JPH04181657A - Fuel cell system - Google Patents

Fuel cell system

Info

Publication number
JPH04181657A
JPH04181657A JP2310704A JP31070490A JPH04181657A JP H04181657 A JPH04181657 A JP H04181657A JP 2310704 A JP2310704 A JP 2310704A JP 31070490 A JP31070490 A JP 31070490A JP H04181657 A JPH04181657 A JP H04181657A
Authority
JP
Japan
Prior art keywords
fuel cell
battery
gas
manifold
preheating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2310704A
Other languages
Japanese (ja)
Inventor
Koji Yasuo
耕司 安尾
Kimihiko Okushi
尾久士 公彦
Yasuhiko Ito
靖彦 伊藤
Masato Nishioka
正人 西岡
Toshihiko Saito
俊彦 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2310704A priority Critical patent/JPH04181657A/en
Publication of JPH04181657A publication Critical patent/JPH04181657A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/244Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes with matrix-supported molten electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2484Details of groupings of fuel cells characterised by external manifolds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Combustion & Propulsion (AREA)

Abstract

PURPOSE:To improve the system efficiency and miniaturize a system by incorporating a means preheating the reaction gas in a fuel cell. CONSTITUTION:The anode gas is fed to anodes of cell main bodies 1 from manifolds 6 and discharged via manifolds 7 after contributing to power generation, and the cathode gas is fed from a manifold 5 and fed to a preheater 2 for preheating. The preheated cathode gas is fed to cathodes of the cell main bodies 1 via a manifold 3 and discharged from manifolds 4 after contributing to power generation. No heat exchanger is required to be provided outside the cell, and no electric power for preheating the reaction gas is required. The heat exchanging efficiency is improved, the system efficiency is improved, and the system can be miniaturized.

Description

【発明の詳細な説明】 産業上勿肌朋分國 本発明は反応ガスを予熱した後に燃料電池内に供給する
燃料電池システムに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fuel cell system in which reactant gas is preheated and then supplied into a fuel cell.

従来勿技血 従来、燃料電池における反応ガスは、実験規模では第4
図に示すように、スーパーヒータ20により予熱した後
、石英製のテープヒータ21等により保温された配管2
2を介して、燃料電池23内に送られていた。但し、実
際の燃料電池システムにおける反応ガスの予熱は、第5
図に示すように、電池の発熱を利用した熱交換器24を
用いていた。
Conventionally, the reactant gas in a fuel cell is the fourth
As shown in the figure, piping 2 is preheated by a super heater 20 and then kept warm by a quartz tape heater 21 or the like.
2 into the fuel cell 23. However, preheating of the reaction gas in an actual fuel cell system is
As shown in the figure, a heat exchanger 24 was used that utilized the heat generated by the battery.

日が”しよ”と るi ところが、上記従来の燃料電池では、熱交換器の加熱に
多くの熱が必要となるので、反応ガスを十分に予熱する
ことができない。したがって、熱交換器を加熱するよう
なものが必要となる。この結果、多くの電力が必要とな
って、発電コストが高(なる。
However, in the conventional fuel cell described above, a large amount of heat is required to heat the heat exchanger, and therefore the reaction gas cannot be sufficiently preheated. Therefore, something like heating the heat exchanger is required. As a result, a large amount of electricity is required, resulting in high power generation costs.

また、熱交換器を必要とする分、装置が大型化すると共
に、設備費用が高くなる。
Furthermore, the need for a heat exchanger increases the size of the device and increases the equipment cost.

加えて、電池内部において、電池反応による発熱がセル
内に蓄積されるため、電池内温度が適性な温度(例えば
、溶融炭酸塩型燃料電池では650°C)より高くなる
。この結果、電池構成材の腐食或いは熱による劣化によ
り、電池寿命が短くなるという課題を有していた。
In addition, inside the battery, heat generated by the battery reaction is accumulated in the cell, so that the temperature inside the battery becomes higher than an appropriate temperature (for example, 650° C. in a molten carbonate fuel cell). As a result, there has been a problem in that the battery life is shortened due to corrosion or heat-induced deterioration of the battery constituent materials.

本発明はかかる現状に鑑みてなされたものであり、上記
諸欠点を解消できることになる燃料電池を提供すること
を目的とする。
The present invention has been made in view of the current situation, and it is an object of the present invention to provide a fuel cell that can eliminate the above-mentioned drawbacks.

量 を”るための 本発明は上記目的を達成するために、反応ガスを予熱し
た後に燃料電池内に供給する燃料電池システムにおいて
、上記反応ガスを予熱する予熱手段は、燃料電池内に内
蔵されていることを特徴とする。
To achieve the above object, the present invention provides a fuel cell system in which a reaction gas is preheated and then supplied into the fuel cell, and a preheating means for preheating the reaction gas is built in the fuel cell. It is characterized by

詐ニーL町 上記構成であれば、電池で発注した熱が予熱手段に与え
られて、反応ガスが電池で発生した熱によって予熱され
ることになる。したがって、電池外に熱交換器を設ける
必要がなくなり、且つ反応ガスの予熱のための電力が不
要となる。加えて、電池反応による発熱が燃料電池内に
蓄積されるのを抑制することができる。
With the above configuration, the heat ordered by the battery is given to the preheating means, and the reaction gas is preheated by the heat generated by the battery. Therefore, there is no need to provide a heat exchanger outside the battery, and no electric power is required for preheating the reaction gas. In addition, it is possible to suppress heat generation due to cell reactions from accumulating within the fuel cell.

夫−施一炎 本発明の一実施例を、第1図〜第3図に基づいて、以下
に説明する。尚、第1図は本発明の一例に係る溶融炭酸
塩型燃料電池の分解斜視図、第2図は溶融炭酸塩型燃料
電池の正面図(マニホールド6は省略)、第3図は本発
明の(A)システムと比較例の(X)システムとにδけ
るスタ、りの積層方向の温度分布を示すグラフである。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 3. 1 is an exploded perspective view of a molten carbonate fuel cell according to an example of the present invention, FIG. 2 is a front view of a molten carbonate fuel cell (manifold 6 is omitted), and FIG. 3 is an exploded perspective view of a molten carbonate fuel cell according to an example of the present invention. It is a graph showing the temperature distribution in the stacking direction of the star and ri in the (A) system and the (X) system of a comparative example at δ.

〔実施例: 第1図に示すようS:、溶融炭酸塩型燃料電池は、図示
しない電極(アノードとカソード)、電解質板、コルゲ
ート等から成る箱状の電池本体1・1(発電量:1kW
)を有しており、これら電池本体1・1間には、カソー
ドガスを予熱するだめの箱型の予熱器2が設けられてい
る。この予熱器2は5US316Lから成り、内部には
At2zOsが充填されている。また、上記電池本体1
・1と予熱器2とによりスタック10が構成される。
[Example: As shown in FIG. 1, a molten carbonate fuel cell consists of a box-shaped battery body 1.1 (power generation: 1 kW) consisting of electrodes (anode and cathode), electrolyte plates, corrugates, etc. (not shown).
), and a box-shaped preheater 2 for preheating the cathode gas is provided between the battery bodies 1 and 1. This preheater 2 is made of 5US316L, and the inside is filled with At2zOs. In addition, the above battery body 1
- Stack 10 is constituted by 1 and preheater 2.

上記電池本体1・1の一方の側面1aには、第2図に示
すように、電池本体1・1からのカソード排ガスを排出
するためのマニホールド4が設けられ、上記予熱器2の
一方の側面2aには、予熱器2にカソードガスを供給す
るためのマニホールド5が配置されている。また、上記
電池本体1・1と予熱器2との他方の側面1b・2bに
は、上記予熱器2によって温められたカソードガスを電
池本体1・10カソードに供給するためのマニホールド
3が設けられている。
As shown in FIG. 2, a manifold 4 for discharging cathode exhaust gas from the battery bodies 1/1 is provided on one side 1a of the battery bodies 1/1, and a manifold 4 is provided on one side 1a of the preheater 2. A manifold 5 for supplying cathode gas to the preheater 2 is arranged at 2a. Further, on the other side surfaces 1b and 2b of the battery bodies 1 and the preheater 2, a manifold 3 is provided for supplying the cathode gas warmed by the preheater 2 to the cathode of the battery bodies 1 and 10. ing.

一方、電池本体1・1の正面ICには、アノードガスを
電池本体1・1に供給するためのマニホールド6が設け
られ、電池本体l・1の背面1dには、電池本体1・1
からのアノード排ガスを排出するためのマニホールド7
が設けられいる。
On the other hand, the front IC of the battery body 1.1 is provided with a manifold 6 for supplying anode gas to the battery body 1.1, and the back surface 1d of the battery body 1.1 is provided with a manifold 6 for supplying anode gas to the battery body 1.1.
Manifold 7 for discharging anode exhaust gas from
is provided.

ここで、上記構造の燃料電池では、以下のようにして反
応ガスが供給される。
Here, in the fuel cell having the above structure, the reaction gas is supplied as follows.

即ち、カソードガスは、マニホールド5から供給され、
予熱器2に与えられる。この予熱器2内のAl2O,は
発電による熱によって予熱されているため、カソードガ
スがAl2O,を通過する際に予熱される。そして、予
熱されたカソードガスは、マニホールド3を介して電池
本体l・1のカソードに与えられる。その後、発電に寄
与して、マニホールド4から排出される。
That is, the cathode gas is supplied from the manifold 5,
is applied to preheater 2. Since the Al2O in the preheater 2 is preheated by heat generated by power generation, the cathode gas is preheated when it passes through the Al2O. The preheated cathode gas is then supplied to the cathode of the battery main body l.1 via the manifold 3. Thereafter, it contributes to power generation and is discharged from the manifold 4.

一方、アノードガスは、マニホールド6から電池本体1
・1のアノードに供給され、発電に寄与した後、マニホ
ールド7を介して排出される。
On the other hand, the anode gas is supplied from the manifold 6 to the battery body 1.
・After being supplied to the anode 1 and contributing to power generation, it is discharged via the manifold 7.

尚、上記の場合において、アノードガスが、予熱器2に
供給される前の温度は25°Cであるのに対して、予熱
器2を通過した後の温度は612°Cであり、十分に予
熱されていることが確認、された。
In the above case, the temperature of the anode gas before being supplied to the preheater 2 is 25°C, whereas the temperature after passing through the preheater 2 is 612°C, which is sufficient. It was confirmed that it was preheated.

このような構造の燃料電池システムを、以下(A)シス
テムと称する。
A fuel cell system having such a structure is hereinafter referred to as the (A) system.

〔比較例〕[Comparative example]

電池本体間に予熱器を設けず、第5図に示すように電池
外に設けられた熱交換器24によりアノードガスを予熱
する他は、上記実施例と同様の構造である。
The structure is similar to that of the above embodiment except that no preheater is provided between the battery bodies and the anode gas is preheated by a heat exchanger 24 provided outside the battery as shown in FIG.

このような構造の燃料電池システムを、以下(X)シス
テムと称する。
A fuel cell system having such a structure is hereinafter referred to as an (X) system.

〔実験〕 上記本発明の(A)システムと比較例の(X)システム
とにおいて、スタックの積層方向の温度分布を調べたの
で、その結果を第3図に示す。
[Experiment] The temperature distribution in the stacking direction of the stack was investigated in the system (A) of the present invention and the system (X) of the comparative example, and the results are shown in FIG.

第3図から明らかなように、比較例の(X)システムで
は、スタックの中央部分で著しい温度上昇が認められ、
且つスタックにおける温度差が50°Caこも達してい
る。これに対して、本発明の(A)システムでは、スク
ノクにおける温度差が25°C程度であって温度分布が
均一化されていることが認められる。
As is clear from FIG. 3, in the comparative example (X) system, a significant temperature increase was observed in the center of the stack.
Moreover, the temperature difference in the stack reached as much as 50°Ca. On the other hand, in the system (A) of the present invention, the temperature difference in the sukunoku is about 25°C, and it is recognized that the temperature distribution is uniform.

更に、本発明の(A)システムと比較例の(X)システ
ムとのシステム効率を調べたところ、(A)システムは
(X)システムに比べて、効率が約2%向上しているこ
とが認められた。
Furthermore, when we investigated the system efficiency of the (A) system of the present invention and the comparative example (X) system, we found that the efficiency of the (A) system was improved by about 2% compared to the (X) system. Admitted.

尚、上記実施例においては、カソードガスのみを予熱し
ているが、本発明はアノードガスにも通用できることは
勿論である。
In the above embodiments, only the cathode gas is preheated, but it goes without saying that the present invention can also be applied to the anode gas.

また、上記実施例では、溶融炭酸塩型燃料電池を用いて
いるが、他の燃料電池にも本発明を適用しうることは勿
論である。
Further, in the above embodiments, a molten carbonate fuel cell is used, but it goes without saying that the present invention can be applied to other fuel cells.

光亙少四釆 以上説明したように本発明によれば、電池外に熱交換器
を設ける必要がなくなり、且つ反応ガスの予熱のための
電力が不要となる。この結果、熱交換効率が向上するの
で、システム効率が向上すると共に、燃料電池システム
を小型化することができ、且つ設備費用を低減すること
ができる。
As explained above, according to the present invention, there is no need to provide a heat exchanger outside the battery, and there is no need for electric power for preheating the reaction gas. As a result, heat exchange efficiency is improved, so system efficiency is improved, the fuel cell system can be downsized, and equipment costs can be reduced.

加えて、電池同温度が適性な温度に維持されるので、電
池構成材が腐食するのを抑制でき、これにより電池寿命
が飛躍的に長くなるといった優れた効果を奏する。
In addition, since the temperature of the battery is maintained at an appropriate temperature, corrosion of the battery constituent materials can be suppressed, resulting in an excellent effect of dramatically extending the battery life.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一例に係る熔融炭酸塩型燃料電池の分
解斜視図、第2図は溶融炭酸塩型燃料電池の正面図(マ
ニホールド6は省略)、第3図は本発明の(A)システ
ムと比較例の(X)システムとにおけるスタックの積層
方向の温度分布を示すグラフ、第4図は従来のカソード
ガス予熱方式の概略図、第5図は従来の燃料電池システ
ムの概略図である。 1・・・電池本体、2・・・予熱器、3・4・5・・・
マニホールド。 特許出願人:三洋電機 株式会社
FIG. 1 is an exploded perspective view of a molten carbonate fuel cell according to an example of the present invention, FIG. 2 is a front view of the molten carbonate fuel cell (manifold 6 is omitted), and FIG. ) system and the comparative example (X) system, a graph showing the temperature distribution in the stack stack direction, Figure 4 is a schematic diagram of a conventional cathode gas preheating method, and Figure 5 is a schematic diagram of a conventional fuel cell system. be. 1... Battery body, 2... Preheater, 3, 4, 5...
manifold. Patent applicant: Sanyo Electric Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)反応ガスを予熱した後に燃料電池内に供給する燃
料電池システムにおいて、 上記反応ガスを予熱する予熱手段は、燃料電池内に内蔵
されていることを特徴とする燃料電池システム。
(1) A fuel cell system in which a reactant gas is preheated and then supplied into the fuel cell, wherein a preheating means for preheating the reactant gas is built in the fuel cell.
JP2310704A 1990-11-15 1990-11-15 Fuel cell system Pending JPH04181657A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2310704A JPH04181657A (en) 1990-11-15 1990-11-15 Fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2310704A JPH04181657A (en) 1990-11-15 1990-11-15 Fuel cell system

Publications (1)

Publication Number Publication Date
JPH04181657A true JPH04181657A (en) 1992-06-29

Family

ID=18008469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2310704A Pending JPH04181657A (en) 1990-11-15 1990-11-15 Fuel cell system

Country Status (1)

Country Link
JP (1) JPH04181657A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013065757A1 (en) * 2011-11-02 2013-05-10 日本特殊陶業株式会社 Fuel cell
WO2015087913A1 (en) * 2013-12-11 2015-06-18 日本特殊陶業株式会社 Fuel cell stack and fuel cell module

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013065757A1 (en) * 2011-11-02 2013-05-10 日本特殊陶業株式会社 Fuel cell
JP5636496B2 (en) * 2011-11-02 2014-12-03 日本特殊陶業株式会社 Fuel cell
US10224555B2 (en) 2011-11-02 2019-03-05 Ngk Spark Plug Co., Ltd. Fuel cell
WO2015087913A1 (en) * 2013-12-11 2015-06-18 日本特殊陶業株式会社 Fuel cell stack and fuel cell module
JP6093452B2 (en) * 2013-12-11 2017-03-08 日本特殊陶業株式会社 Fuel cell stack and fuel cell module
US10181608B2 (en) 2013-12-11 2019-01-15 Ngk Spark Plug Co., Ltd. Fuel cell stack and fuel cell module

Similar Documents

Publication Publication Date Title
JP2569550B2 (en) Fuel cell temperature distribution improvement method
CA2253075C (en) Fuel cell apparatus
US4080487A (en) Process for cooling molten carbonate fuel cell stacks and apparatus therefor
JPH03210774A (en) Internally improved quality system molten carbonate type fuel cell
JPH10134831A (en) Battery having plural flat high temperature fuel cells
JP3064746B2 (en) Flat solid electrolyte fuel cell
US5811202A (en) Hybrid molten carbonate fuel cell with unique sealing
US6756144B2 (en) Integrated recuperation loop in fuel cell stack
JPH04181657A (en) Fuel cell system
JPH097624A (en) Solid electrolytic fuel cell
JPH10284107A (en) Fuel cell power generating system
JP3602357B2 (en) Polymer electrolyte fuel cell system
JP3358956B2 (en) Solid electrolyte fuel cell module
JPH1092457A (en) Integral type fuel cell generating device
JP2610255B2 (en) Molten carbonate fuel cell
JPH10505190A (en) Solid electrolyte type-high temperature-fuel cell device
TW201011965A (en) Solid oxide fuel cell systems with heat exchangers
JPH05151980A (en) Cooling plate of fuel cell
JP2947549B2 (en) Fuel cell
JPH04144069A (en) Fuel cell
JPH06105625B2 (en) Molten carbonate fuel cell
KR100318206B1 (en) A heat treatment method for separator of molten carbonate fuel cell
JPH06163066A (en) Heat recovering device for high temperature type fuel cell
JP2659951B2 (en) Fuel cell stack
JP2590299Y2 (en) Fuel cell