JPH1038199A - Low-temperature liquefied gas storing facility and operating method for it - Google Patents

Low-temperature liquefied gas storing facility and operating method for it

Info

Publication number
JPH1038199A
JPH1038199A JP19902196A JP19902196A JPH1038199A JP H1038199 A JPH1038199 A JP H1038199A JP 19902196 A JP19902196 A JP 19902196A JP 19902196 A JP19902196 A JP 19902196A JP H1038199 A JPH1038199 A JP H1038199A
Authority
JP
Japan
Prior art keywords
low
gas
compressor
pressure
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19902196A
Other languages
Japanese (ja)
Inventor
Hideji Saito
秀次 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP19902196A priority Critical patent/JPH1038199A/en
Publication of JPH1038199A publication Critical patent/JPH1038199A/en
Pending legal-status Critical Current

Links

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce power consumption by reducing load of a compressor, and also to improve operating efficiency of a consumer by eliminating restriction of the operation of the consumer such as a thermal power plant. SOLUTION: A boosting means for boosting LNG 2 (low-temperature liquefied gas) extracted from a low-temperature tank 1 and for guiding it to an evaporator 5 is formed into a two-staged boosting method by pumps 8, 9, and a line 6' for guiding liquefied gas 2' generated in the low-temperature tank 1 to a compressor 7, a line 6 for joining gas 2' boosted by the compressor 7 to the outlet side of the evaporator 5, and a line 10 for extracting gas 2' from the low pressure stage of the compressor 7 and joining it to the outlet side of the pump 8 are provided. In the high-load operation, the line 10 is selected to liquefy gas 2' and dissolve it in LNG 2, while, in the low-load operation, gas 2' is accumulated on the gas phase of the low-temperature tank 1. The line 6 is selected to extract gas 2' from the low-temperature tank 1 only when pressure of gas phase is raised to the tank designed pressure value.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、低温液化ガス貯蔵
設備及びその運転方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low-temperature liquefied gas storage facility and a method of operating the same.

【0002】[0002]

【従来の技術】図3は一般的な低温液化ガス貯蔵設備の
一例を示すもので、図中1は約−162℃で天然ガスを
液化したLNG2(低温液化ガス)を貯蔵液として貯蔵
している低温タンク、3は前記LNG2の気化ガス2’
を燃料として使用する火力発電所(需要先)を示し、前
記低温タンク1内に貯蔵されているLNG2を、LNG
ポンプ4により抜き出して所定圧力まで昇圧した後に気
化器5へと導き、該気化器5で海水等との熱交換により
気化して気化ガス2’とし、該気化ガス2’を前記火力
発電所3へと送出して使用するようにしている。
2. Description of the Related Art FIG. 3 shows an example of a general low-temperature liquefied gas storage facility. In FIG. 1, reference numeral 1 denotes a storage medium containing LNG2 (low-temperature liquefied gas) obtained by liquefying natural gas at about -162.degree. Low temperature tank 3 is the vaporized gas 2 ′ of the LNG2
Is a thermal power plant (demand destination) that uses LNG as fuel, and LNG 2 stored in the low-temperature tank 1 is referred to as LNG.
After being drawn out by the pump 4 and raised to a predetermined pressure, it is led to the vaporizer 5, where the vaporized gas is vaporized by heat exchange with seawater or the like to form the vaporized gas 2 ', and the vaporized gas 2' is converted into the thermal power plant 3 It is sent to and used.

【0003】一方、低温タンク1内で自然入熱等により
発生した気化ガス2’については、低温タンク1内の圧
力を一定値以下に保持する為に、低温タンク1の頂部か
ら吸入ライン6’を通して常に圧縮機7で抜き出しを行
い、該圧縮機7により最終的な送給ガス圧力(気化器5
の出側圧力)まで昇圧した上で圧縮機出口ライン6を通
して気化器5の出側に合流し、該気化器5からの気化ガ
ス2’と一緒に火力発電所3へと送出して消費するよう
にしている。
On the other hand, with respect to the vaporized gas 2 'generated by natural heat input or the like in the low-temperature tank 1, a suction line 6' from the top of the low-temperature tank 1 in order to maintain the pressure in the low-temperature tank 1 at a certain value or less. Through the compressor 7, and the compressor 7 constantly extracts the gas to be supplied thereto.
(Pressure at the outlet side of the fuel cell), joins the outlet side of the vaporizer 5 through the compressor outlet line 6, and is sent to the thermal power plant 3 together with the vaporized gas 2 ′ from the vaporizer 5 for consumption. Like that.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、近年に
おいては、ガスタービンで発電を行い且つ該ガスタービ
ンの排熱回収により発生した蒸気を使用して蒸気タービ
ンでも発電を行い得るようにしたコンバインドサイクル
の火力発電所3が増えてきており、このようなコンバイ
ンドサイクルの火力発電所3では、気化ガス2’の最終
的な送給ガス圧力を約30kg/cm2以上(コンバイ
ンドサイクルを採用していない火力発電所では約8kg
/cm2程度)とすることが要求される為、低温タンク
1内で発生した気化ガス2’も約30kg/cm2以上
に昇圧しなければならなくなるが、圧縮機7の負担が著
しく増大して動力費の大幅な高騰を招くという問題があ
った。
However, in recent years, there has been developed a combined cycle in which power is generated by a gas turbine and power is also generated by a steam turbine using steam generated by exhaust heat recovery of the gas turbine. The number of thermal power plants 3 is increasing, and in such a thermal power plant 3 of a combined cycle, the final supply gas pressure of the vaporized gas 2 ′ is about 30 kg / cm 2 or more (a thermal power plant that does not employ a combined cycle). About 8 kg at the power station
/ Cm 2 ), the pressure of the vaporized gas 2 ′ generated in the low-temperature tank 1 must be increased to about 30 kg / cm 2 or more, but the load on the compressor 7 increases significantly. This has led to a significant increase in power costs.

【0005】また、電力消費が大幅に減少する夜間に
は、火力発電所3側における気化ガス2’の需要が極端
に減少する為、本来であれば不必要な圧縮機出口ライン
6からの気化ガス2’を、低温タンク1内の圧力が上昇
しないよう火力発電所3側で引き取って仕方なく消費し
ているのが実情であり、このように夜間に低温タンク1
内で発生した不必要な気化ガス2’を火力発電所3側で
引き取らなければならないといった制約があっては、発
電所全体としての効率的な運用に支障をきたす虞れがあ
った。
[0005] Further, during nighttime when power consumption is greatly reduced, the demand for the vaporized gas 2 'on the thermal power plant 3 side is extremely reduced, so that the vaporization from the compressor outlet line 6, which is normally unnecessary, is required. The fact is that the gas 2 ′ is taken out on the side of the thermal power plant 3 so that the pressure in the low-temperature tank 1 does not rise and is inevitably consumed.
If unnecessary thermal gas 2 'generated inside the power plant 3 must be taken off at the thermal power plant 3, there is a risk that efficient operation of the whole power plant may be hindered.

【0006】本発明は上述の実情に鑑みてなしたもの
で、圧縮機の負担を軽減して動力費の削減を図ると共
に、火力発電所等の需要先の運用に制約をなくして該需
要先の運用効率を向上することを目的としている。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and aims to reduce the load on the compressor to reduce the power cost, and to eliminate the restriction on the operation of the demand destination such as a thermal power plant, thereby reducing the demand. The aim is to improve the operational efficiency of.

【0007】[0007]

【課題を解決するための手段】本発明は、低温タンクか
ら抜き出した低温液化ガスを昇圧して気化器へと導く昇
圧手段をプライマリーポンプとセカンダリーポンプとに
よる二段階の昇圧方式として構成し、前記低温タンク内
で発生した気化ガスを圧縮機に導く吸入ラインと、前記
圧縮機により昇圧された気化ガスを前記気化器の出側に
合流する圧縮機出口ラインと、前記圧縮機の低圧段から
気化ガスを抜き出して前記プライマリーポンプの出側に
合流するバイパスラインとを設け、該バイパスラインと
前記圧縮機出口ラインとを選択的に切り替え得るよう構
成したことを特徴とする低温液化ガス貯蔵設備、に係る
ものである。
According to the present invention, a boosting means for boosting a low-temperature liquefied gas extracted from a low-temperature tank and guiding it to a vaporizer is constituted as a two-stage boosting system using a primary pump and a secondary pump. A suction line for introducing the vaporized gas generated in the low-temperature tank to the compressor, a compressor outlet line for joining the vaporized gas pressurized by the compressor to the outlet side of the vaporizer, and vaporization from a low-pressure stage of the compressor. A low-temperature liquefied gas storage facility, characterized in that a bypass line for extracting gas and joining the outlet side of the primary pump is provided, and the bypass line and the compressor outlet line can be selectively switched. It is related.

【0008】また、このような低温液化ガス貯蔵設備を
運転するにあたっては、低温タンクから抜き出した低温
液化ガスをプライマリーポンプとセカンダリーポンプと
により二段階に分けて昇圧し、その昇圧した低温液化ガ
スを気化器により気化ガスとして需要先へ送給する一
方、該需要先で要求する低温液化ガスの需要が十分に多
い通常の高負荷運転時には、バイパスラインを選択して
低温タンク内で発生した気化ガスを圧縮機によりプライ
マリーポンプの出側圧力と略同程度まで昇圧し且つ該プ
ライマリーポンプからの低温液化ガス中に混合して液化
させ、前記需要先の需要が少ない低負荷運転時には、圧
縮機を停止して気化ガスを低温タンク内のガス相に蓄圧
しながら前記需要先の需要が回復するまで待機し、該需
要が十分に回復しないうちに低温タンク内のガス相の圧
力がタンク設計圧力値付近まで上昇してしまった時にの
み、圧縮機出口ラインを選択して低温タンクから気化ガ
スを抜き出し、該気化ガスを圧縮機により気化器の出側
圧力と略同程度まで昇圧して該気化器からの気化ガスに
混合すると良い。
When operating such a low-temperature liquefied gas storage facility, the low-temperature liquefied gas extracted from the low-temperature tank is pressurized in two stages by a primary pump and a secondary pump, and the pressurized low-temperature liquefied gas is discharged. During normal high-load operation where the demand for the low-temperature liquefied gas required by the demand destination is sufficiently large while the vaporized gas is sent to the demand destination by the vaporizer, the bypass line is selected to generate the vaporized gas generated in the low-temperature tank. Is increased to approximately the same level as the outlet pressure of the primary pump by the compressor and mixed with the low-temperature liquefied gas from the primary pump to liquefy, and the compressor is stopped during low-load operation where the demand of the demand destination is small. And waits until the demand of the demand destination recovers while accumulating the vaporized gas in the gas phase in the low-temperature tank, and the demand does not recover sufficiently. Only when the pressure of the gas phase in the low-temperature tank has risen to near the tank design pressure value, the compressor outlet line is selected, the vaporized gas is extracted from the low-temperature tank, and the vaporized gas is vaporized by the compressor. It is preferable to increase the pressure to about the same as the pressure on the outlet side and mix it with the vaporized gas from the vaporizer.

【0009】従って本発明では、需要先で要求する低温
液化ガスの需要が十分に多い通常の高負荷運転時に、低
温タンク内で発生した気化ガスを圧縮機によりプライマ
リーポンプの出側圧力と略同程度まで昇圧してバイパス
ラインへと流し、プライマリーポンプからの低温液化ガ
ス中に液化して溶かし込むことが可能となり、昇圧し易
い液相状態でセカンダリーポンプにより昇圧し且つ気化
器で気化せしめて最終的な送給ガス圧力(気化器の出側
圧力)を容易に得ることが可能となる。
Therefore, in the present invention, the vaporized gas generated in the low-temperature tank during the normal high-load operation in which the demand for the low-temperature liquefied gas required by the customer is sufficiently large is substantially equal to the outlet pressure of the primary pump by the compressor. To the bypass line, and liquefy and dissolve in the low-temperature liquefied gas from the primary pump.In the liquid phase that is easily pressurized, the pressure is increased by the secondary pump and vaporized by the vaporizer. It is possible to easily obtain a proper supply gas pressure (outlet pressure of the vaporizer).

【0010】更に、需要先の需要が少ない低負荷運転時
に、気化ガスを低温タンク内のガス相に蓄圧しながら前
記需要先の需要が回復するまで待機し、前記需要先の需
要が十分に回復したら、再びバイパスラインを選択して
低温タンク内から気化ガスを抜き出すように運転すれ
ば、低負荷運転時に低温タンク内で発生した不必要な気
化ガスを需要先側で引き取らなければならないという制
約がなくなり、また、需要先の需要が少ない低負荷運転
時に圧縮機を停止しておくことが可能となる。
[0010] Further, during low load operation in which the demand of the demand destination is small, the apparatus waits until the demand of the demand destination recovers while accumulating the vaporized gas in the gas phase in the low-temperature tank, and the demand of the demand destination fully recovers. Then, by operating the bypass line again and extracting vaporized gas from the low-temperature tank, there is a restriction that unnecessary vaporized gas generated in the low-temperature tank during low-load operation must be collected at the demand side. And the compressor can be stopped during low-load operation when the demand of the demand destination is small.

【0011】尚、何らかの事情により需要先の需要が十
分に回復しないうちに低温タンク内のガス相の圧力がタ
ンク設計圧力値付近まで上昇してしまった時に、圧縮機
出口ラインを選択して低温タンクから気化ガスを抜き出
すようにすれば、低温タンク内のガス相の圧力がタンク
設計圧力値を超えるような事態を回避することが可能と
なる。
When the pressure of the gas phase in the low-temperature tank rises to near the tank design pressure value before the demand of the demand destination is not fully recovered for some reason, the compressor outlet line is selected and the low-temperature tank is selected. If the vaporized gas is extracted from the tank, it is possible to avoid a situation where the pressure of the gas phase in the low-temperature tank exceeds the tank design pressure value.

【0012】[0012]

【発明の実施の形態】以下本発明の実施の形態を図面を
参照しつつ説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0013】図1及び図2は本発明を実施する形態の一
例を示すもので、図3と同一の符号を付した部分は同一
物を表わしている。
FIGS. 1 and 2 show an example of an embodiment of the present invention, and the portions denoted by the same reference numerals as those in FIG. 3 represent the same components.

【0014】図1に示す如く、本形態例における低温液
化ガス貯蔵設備では、低温タンク1から抜き出したLN
G2を昇圧して気化器5へと導く昇圧手段が、プライマ
リーポンプ8とセカンダリーポンプ9とによる二段階の
昇圧方式として構成されている。
As shown in FIG. 1, in the low-temperature liquefied gas storage facility according to this embodiment, the LN
The boosting means for boosting G2 and guiding it to the vaporizer 5 is configured as a two-stage boosting method using a primary pump 8 and a secondary pump 9.

【0015】更に、この低温液化ガス貯蔵設備では、低
温タンク1内で発生した気化ガス2’を圧縮機7に導く
吸入ライン6’と、前記圧縮機7により昇圧された気化
ガス2’を前記気化器5の出側に合流する圧縮機出口ラ
イン6とが従来と同様に備えられている以外に、前記圧
縮機7の低圧段から気化ガス2’を抜き出して前記プラ
イマリーポンプ8の出側に合流するバイパスライン10
が備えられており、該バイパスライン10と前記圧縮機
出口ライン6とに対する圧縮機7の接続部分には、両ラ
イン6,10を選択的に切り替え得るようバルブ11,
12が夫々配設されている。
Further, in this low-temperature liquefied gas storage facility, a suction line 6 'for guiding a vaporized gas 2' generated in the low-temperature tank 1 to a compressor 7, and a vaporized gas 2 'pressurized by the compressor 7, A compressor outlet line 6 which joins the outlet side of the vaporizer 5 is provided in the same manner as in the related art, and the vaporized gas 2 ′ is extracted from the low-pressure stage of the compressor 7 and is provided to the outlet side of the primary pump 8. Merging bypass line 10
The compressor 11 is connected to the bypass line 10 and the compressor outlet line 6 by a valve 11, so that the two lines 6, 10 can be selectively switched.
12 are provided respectively.

【0016】ここで、プライマリーポンプ8を流れるL
NG2の流量W1と、バイパスライン10を流れる気化
ガス2’の流量W2(液換算したもの)と、セカンダリ
ーポンプ9を流れるLNG2の流量W3との流量関係
は、図2のモリエル線図に基づいて、バイパスライン1
0からの気化ガス2’がプライマリーポンプ8からのL
NG2中に再液化して全て溶け込むよう適切に設定され
ている。
Here, L flowing through the primary pump 8
The relationship between the flow rate W1 of the NG2, the flow rate W2 of the vaporized gas 2 'flowing through the bypass line 10 (in terms of liquid), and the flow rate W3 of the LNG2 flowing through the secondary pump 9 is based on the Mollier diagram of FIG. , Bypass line 1
0 from the primary pump 8
It is appropriately set so that it is reliquefied and completely dissolved in NG2.

【0017】即ち、図2において、状態曲線xに囲まれ
た内側の領域Aは気液混相状態を、該領域Aより左側の
領域Bは液相状態を、前記領域Aの右側の領域Cは気相
状態を夫々示しており、プライマリーポンプ8の出側の
圧力がP1でエンタルピーがi1である場合(図中参
照)、バイパスライン10からの気化ガス2’を圧縮機
7により圧力をP1まで昇圧した上でエンタルピーi2
でLNG2中に混合することになるが(図中参照)、
その混合後におけるLNG2が圧力P1の条件で液相状
態の領域Bにとどまるようなエンタルピーi3となって
熱収支が成立するよう流量W1,W2,W3を決定して
ある。
That is, in FIG. 2, an inner area A surrounded by a state curve x is in a gas-liquid mixed state, an area B on the left side of the area A is in a liquid phase state, and an area C on the right side of the area A is in a liquid phase state. Each shows a gas phase state. When the pressure at the outlet side of the primary pump 8 is P1 and the enthalpy is i1 (see the figure), the pressure of the vaporized gas 2 'from the bypass line 10 is reduced to P1 by the compressor 7. After increasing pressure, enthalpy i2
Will mix into LNG2 (see figure),
The flow rates W1, W2, and W3 are determined so that the LNG2 after the mixing has an enthalpy i3 such that the LNG2 stays in the region B in the liquid phase under the condition of the pressure P1 and a heat balance is established.

【0018】より具体的には、流量W1,W2,W3に
More specifically, the flow rates W1, W2, W3

【数1】W3=W1+W2………(数式1) という関係が成り立ち、これらの流量W1,W2,W3
に基づく熱収支には、
W1 = W1 + W2 (Equation 1) holds, and the flow rates W1, W2, W3
Heat balance based on

【数2】 W3i3=W1i1+W2i2………(数式2) という関係が成り立つ。## EQU2 ## The following relationship holds: W3i3 = W1i1 + W2i2 (Equation 2)

【0019】依って、数式1,2によれば、流量W2は
流量W1を基準として
Therefore, according to Equations 1 and 2, the flow rate W2 is based on the flow rate W1.

【数3】 W2=〔(i3−i1)/(i2−i3)〕×W1………(数式3) と決定することができ、また、同様に流量W3は流量W
2を基準として
W2 = [(i3-i1) / (i2-i3)] × W1 (Equation 3) Similarly, the flow rate W3 is equal to the flow rate W
Based on 2

【数4】 W3=〔(i2−i1)/(i3−i1)〕×W2………(数式4) と決定することができる。W3 = [(i2-i1) / (i3-i1)] × W2 (Equation 4)

【0020】尚、前記圧縮機7及びバルブ11,12
は、所要場所に配置した制御装置13からの指令信号7
a,11a,12aにより制御されるようになってお
り、また、前記制御装置13には、火力発電所3で要求
するLNG2’の需要量が負荷信号3aとして入力さ
れ、また、火力発電所3に送られる気化ガス2’の総流
量が流量計14により計測されて流量信号14aとして
入力され、更には、低温タンク1内のガス相の圧力が圧
力計15により計測されて圧力信号15aとして入力さ
れるようになっている。
The compressor 7 and the valves 11, 12
Is a command signal 7 from the control device 13 disposed at a required place.
a, 11a, and 12a, and the demand of LNG 2 'demanded by the thermal power plant 3 is input to the control device 13 as a load signal 3a. The total flow rate of the vaporized gas 2 ′ is measured by the flow meter 14 and input as a flow signal 14 a, and the pressure of the gas phase in the low-temperature tank 1 is measured by the pressure gauge 15 and input as a pressure signal 15 a. It is supposed to be.

【0021】而して、このような低温液化ガス貯蔵設備
を運転する際には、低温タンク1から抜き出したLNG
2をプライマリーポンプ8とセカンダリーポンプ9とに
より二段階に分けて昇圧し、その昇圧したLNG2を気
化器5により気化ガス2’として火力発電所3へ送給す
る一方、火力発電所3で要求するLNG2の需要が十分
に多い昼間の高負荷運転時に、バルブ11を開け且つバ
ルブ12を閉じてバイパスライン10を選択し、低温タ
ンク1内で発生した気化ガス2’を圧縮機7によりプラ
イマリーポンプ8の出側圧力と略同程度まで昇圧し且つ
該プライマリーポンプ8からのLNG2中に混合して液
化させる。
When operating such a low-temperature liquefied gas storage facility, the LNG extracted from the low-temperature tank 1 is
2 is boosted in two stages by a primary pump 8 and a secondary pump 9, and the boosted LNG 2 is supplied to the thermal power plant 3 as a vaporized gas 2 ′ by the carburetor 5, while requesting the thermal power plant 3 During daytime high load operation when the demand for LNG 2 is sufficiently large, the valve 11 is opened and the valve 12 is closed to select the bypass line 10, and the vaporized gas 2 ′ generated in the low-temperature tank 1 is supplied to the primary pump 8 by the compressor 7. And is mixed with LNG 2 from the primary pump 8 to be liquefied.

【0022】このとき、圧縮機7及びバルブ11,12
の作動は、制御装置13からの指令信号7a,11a,
12aにより制御されるが、前記制御装置13において
は、火力発電所3からの負荷信号3aに基づき、流量計
14からの流量信号14aを確認した上でバイパスライ
ン10を選択する運転モードが判断される。
At this time, the compressor 7 and the valves 11, 12
Are operated by command signals 7a, 11a,
The controller 13 determines the operation mode in which the bypass line 10 is selected based on the load signal 3a from the thermal power plant 3 and after confirming the flow signal 14a from the flow meter 14. You.

【0023】また、前記火力発電所3の需要が少ない夜
間の低負荷運転時には、圧縮機7を停止してバルブ1
1,12を閉じ、気化ガス2’を低温タンク1内のガス
相に蓄圧しながら前記火力発電所3の需要が回復するま
で待機し、翌日の昼間になって前記火力発電所3の需要
が十分に回復したら、バルブ11のみを開けてバイパス
ライン10を選択し、圧縮機7を再起動して前述した高
負荷運転を再開すれば良い。
During low-load operation at night when the demand for the thermal power plant 3 is low, the compressor 7 is stopped and the valve 1 is turned off.
1 and 12 are closed, and while the vaporized gas 2 ′ is stored in the gas phase in the low-temperature tank 1, the system waits until the demand of the thermal power plant 3 recovers. After a sufficient recovery, only the valve 11 is opened, the bypass line 10 is selected, the compressor 7 is restarted, and the high-load operation described above may be resumed.

【0024】尚、このときの運転モードの切り替えも制
御装置13により行われ、火力発電所3からの負荷信号
3aと、流量計14からの流量信号14aとの変化を監
視することにより適切な運転モードが選択される。
The switching of the operation mode at this time is also performed by the control device 13, and by monitoring changes in the load signal 3a from the thermal power plant 3 and the flow signal 14a from the flow meter 14, an appropriate operation is performed. Mode is selected.

【0025】また、気化ガス2’を低温タンク1内のガ
ス相に蓄圧するにあたり、低温タンク1の耐圧設計を従
来より高めておくことは勿論であり、本形態例の如く、
気化ガス2’の需要先が火力発電所3であるような場合
には、少くとも夜間の時間帯に相当する時間分だけ気化
ガス2’を低温タンク1内のガス相に蓄圧できるように
しておく。
In accumulating the vaporized gas 2 ′ in the gas phase in the low-temperature tank 1, it is needless to say that the pressure resistance design of the low-temperature tank 1 is of course higher than in the prior art.
In the case where the demand for the vaporized gas 2 ′ is the thermal power plant 3, the vaporized gas 2 ′ can be stored in the gas phase in the low-temperature tank 1 at least for the time corresponding to the night time zone. deep.

【0026】ただし、何らかの事情により前記火力発電
所3の需要が十分に回復しない夜間のうちに低温タンク
1内のガス相の圧力がタンク設計圧力値付近まで上昇し
てしまった時には、バルブ11を閉じ且つバルブ12を
開けて圧縮機出口ライン6を選択し、低温タンク1から
気化ガス2’を抜き出して圧縮機7により気化器5の出
側圧力と略同程度まで昇圧した上で該気化器5からの気
化ガス2’に混合し、低温タンク1内のガス相の圧力が
タンク設計圧力値を超えるような事態を未然に回避す
る。
However, if the pressure of the gas phase in the low-temperature tank 1 rises to near the tank design pressure during the night when the demand for the thermal power plant 3 does not sufficiently recover due to some circumstances, the valve 11 is opened. The compressor outlet line 6 is selected by closing and opening the valve 12, the vaporized gas 2 ′ is extracted from the low-temperature tank 1, and the pressure is increased to approximately the same as the outlet pressure of the vaporizer 5 by the compressor 7. 5 is mixed with the vaporized gas 2 'from step 5 to avoid a situation where the pressure of the gas phase in the low-temperature tank 1 exceeds the designed pressure value of the tank.

【0027】即ち、気化ガス2’を低温タンク1内のガ
ス相に蓄圧する運転モードでは、圧力計15からの圧力
信号15aに基づいて、制御装置13により低温タンク
1内のガス相の圧力が常に監視され、低温タンク1内の
ガス相の圧力がタンク設計圧力値付近まで上昇したこと
が確認された際には、他の負荷信号3aや流量信号14
aに基づく判断に優先して低温タンク1から気化ガス
2’を抜き出す運転モードが選択される。
That is, in the operation mode in which the vaporized gas 2 ′ is accumulated in the gas phase in the low-temperature tank 1, the controller 13 controls the pressure of the gas phase in the low-temperature tank 1 based on the pressure signal 15 a from the pressure gauge 15. It is constantly monitored, and when it is confirmed that the pressure of the gas phase in the low-temperature tank 1 has increased to near the tank design pressure value, the other load signal 3a or the flow signal
An operation mode in which the vaporized gas 2 ′ is extracted from the low-temperature tank 1 is selected in preference to the determination based on “a”.

【0028】従って上記形態例によれば、火力発電所3
で要求するLNG2の需要が十分に多い昼間の高負荷運
転時に、低温タンク1内で発生した気化ガス2’を圧縮
機7によりプライマリーポンプ8の出側圧力と略同程度
まで昇圧してバイパスライン10へと流し、プライマリ
ーポンプ8からのLNG2中に液化して溶かし込むこと
によって、昇圧し易い液相状態でセカンダリーポンプ9
により昇圧し且つ気化器5で気化せしめて最終的な送給
ガス圧力(気化器5の出側圧力)を容易に得ることがで
きるので、従来のように気化ガス2’を圧縮機7だけで
最終的な送給ガス圧力まで昇圧する場合と比較して、圧
縮機7の負担を著しく軽減することができ、その動力費
を大幅に削減することができる。
Therefore, according to the above embodiment, the thermal power plant 3
During the high-load operation in the daytime when the demand for LNG 2 required in the above is sufficiently high, the vaporized gas 2 ′ generated in the low-temperature tank 1 is boosted by the compressor 7 to approximately the same as the outlet pressure of the primary pump 8, and the bypass line 10 and is liquefied and dissolved in LNG 2 from the primary pump 8 so that the secondary pump 9 can be easily pressurized.
And the vaporized gas is vaporized by the vaporizer 5 to easily obtain the final feed gas pressure (pressure on the outlet side of the vaporizer 5). The load on the compressor 7 can be significantly reduced as compared with the case where the pressure is increased to the final supply gas pressure, and the power cost can be significantly reduced.

【0029】更に、火力発電所3の需要が少ない夜間の
低負荷運転時に、気化ガス2’を低温タンク1内のガス
相に蓄圧しながら前記火力発電所3の需要が回復するま
で待機し、翌日の昼間になって前記火力発電所3の需要
が十分に回復したら、再びバイパスライン10を選択し
て低温タンク1内から気化ガス2’を抜き出すように運
転することによって、夜間に低温タンク1内で発生した
不必要な気化ガス2’を火力発電所3側で引き取らなけ
ればならないという制約をなくすことができ、火力発電
所3の運用効率を向上することができる。
Further, during nighttime low load operation when the demand for the thermal power plant 3 is low, the evaporating gas 2 ′ is stored in the gas phase in the low temperature tank 1 while waiting until the demand for the thermal power plant 3 recovers. When the demand of the thermal power plant 3 is sufficiently recovered in the daytime of the next day, the bypass line 10 is selected again and the operation is performed so as to extract the vaporized gas 2 ′ from the inside of the low-temperature tank 1. It is possible to eliminate the restriction that the unnecessary vaporized gas 2 ′ generated in the thermal power plant 3 must be taken off at the thermal power plant 3 side, and to improve the operation efficiency of the thermal power plant 3.

【0030】また、このように運転すれば、火力発電所
3の需要が少ない夜間の低負荷運転時に圧縮機7を停止
しておくことができるので、該圧縮機7の動力費を更に
削減することができる。
Further, by operating the compressor 7 in this manner, the compressor 7 can be stopped during the low-load operation at night when the demand for the thermal power plant 3 is small, so that the power cost of the compressor 7 is further reduced. be able to.

【0031】更に、何らかの事情により火力発電所3の
需要が十分に回復しない夜間のうちに低温タンク1内の
ガス相の圧力がタンク設計圧力値付近まで上昇してしま
った時には、圧縮機出口ライン6を選択して低温タンク
1から気化ガス2’を抜き出すことができるので、低温
タンク1内のガス相の圧力がタンク設計圧力値を超える
ような事態を未然に回避することができる。
Further, when the pressure of the gas phase in the low temperature tank 1 rises to near the tank design pressure during the night when the demand of the thermal power plant 3 does not sufficiently recover due to some circumstances, the compressor outlet line Since the vaporized gas 2 'can be extracted from the low-temperature tank 1 by selecting 6, the situation in which the pressure of the gas phase in the low-temperature tank 1 exceeds the design pressure value of the tank can be avoided.

【0032】尚、本発明の低温液化ガス貯蔵設備及びそ
の運転方法は、上述の形態例にのみ限定されるものでは
なく、気化ガスの需要先は火力発電所に限定されないこ
と、低温液化ガスはLNG以外であっても良いこと、そ
の他、本発明の要旨を逸脱しない範囲内において種々変
更を加え得ることは勿論である。
The low-temperature liquefied gas storage equipment and the method of operating the same according to the present invention are not limited to the above-described embodiment, and the demand for the vaporized gas is not limited to the thermal power plant. Of course, other than LNG, various changes may be made without departing from the scope of the present invention.

【0033】[0033]

【発明の効果】上記した本発明の低温液化ガス貯蔵設備
及びその運転方法によれば、下記の如き種々の優れた効
果を奏し得る。
According to the low-temperature liquefied gas storage equipment of the present invention and the method of operating the same, various excellent effects as described below can be obtained.

【0034】(I)需要先で要求する低温液化ガスの需
要が十分に多い通常の高負荷運転時に、低温タンク内で
発生した気化ガスを圧縮機によりプライマリーポンプの
出側圧力と略同程度まで昇圧してバイパスラインへと流
し、プライマリーポンプからの低温液化ガス中に液化し
て溶かし込むことによって、昇圧し易い液相状態でセカ
ンダリーポンプにより昇圧し且つ気化器で気化せしめて
最終的な送給ガス圧力(気化器の出側圧力)を容易に得
ることができるので、従来のように気化ガスを圧縮機だ
けで最終的な送給ガス圧力まで昇圧する場合と比較し
て、圧縮機の負担を著しく軽減することができ、その動
力費を大幅に削減することができる。
(I) During normal high-load operation where the demand for the low-temperature liquefied gas required by the demand destination is sufficiently large, the vaporized gas generated in the low-temperature tank is reduced by the compressor to approximately the same as the outlet pressure of the primary pump. By raising the pressure and flowing to the bypass line, and liquefying and dissolving in the low-temperature liquefied gas from the primary pump, the secondary pump is pressurized in a liquid phase that is easily pressurized, and is vaporized by the vaporizer and finally fed. Since the gas pressure (outlet pressure of the vaporizer) can be easily obtained, the load on the compressor is lower than in the conventional case where the vaporized gas is pressurized to the final supply gas pressure by the compressor alone. Can be significantly reduced, and the power cost can be greatly reduced.

【0035】(II)需要先の需要が少ない低負荷運転
時に、気化ガスを低温タンク内のガス相に蓄圧しながら
前記需要先の需要が回復するまで待機し、前記需要先の
需要が十分に回復したら、再びバイパスラインを選択し
て低温タンク内から気化ガスを抜き出すように運転する
ことによって、低負荷運転時に低温タンク内で発生した
不必要な気化ガスを需要先側で引き取らなければならな
いという制約をなくして火力発電所の運用効率を向上す
ることができ、また、需要先の需要が少ない低負荷運転
時に圧縮機を停止しておくことができるので、該圧縮機
の動力費を更に削減することができる。
(II) At the time of low load operation in which the demand of the demand destination is small, while waiting for the demand of the demand destination to recover while accumulating the vaporized gas in the gas phase in the low-temperature tank, the demand of the demand destination is sufficiently satisfied. After recovery, unnecessary bypass gas generated in the low-temperature tank during low-load operation must be collected by the demand side by selecting the bypass line again and operating to extract the vaporized gas from the low-temperature tank. The operating efficiency of the thermal power plant can be improved by eliminating restrictions, and the compressor can be stopped during low-load operation when demand at the destination is small, further reducing the power cost of the compressor. can do.

【0036】(III)何らかの事情により需要先の需
要が十分に回復しないうちに低温タンク内のガス相の圧
力がタンク設計圧力値付近まで上昇してしまった時に、
圧縮機出口ラインを選択して低温タンクから気化ガスを
抜き出すことによって、低温タンク内のガス相の圧力が
タンク設計圧力値を超えるような事態を未然に回避する
ことができる。
(III) When the pressure of the gas phase in the low-temperature tank rises to near the tank design pressure value before the demand of the demand destination is not fully recovered for some reason,
By selecting the compressor outlet line and extracting the vaporized gas from the low-temperature tank, it is possible to prevent a situation in which the gas phase pressure in the low-temperature tank exceeds the tank design pressure value.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を実施する形態の一例を示すブロック図
である。
FIG. 1 is a block diagram illustrating an example of an embodiment of the present invention.

【図2】気化ガスを再液化する際の熱収支を説明するモ
リエル線図である。
FIG. 2 is a Mollier diagram illustrating a heat balance when revaporizing a vaporized gas.

【図3】従来例を示すブロック図である。FIG. 3 is a block diagram showing a conventional example.

【符号の説明】[Explanation of symbols]

1 低温タンク 2 LNG(低温液化ガス) 2’ 気化ガス 3 火力発電所(需要先) 5 気化器 6 圧縮機出口ライン 6’ 吸入ライン 7 圧縮機 8 プライマリーポンプ 9 セカンダリーポンプ 10 バイパスライン DESCRIPTION OF SYMBOLS 1 Low temperature tank 2 LNG (low temperature liquefied gas) 2 'Vaporized gas 3 Thermal power plant (demand destination) 5 Vaporizer 6 Compressor outlet line 6' Suction line 7 Compressor 8 Primary pump 9 Secondary pump 10 Bypass line

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 低温タンクから抜き出した低温液化ガス
を昇圧して気化器へと導く昇圧手段をプライマリーポン
プとセカンダリーポンプとによる二段階の昇圧方式とし
て構成し、前記低温タンク内で発生した気化ガスを圧縮
機に導く吸入ラインと、前記圧縮機により昇圧された気
化ガスを前記気化器の出側に合流する圧縮機出口ライン
と、前記圧縮機の低圧段から気化ガスを抜き出して前記
プライマリーポンプの出側に合流するバイパスラインと
を設け、該バイパスラインと前記圧縮機出口ラインとを
選択的に切り替え得るよう構成したことを特徴とする低
温液化ガス貯蔵設備。
A low-pressure liquefied gas extracted from a low-temperature tank is pressurized and guided to a vaporizer by means of a two-stage pressure raising method using a primary pump and a secondary pump, and the vaporized gas generated in the low-temperature tank is provided. A suction line leading to the compressor, a compressor outlet line for joining the vaporized gas pressurized by the compressor to the outlet side of the vaporizer, and a vaporized gas extracted from a low-pressure stage of the compressor. A low-temperature liquefied gas storage facility, comprising: a bypass line that merges with an outlet side; and a structure that can selectively switch between the bypass line and the compressor outlet line.
【請求項2】 請求項1に記載の低温液化ガス貯蔵設備
の運転方法であって、低温タンクから抜き出した低温液
化ガスをプライマリーポンプとセカンダリーポンプとに
より二段階に分けて昇圧し、その昇圧した低温液化ガス
を気化器により気化ガスとして需要先へ送給する一方、
該需要先で要求する低温液化ガスの需要が十分に多い通
常の高負荷運転時には、バイパスラインを選択して低温
タンク内で発生した気化ガスを圧縮機によりプライマリ
ーポンプの出側圧力と略同程度まで昇圧し且つ該プライ
マリーポンプからの低温液化ガス中に混合して液化さ
せ、前記需要先の需要が少ない低負荷運転時には、圧縮
機を停止して気化ガスを低温タンク内のガス相に蓄圧し
ながら前記需要先の需要が回復するまで待機し、該需要
が十分に回復しないうちに低温タンク内のガス相の圧力
がタンク設計圧力値付近まで上昇してしまった時にの
み、圧縮機出口ラインを選択して低温タンクから気化ガ
スを抜き出し、該気化ガスを圧縮機により気化器の出側
圧力と略同程度まで昇圧して該気化器からの気化ガスに
混合することを特徴とする低温液化ガス貯蔵設備の運転
方法。
2. The method for operating a low-temperature liquefied gas storage facility according to claim 1, wherein the low-temperature liquefied gas extracted from the low-temperature tank is pressurized in two stages by a primary pump and a secondary pump, and the pressure is increased. While the low-temperature liquefied gas is sent to the customer as a vaporized gas by a vaporizer,
During normal high-load operation where the demand for the low-temperature liquefied gas demanded by the demand destination is sufficiently large, the bypass line is selected and the vaporized gas generated in the low-temperature tank is substantially equal to the outlet pressure of the primary pump by the compressor. And liquefied by mixing in the low-temperature liquefied gas from the primary pump, and at the time of low-load operation where the demand of the demand destination is small, the compressor is stopped to accumulate the vaporized gas in the gas phase in the low-temperature tank. Waiting until the demand of the demand destination recovers, and only when the pressure of the gas phase in the low-temperature tank has risen to near the tank design pressure value before the demand has recovered sufficiently, the compressor outlet line is disconnected. Selecting and extracting the vaporized gas from the low-temperature tank, increasing the vaporized gas to approximately the same level as the outlet pressure of the vaporizer by a compressor, and mixing the vaporized gas with the vaporized gas from the vaporizer. The method of operating a low temperature liquefied gas storage facility that.
JP19902196A 1996-07-29 1996-07-29 Low-temperature liquefied gas storing facility and operating method for it Pending JPH1038199A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19902196A JPH1038199A (en) 1996-07-29 1996-07-29 Low-temperature liquefied gas storing facility and operating method for it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19902196A JPH1038199A (en) 1996-07-29 1996-07-29 Low-temperature liquefied gas storing facility and operating method for it

Publications (1)

Publication Number Publication Date
JPH1038199A true JPH1038199A (en) 1998-02-13

Family

ID=16400810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19902196A Pending JPH1038199A (en) 1996-07-29 1996-07-29 Low-temperature liquefied gas storing facility and operating method for it

Country Status (1)

Country Link
JP (1) JPH1038199A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002089790A (en) * 2000-09-13 2002-03-27 Ito Koki Kk Lpg vaporizing mechanism
JP2003175891A (en) * 2001-08-24 2003-06-24 Cryostar-France Sa Natural gas fuel supply system
JP2006045327A (en) * 2004-08-04 2006-02-16 Jfe Engineering Kk Method and apparatus for controlling dilution of calorific value of natural gas
JP2009174571A (en) * 2008-01-22 2009-08-06 Chugoku Electric Power Co Inc:The Natural gas supply system and natural gas feeding method
JP2011105955A (en) * 2011-03-03 2011-06-02 Jfe Engineering Corp Method of adjusting dilution calorie of natural gas

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002089790A (en) * 2000-09-13 2002-03-27 Ito Koki Kk Lpg vaporizing mechanism
JP4596620B2 (en) * 2000-09-13 2010-12-08 伊藤工機株式会社 LPG vaporization mechanism
JP2003175891A (en) * 2001-08-24 2003-06-24 Cryostar-France Sa Natural gas fuel supply system
JP2006045327A (en) * 2004-08-04 2006-02-16 Jfe Engineering Kk Method and apparatus for controlling dilution of calorific value of natural gas
JP4737955B2 (en) * 2004-08-04 2011-08-03 Jfeエンジニアリング株式会社 Natural gas dilution calorie adjustment method and apparatus
JP2009174571A (en) * 2008-01-22 2009-08-06 Chugoku Electric Power Co Inc:The Natural gas supply system and natural gas feeding method
JP2011105955A (en) * 2011-03-03 2011-06-02 Jfe Engineering Corp Method of adjusting dilution calorie of natural gas

Similar Documents

Publication Publication Date Title
CA2175034C (en) Liquefied gas supply system
JP2018517608A (en) Ship
KR20050094798A (en) Pre-cooling system of boil-off gas from lng
KR101814439B1 (en) System for supplying fuel gas
US20180245843A1 (en) System and method for treating gas resulting from the evaporation of a cryogenic liquid
CN110761920A (en) Low-pressure gas supply system suitable for small ships
CN102562556B (en) Operation control method for BOG multistage displacement compressor
JPH10332090A (en) Treatment method of liquefied gas cooled at low temperature
JPH08505926A (en) Fuel gas utilization and supply method and system
KR200403633Y1 (en) Pre-cooling system of boil-off gas from LNG
JPWO2012063944A1 (en) LNG vaporization equipment
JPH1038199A (en) Low-temperature liquefied gas storing facility and operating method for it
JP6429159B2 (en) Boil-off gas recovery system
JPH07218033A (en) Cooling device for lng tank
US7278280B1 (en) Helium process cycle
KR101994097B1 (en) Energy storage power generating system and method by liquefaction, regasification and expansion process of air
JP2000337170A (en) Gas turbine power generation system and its operating method
KR101876973B1 (en) Fuel Gas Supply System and Method for Vessel
CN205784226U (en) Cryogenic liquefying system
KR102352669B1 (en) Liquefied Gas Regasification and Power Generation System and Method
JPH0392700A (en) Boil-off gas processing method of low temperature liquefied gas
JPH11325714A (en) Heat exchange type gas liquefier
KR102361914B1 (en) Improved Method for Power Generation During Regasification of Fluids via Supercritical Expansion
JPH05302504A (en) Low temperature power generating device using liquefied natural gas
JPH06341598A (en) Evaporated gas treating method of low temperature liquefied gas storage tank