16

Similar Documents

Publication Publication Date Title
KR101346235B1 (en) Sea water heating apparatus and it used lng regasification system
US20080250795A1 (en) Air Vaporizer and Its Use in Base-Load LNG Regasification Plant
CN101233048B (en) Easy systems and method for cryogenic fluids transfer
US20100025031A1 (en) Multiple tanks water thermal storage system and its using method
BR112012015389B1 (en) APPARATUS FOR ENERGY RECOVERY FROM A HOT ENVIRONMENT AND METHOD FOR RECOVERING ENERGY FROM A HOT ENVIRONMENT
JP5156929B2 (en) Cryogenic fluid heating / vaporizing device and operation method thereof
CN201053795Y (en) Ice cold-storage constant temperature and constant humidity device for fresh-keeping cool warehouse
KR101571364B1 (en) LNG regasification system for ocean
US20090065181A1 (en) System and method for heat exchanger fluid handling with atmospheric tower
US20070295018A1 (en) Controlled flow heat extraction and recovery apparatus, method and system
CN208418890U (en) A kind of air cooling unit high back pressure pressure stabilizing heating system
WO2022180812A1 (en) Fuel vaporization equipment
JP2007247797A (en) Lng vaporizer
WO2022180810A1 (en) Fuel gasification equipment
JPH11281266A (en) Vaporization equipment for liquefied natural gas
CN206563380U (en) A kind of system antifreeze for cold-storage water pot
KR101876973B1 (en) Fuel Gas Supply System and Method for Vessel
JPWO2022180812A5 (en)
KR102469059B1 (en) Pipeline network system supplying thermal effluent and CO2 emitted from power plant to greenhouse
KR101100104B1 (en) Direct link control system among a plurality of heat sources of district heating
JPH0633863B2 (en) Open rack type vaporizer with underwater burner
JP3907368B2 (en) Low temperature liquid vaporizer
WO2022202250A1 (en) Vaporization device and vaporization method for liquified natural gas
CN110617726A (en) Liquefied gas vaporization cold-storage system
Madsen et al. Intermediate Fluid Vaporizers for LNG Regasification Vessels (SRVs) and FSRUs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21927912

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023501973

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21927912

Country of ref document: EP

Kind code of ref document: A1